This invention relates generally to the construction of a thin-walled container, preferably a bottle, suitable for containing water or other liquids. It is particularly applicable to the construction of thin-walled bottles for containing water for human consumption (generically drinking water hereafter) and which can be used in conjunction with water dispensing units.
Large containers, also named jugs, which are employed in the servicing of drinking water in dispensing units are customarily cylindrical in foim. Such jugs, when applied to units of the electrical or non-electrical type, are inverted and positioned upon the upper portion of the dispensing unit to supply water to an inner reservoir as it is being dispensed. Water is supplied to the reservoir from a replaceable jug which is inverted on the top of the cooler unit, the neck of the bottle being placed in a funnel-shaped inlet to the reservoir at the top of the dispensing unit. Pumps can also be used to supply water out of the jugs. The capacity of a typical jug is of the order of five gallons. When all the water in the jug has been dispensed the empty jug is removed and replaced by another full bottle. Usually a supply of full jugs is kept at the site and from time to time the supplier will deliver a fresh supply of filled jugs and collect the empty jugs for cleaning and refilling.
The jugs are blow moulded from plastic material such as polyester terephtalate or polycarbonate. A plastic cap fits over the top of the neck to close the jug whilst it is in transit or storage. These jugs are difficult to lift and manoeuvre into position on the cooler unit because of their bulk and weight when full.
Because these jugs are returnable and refillable, they are thus subjected to numerous handling and storage operations and conditions, wherein they are exposed to mechanical constraints such as abrasive wear, notably in the contact area between the jugs after stacking, or such as drops.
Then, the requirements of the moulded plastic jugs are notably resistance to abrasion (scuffmg) and impact or drop resistance.
In this respect, the moulded plastic jugs have a wall thickness of at least 400 μm, preferably 500 μm, and more preferably comprised between 600 and 1500 μm. This wall thickness requirement is linked to the relatively large capacity of the thin-walled bottle, i.e at least, in an increasing order of preference and in liters: 10; 15; 21.
The fact that these jugs are returnable and can be reused, involves numerous constraints, such as organization of a delivery circuit of full thin-walled bottles and of a circuit for picking up empty jugs. Moreover, these empty jugs are cumbersome and must be washed and treated before their refilling. This involves sanitary issues. New caps have also to be put on the refilled bottles.
Due to their frequent handling and to their storage conditions, they are submitted to scuffing, which gives them an unsightly aspect inappropriate to the marketing.
Insofar as these jugs are rigid, each sampling of liquid (e.g. water) involves an intake of ambient air to compensate for the sampled volume. In doing so, the compensating ambient air contaminates the liquid (e.g. water). This contamination comes to a head as the thin-walled bottle is almost empty. This is a noteworthy sanitary drawback.
To sum up, these jugs are expensive, heavy, difficult to handle and to market, and tricky with respect to sanitary issues.
Thin-walled PET containers for beverages (e.g. water) made by Injection moulding of a preform, as well as Stretching, Blowing and Moulding (ISBM), are also known.
EP1436203B1 discloses a PET container including walls made of flexible PET plastic and comprising a 30-100 μm-walled body (1) with greater section of dimension (d1) and neck (2) with internal diameter (d2), closed by a closing-off member (3). The wall(s) (4) forming the body of the container is made of flexible plastic which can be deformed for constant surface area, particularly under the weight of the flowable product contained in the container when the wall(s) encounter a point or bearing surface, so as to form, non-planar wall portion (5).
The ratio of d2 on d1 is 1:3-1:10. These containers however are unpractical for example due to a bad resistance and/or low compactability.
EP1468930B1 concerns a container having a body (1) formed by a wall (4) with a diameter S1 and at least a neck (2) with a diameter S2, made from a semi-crystalline PET, having a wall thickness of less than 100 μm, substantially in the middle of its body and having a complex, three dimensional shape (3) convenient for gripping, this part having diameter S3. These containers however are unpractical for example due to a bad resistance and/or low compactability.
EP1527999B1 describes a container comprising a body foinied by walls and a bottom having in his greater section a dimension d1 and a neck with an internal diameter d2, said container being made from a semi-crystalline PET , the body of said container comprising at its bottom at least three feet spaced from each other and being integral with said body, wherein for the body, the ratio weight of the walls on weight of the bottom is comprised between 3 and 4 and wherein the ratio volume, in ml of the body of the container per gram of PET of the body is comprised between 80 and 120, and wherein the walls of the body have a thickness of less than 100 μm, and the bottom has a thickness between 100 μm and 200 μm, and each foot has a wall thickness of 50 μm to 150 μm. These containers however are unpractical for example due to a bad resistance and/or low compactability.
Nevertheless, such arrangements are not compatible with large volumes because the thus produced containers cannot be handled except to increase the amounts of material.
JP2001122237 discloses a PET thin-walled bottle including a neck segment 1, a shoulder 2, a barrel segment 3 is formed into a thin-walled segment. The shoulder 2 is formed to have a wall thickness of 0.2 to 0.3 mm A segment ranging from an interface 5 of the shoulder 2 to a part lower than the barrel 3 is formed to have an ultrathin wall of 0.02 to 0.05 mm in such a way that the shoulder can be pushed into the barrel after use of the thin-walled bottle, to enable the thin-walled bottle to be scrapped. A deformation strength of the barrel 3 is increased by notch of a lateral rib 6 of optional shape. These containers are however unpractical.
US2010206876A1 pertains to a PET disposable thin-walled high-capacity container is obtained by blowing a preformed shape 10 that has a collar 12 and a neck 14 designed to receive a plug 16 and is able to exhibit residual stresses after its shaping to the desired volume. The container has a material weight/developed surface ratio of said container of between 150 g/m2 and 250 g/m2. The container is filled with water under cold conditions and without pressure, and then sealed using a plug that can be pierced. This container 18, after filling, undergoes a peripheral heating that is designed to release residual stresses that are stored in the material. These released stresses have a tendency to bring the container back to its initial shape before the blowing process, i.e., that of the preformed shape. Because of this tendency toward a reduction of volume of the container and because the liquid that is contained, in this case water, is incompressible, a pressurization of the liquid by the container occurs, which makes this container 20 essentially compact and therefore easy to handle.
This compact container can be set upside down in a dispenser, including a trocard which pierces the plug and depressurizes the container which becomes soft and must be held by receiving means thereof. The dispensing of water is facilitated by a ballast 32 which is not convenient. These containers are however unpractical, due the need of a ballast for compacting efficiently. Moreover, these containers are not adapted to be stored easily in a minimum of space.
In the above recalled background, the invention aims at fulfilling at least one of the following objectives:
The above objectives, among others, are fulfilled by the present invention which concerns, in a first aspect, a plastic thin-walled container having:
The thin-walled container, preferably a bottle, according to the invention is endowed with the required properties: food compatible, single use, environment-friendly, waterproof and airtight, easy handling, storing and stacking up, non subjected to air contamination at each sampling in a dispenser, good mechanical properties (shocks & scuffing strength), lightness, attractive appearance, and best balance of properties and cost/performance ratios deemed necessary to plastic containers.
The self-collapsibility of the container during its emptying, without any guide (the container is self-supported) and/or any additional force (ballast), is a noteworthy attractive feature. Moreover, these thin-walled containers (bottles) can be pressurized simply by piling up, for the storage and the transportation.
And above all, having been filled with a liquid, closed with a cap, set upside down, and connected by piercing of the cap to a dispenser, without retaining means, said thin-walled container, preferably a bottle, can be emptying by sampling of the liquid, without contamination of the liquid by the ambient air, the succession of samplings involving an auto-collapsing of the container, which finally a compacted recyclable waste, that highly facilitates the storage and the transportation of this waste.
In a second aspect, the invention pertains to a moulded plastic preform for the manufacture by blow molding of the thin-walled container, preferably a bottle, according to the invention, said preform comprising from the top to the bottom:
In a third aspect, the invention relates to a method for the manufacture by blow molding of the thin-walled container (preferably a bottle) according to the invention. Said method comprises the steps of:
In a fourth aspect, the invention relates to a mold for the manufacture by blow molding of the thin-walled bottle according to the invention.
In a fifth aspect, the invention relates to a method of bottling a liquid into the thin-walled bottle according to the invention, or a thin-walled container obtained by the method according to the invention, wherein the thin-walled container is filled with a liquid which is intended to put the thin-walled container under pressure and gives it a mechanical holding/resistance to deformation, after closing and once the container rests on a flat support
In a sixth aspect, the invention relates to a method for dispensing a liquid contained in the thin-walled container (preferably a bottle) according to the invention, or a thin-walled container (preferably a bottle) obtained by the method according to the invention, wherein:
In a seventh aspect, the invention relates to a dispenser for implementing the method of dispensing according to the invention, characterized in that it comprises a base including in its top a seating designed to receive the top part of the thin-walled container according to the invention, or a thin-walled container obtained by the method according to the invention, said container being set up-side down, said seating comprising connecting means between the inside of the thin-walled container and a conduct linked to an outlet, where the liquid coming from the thin-walled container can be dispensed, the flowing of the liquid through the conduct being controlled by at least one valve.
In an eight aspect, the invention relates to a method for packing in view of storage and transportation, the thin-walled containers according to the invention, or thin-walled containers obtained by the method according to the invention, wherein the thin-walled containers are stacked on a pallet on several levels, preferably by intercalating at least a plate between two successive levels, each level is strapped, and a axial pressure is exerted on the top of the pallet so as to retract the tops and/or the bottoms of the palletized thin-walled containers to increase their non-deformability properties.
Some of the remarkable features of the container (e.g. the bottle) stem from the fact said container is characterized by the following stretching ratios:
According to a favourite embodiment of the invention, the thin-walled container is manufactured by Blow Moulding processes, preferably Injection Stretch Blow Moulding processes. Such processes are known by the one skilled in the art. They typically involve making a plastic preform by an injection process and then heating and blowing the preform, optionally with stretching
The plastic preform, and de facto the container obtained therefrom, is preferably made of a (thermo)plastic material chosen preferably among the polymers which exhibit strain hardening when they are elongated, and, more preferably among the polymers which exhibit strain hardening when they are elongated, and, more preferably among the polyesters, particularly the aromatic polyesters, more particularly chosen in the group comprising, and even more particularly consisting in:PolyEthylene Terephtalate (PET) and/or PolyEthyleneNaphtalate(PEN) or PolyEthylene Furanoate (PEF), Polypropylene Terephtalate (PPT).
In a preferred embodiment, the thin-walled container according to the invention is preferably a bottle wherein the top part includes:
The plastic thin-walled container according to the invention, has a volume, typically when filled, of at least -given in liters and in an increasing order of preference- 2; 3; 5; and more preferably comprised in a range of 2-20 liters, preferably of 7.5-12.5 liters
According to an outstanding feature of the (moulded) plastic thin-walled container—e.g. bottle—of the invention, each transversal groove or rib, preferably located in the tubular body portion of the container, comprises at least 2, preferably at least 4, and more preferably between 4 and 8 collapse/fold starters.
The collapse starters preferably extend inwardly—recess—or outwardly—pin—with respect to the axis of the thin-walled bottle.
For example, at least one transversal groove or rib:
For example, said collapse/fold starters have at least one of the following features:
The transversal groove or rib preferably fulfils to at least one of the following specifications:
According to an outstanding feature of the (moulded) plastic thin-walled container—e.g. bottle—of the invention, its tubular body portion is substantially cylindrical, polyhedral or comprised substantially plane face(s) and curved face(s), preferably substantially plane face(s) linked by curved face(s).
Advantageously, the transversal grooves and/or ribs of the plastic thin-walled Container—e.g. bottle—, can be continuous or discontinuous.
According to an outstanding feature of the (moulded) plastic thin-walled container (bottle) of the invention, it includes at least one terminal retractable part, which is in the top part and/or in the bottom structure of the thin-walled bottle.
When the thin-walled container (bottle) includes at least one terminal retractable part of its bottom:
When the thin-walled container includes at least one terminal retractable part in its top area, said part is preferably the neck fmish, the neck and at least a part of the shoulder, and its top is preferably retractable under the effect of a (preferably axial) force which is applied in order to stack the thin-walled container(s)—e.g. bottle(s)—and/or by the thin-walled container(s)—e.g. bottle(s)—laid above.
In a preferred embodiment, the terminal retractable part in the top area comprises at least one retractation starter, which is preferably chosen in the group comprising -and still better composed of—: grooves and/or folding lines and/or ribs, ribs being preferred.
Such a retractation of the top and/or the bottom of the container—e.g. bottle—contributes to the pressurization of the bottle filled with a liquid.
Concerning the method for manufacturing of the plastic thin-walled container—e.g. bottle—, it is noticeable that its step C of stretch blow moulding of the preform is preferably performed so as to give to the of the plastic thin-walled container—e.g. bottle—, the following stretching ratios:
According to an interesting possibility, the container according to the invention can be free from one or several vertical groove(s) and/or folding line(s) and/or rib(s).
According to the terminology of this text, the following non limitative definitions have to be taken into consideration:
The following description of a preferred embodiment of a thin-walled container according to the invention, namely a bottle, will make it possible to well understand the invention and to emphasize all its advantages and variants.
This description is made in reference to the enclosed drawings wherein:
FIG. 1A′ is a view on a larger scale showing a detail in circle A′ of
FIG. 1A″ is a view on a larger scale showing a view in longitudinal section of a detail in circle A″ of
The thin-walled bottle shown on the enclosed drawings, especially FIGS. 1A-1B-2 is a biaxial stretched blowed molded thin-walled bottle (1), which has a general cylindrical shape and which is made of PET, without being limited to this specific substance, it being also possible to make the bottle out of a material that is simple or composite, multilayer or compound, such as PVC or a polyolefm or a polyester. This thin-walled bottle (1) has a large-sized (e.g 20 liters) and is notably intended to contain water and to be set upside down on dispenser unit for Home and Office Delivery (HOD) as shown on
This thin-walled bottle (1) is composed, from the top to the base, of the following parts:
In the thin-walled bottle (1) shown on the enclosed drawings, the neck end (2) is threaded to receive a screwed cap 2′ as shown on
The rib (51) of the shoulder (5) which acts as a retractation starter of the top of the thin-walled bottle (1) is shown in detail on
The width of the rib (51) is, for instance, comprised between 1-30 mm, preferably between 7-20 mm, more preferably equal to circa 12 mm
The height of the rib (51) is, for instance, comprised between 0.5-20 mm, preferably between 2-10 mm, more preferably equal to circa 6 mm
The tubular body portion (6) is imprinted with e.g. 9 transversal continuous grooves (61), each of them comprising 4 or 6 collapse/fold starters (62), which are angularly offset around the axis.
In the embodiment shown on the enclosed figures, especially on FIG. 1A′, the grooves (61) of the thin-walled bottle (1) have each a V-shaped cross-section, and more particularly two coplanar edges (58) and an intermediate portion between the two edges (58), said intermediate portion presenting an apex (56) inwardly shifted with respect to the two edges. These latter are two straight branches (58) of the V-shape connected via circular arcs 60 to the substantially cylindrical side wall of the thin-walled bottle (1). Each groove (61) presents a width (w) measured between the two edges and a maximum height (h) measured between the edges and the apex. In this embodiment, each groove (61) includes collapse (or fold) starters (62) which are bosses angularly distributed uniformly about the longitudinal axis (64) of the bottle (1) and which project outwardly from the bottoms of the grooves (61). Said grooves (61) are of constant height h apart from the collapse starters (62). The shape of the fold starters (62) can be defined as follows. In the plan view of
In the embodiment herein described as non limiting example, the mean wall thickness (Tmean) of the tubular body portion (6) is comprised between 100 and 140 μm
In order to assess the wall thickness, a generatrix G of the thin-walled bottle (1) is graduated from (0) to (440).
The origin (0) is placed at the center of the bulge (9).
The graduation (440) is placed at the end of the shoulder (5) and at the beginning of the neck (4).
The tubular body portion (6) is comprised between the graduations circa 100 mm and circa 300 mm
The integral bottom structure (7)
The retractation starter (71) joining the terminal curved portion (8) to the bulge is an annular groove or a folding line shown in details on the
The width of the groove (71) is, for instance, comprised between 1-15 mm, preferably between 2-8 mm, more preferably equal to circa 4 mm.
The height of the groove (71) is, for instance, comprised between 0.1-10 mm, preferably between 0.5-4 mm, more preferably equal to circa 2 mm
The center of the bulge (9) comprises an inwardly extended dome (10).
The neck end (20) and the neck support ring (30) foam together the neck finish.
The ratio between the minimum external diameter (Dtz) of the transition zone (40) on the maximum external diameter (Dtb) of the closed tubular body portion (50) is for instance:
Dtz/Dtb is between 1.8 and 0.3, preferably between 1.4 and 0.5 mm, more preferably for instance equal to 36.5/39.5=0.92.
Advantageously the wall thicknesses of the preform (11) is between 1 and 10 mm, preferably between 2 and 7 mm, more preferably for instance equal to 3.25 mm
Advantageously the ratio weight (g) of the preform (11)/capacity (liters) of the bottle (1), is between 1 and 10, preferably 4 and 7, for instance equal to 5.5.
The blow moulding manufacturing method of the thin-walled bottle/jug (1) as defined above can be illustrated by the example as follows.
20 litres bottles (1) as above defined are manufactured by injection and blowing with a a standard blow molding device including a shell mold in aluminium with an IR oven composed of 3 ovens and a shaft.
The thermoplastic raw material is a PET resin W170 of NOVAPET and a PET resin Xtreme of VORIDIAN. The intrinsic viscosity of these PET (IV)=0.74 dl/g.
Heat conditioning and preblow step B are implemented. The parameters of this example are given hereafter:
Blowing parameters:
The dimensions of the preform and the bottles are as follows:
The bottles have a good appearance after blowing
The thickness distribution (Tmean) of the bottles is given on
The stretching ratios of the thin-walled bottle (1) of the example are as follows:
The method of bottling a liquid into the of the thin-walled bottle (1) as defined above, consists in filling the thin-walled bottle (1) with a liquid (e.g water) on bottling line, wherein the thin-walled bottle is put under pressure by means of the filled liquid (e.g water) which gives to the thin-walled bottle (1) a mechanical holding/resistance to deformation.
Conventional bottling lines can be adapted to this bottling method.
The method for packing in view of storage and transportation of the thin-walled bottles (1) as defined above, essentially consists in taking advantage of the fact that the upper part of the shoulder (5) together with the neck (4) and the neck fmish and the lower part of the integral bottom structure (7) of the thin-walled bottle (1), are retractable under the effect of coaxial forces.
Therefore, it possible to pile the water-filled bottles (1), closed with screwed caps (2′), which are resistant to deformation and which have a self mechanical holding, on top of each other on several levels (100), on a pallet (110).
FIGS. 6A-6B-6C show how the bottles (1) are placed side by side on different superposed levels (100), between which a plate (120) is intercalated. At least some of the bottles' rows are strapped with bands (130). And if need be (see
The plates (120) can be possibly pierced of holes which are intended to leave the bottles' necks of the lower go through.
It must be emphasized that the remarkable features of the bottles (1) enable a new and efficient way of storage of these bottles (1). Such storage is compact and optimized in terms of transportation.
The method for dispensing a liquid contained in the thin-walled bottle (1) as defined above, as well as the dispenser are described hereinafter in reference to the
The dispenser (500) shown on
The cap (2′) of the bottle (1) is classically perforated by a tip (not shown) which is connected to an inlet pipe (not shown), which is linked to one or several outlets, by which the liquid (e.g. water) coming from the thin-walled bottle (1) can be dispensed. The outlets are each equipped with valves (530) for controlling the flowing of the liquid (e.g. water).
The setting of the filled bottle (1) up-side down on the seating (520) of the dispenser (500) concomitantly with the perforation the cap (2′) of the bottle (1) is the first step of the method for dispensing the liquid (e.g. water).
It is noteworthy that this first step does not involve entering of ambient air which could have contaminated the liquid (e.g. water). Moreover, the bottle (1) set up-side down keeps its mechanical holding (self supporting) and self collapses as the liquid (e.g. water) is sampled from the dispenser (500) by opening of the valve (530) as shown on
The closing of this valve (530) stops the sampling of liquid (e.g. water) as well as the self collapsing of the bottle (1).
The emptying and the self collapsing of the bottle (1) occur till said bottle is (almost) empty and entirely self collapsed. In this state, the bottle (1) forms a waste which not cumbersome (see
The dispenser (500) is a Home Office Dispenser (HOD) which can be equipped either with a manual pump or to an electric pump, and/or with means for refrigerating the water, one of the valve (530) dispensing refrigerated water and the other non-refrigerated water.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/077069 | 12/28/2012 | WO | 00 |