Reference is made to U.S. Provisional Patent Application No. 62/170,583, filed Jun. 3, 2015, entitled “Self-Compensating Circuit for Faulty Display Pixels,” U.S. patent application Ser. No. 14/495,830, filed Jul. 9, 2015, entitled “Self-Compensating Circuit for Faulty Display Pixels,” U.S. Patent Application Ser. No. 62/055,472 filed Sep. 25, 2014, entitled “Compound Micro-Assembly Strategies and Devices”, and U.S. patent application Ser. No. 14/743,981, filed Jun. 18, 2015, entitled “Micro-Assembled Micro LED Displays and Lighting Elements,” the contents of which are hereby incorporated by reference in their entirety.
The present invention relates to a control circuit for providing fault tolerance to pixels in a display.
Flat-panel displays are widely used in computing devices, in portable devices, and for entertainment devices such as televisions. Such displays typically employ a plurality of pixels distributed in an array over a display substrate to display images, graphics, or text. For example, liquid-crystal displays (LCDs) employ liquid crystals to block or transmit light from a backlight behind the liquid crystals. Organic light-emitting diode (OLED) displays rely on passing current through a layer of organic material that glows in response to the electrical current. Each pixel usually includes three or more sub-pixels emitting light of different colors, for example red, green, and blue.
Displays are typically controlled with either a passive-matrix (PM) control employing electronic circuitry external to the display substrate or an active-matrix (AM) control employing electronic circuitry formed directly on the display substrate and associated with each light-emitting element. Both OLED displays and LCDs using passive-matrix control and active-matrix control are available. An example of such an AM OLED display device is disclosed in U.S. Pat. No. 5,550,066.
Typically, each display sub-pixel is controlled by one control element, and each control element includes at least one transistor. For example, in a simple active-matrix OLED display, each control element includes two transistors (a select transistor and a drive transistor) and one capacitor for storing a charge specifying the desired luminance of the sub-pixel. Each OLED element employs an independent control electrode connected to the power transistor and a common electrode. In contrast, an LCD typically uses a single-transistor circuit. Control of the light-emitting elements is usually provided through a data signal line, a select signal line, a power connection and a ground connection. Active-matrix elements are not necessarily limited to displays and can be distributed over a substrate and employed in other applications requiring spatially distributed control.
Active-matrix circuitry is commonly achieved by forming thin-film transistors (TFTs) in a semiconductor layer formed on a display substrate and employing a separate TFT circuit to control each light-emitting pixel in the display. The semiconductor layer is typically amorphous silicon or poly-crystalline silicon and is distributed over the entire flat-panel display substrate. The semiconductor layer is photolithographically processed to form electronic control elements, such as transistors and capacitors, Additional layers, for example insulating dielectric layers and conductive metal layers are provided, often by evaporation or sputtering, and photolithographically patterned to form electrical interconnections, structures, or wires.
In any display device it is important that light is uniformly displayed from the pixels arranged over the extent of the display when correspondingly controlled by a display controller to avoid visible non-uniformities or irregularities in the display. As display size and resolution increase, it becomes more difficult to manufacture displays without any pixel defects and therefore manufacturing yields decrease and costs increase. To increase yields, fault-tolerant designs are sometimes incorporated into the displays, particularly in the circuitry used to control the pixels in the display or by providing additional redundant pixels or sub-pixels.
Numerous schemes have been suggested to provide pixel fault tolerance in displays. For example, U.S. Pat. No. 5,621,555 describes an LCD with redundant pixel electrodes and thin-film transistors and U.S. Pat. No. 6,577,367 discloses a display with extra rows or columns of pixels that are used in place of defective or missing pixels in a row or column. U.S. Pat. No. 8,766,970 teaches a display pixel circuit with control signals to determine and select one of two emitters at each sub-pixel site on the display substrate.
Furthermore, in flat-panel displays using thin-film transistors formed in an amorphous or polysilicon layer on a substrate, the additional circuitry required to support complex control schemes can further reduce the aperture ratio or be difficult or impossible to implement for a particular display design.
There remains a need, therefore, for a design and manufacturing method that enables fault tolerance in a display without compromising the aperture ratio of the display or limiting display design options.
The present invention provides a self-compensating circuit for controlling pixels in a display. In an embodiment, the self-compensating circuit and pixels are formed on a substrate, for example in a thin film of semiconductor material. In another embodiment, the pixels include inorganic light emitters that are micro transfer printed onto a display substrate as well as controllers incorporating the self-compensating control circuit. Alternatively, the light emitters or controllers are micro-transfer printed onto a pixel substrate separate and independent from the display substrate. The pixel substrates are then located on the display substrate and electrically interconnected, for example using conventional photolithography. Because the inorganic light emitters are relatively small compared to other light-controlling elements such as liquid crystals or OLEDs, a more complex, self-compensating control circuit does not decrease the aperture ratio of the display.
According to embodiments of the present invention, a self-compensating circuit compensates for a missing or defective light emitter by increasing the current supplied to other light emitters, for example light emitters that are spatially adjacent on a substrate. The increased current supplied to the other spatially adjacent light emitters causes an increase in light output by the other emitters, so that the overall light output is the same as if all of the light emitters are functioning. When all of the light emitters are working properly, each circuit independently supplies current to the light emitters according to a control drive signal. When one or more of the light emitters are not present or fail, the self-compensating control circuit for each faulty light emitter supplies current to the other light emitters in the self-compensating circuit according to the control drive signal of the faulty light emitter. This provides fault tolerance for missing or defective pixels without requiring external detection or control of the defective pixels. If the pixels are arranged over the substrate with a sufficiently high resolution, the compensated light output is not readily noticed by an observer.
The disclosed technology, in certain embodiments, provides a self-compensating circuit for controlling pixels in a display having fault tolerance for missing or defective pixels without requiring external detection or control of the defective pixels. In an embodiment, the self-compensating circuit does not decrease the aperture ratio of the display.
In one aspect, the disclosed technology includes a self-compensating circuit for controlling pixels in a display, the self-compensating circuit including: a plurality of light-emitter circuits, each light-emitter circuit including: a light emitter having a power connection to a power supply and an emitter connection; a drive transistor having a gate connected to a drive signal, a drain connected to the emitter connection, and a source connected to a ground; and a compensation circuit comprising one or more compensation diodes, each compensation diode connected to the emitter connection and connected to an other emitter connection of one or more light-emitter circuits other than the light-emitter circuit of which the compensation diode is a part, thereby emitting compensatory light from the one or more light-emitter circuits when the light emitter is faulty.
In certain embodiments, the light emitters are inorganic light-emitters.
In certain embodiments, the inorganic light emitters are inorganic light-emitting diodes.
In certain embodiments, the size of the compensation diodes in a light-emitter circuit is inversely related to the number of compensation diodes in the light-emitter circuit.
In certain embodiments, the number of compensation diodes in each light-emitter circuit is one fewer than the number of light emitters in the self-compensating circuit.
In certain embodiments, each compensation circuit of the plurality of light-emitter circuits has one compensation diode and the compensation diode is electrically connected in common to a common compensation connection and wherein each compensation circuit further includes a transfer diode connected to the emitter connection and to the common compensation connection with a polarity that is the reverse of the compensation diode polarity.
In certain embodiments, the light emitter is a light-emitting diode with a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In another aspect, the disclosed technology includes a self-compensating display, the display including an array of light emitters forming rows and columns of light emitters on a display substrate, each light emitter controlled by a self-compensating circuit as described herein.
In certain embodiments, the display substrate is a polymer, plastic, resin, polyimide, PEN, PET, metal, metal foil, glass, a semiconductor, or sapphire.
In certain embodiments, the light emitters are arranged in exclusive groups of adjacent light emitters so that each light emitter is a member of only one group and wherein each compensation diode in a light-emitter circuit of a light emitter is connected to a different one of the emitter connections in the light-emitter circuits of the other light emitters in the exclusive group.
In certain embodiments, the number of compensation diodes in each light-emitter circuit is equal to one less than the number of light emitters in the exclusive group.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent rows.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent columns.
In certain embodiments, each group of adjacent light emitters comprises four light emitters located in a two by two array forming two rows and two columns.
In certain embodiments, each group of adjacent light emitters is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, each light emitter is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, the light emitters are arranged in groups of adjacent light emitters and wherein each compensation diode in each light-emitter circuit is connected to a different one of the emitter connections in the light-emitter circuits of each light emitter in the group.
In certain embodiments, at least one group of light emitters overlaps another group of light emitters so that at least one light emitter is a member of more than one group.
In certain embodiments, each group of adjacent light emitters comprises five light emitters, the five light emitters arranged with a central light emitter having a left light emitter to the left of the central light emitter, a right light emitter to the right of the central light emitter, an upper light emitter above the central light emitter, and a lower light emitter below the central light emitter.
In certain embodiments, each group of adjacent light emitters comprises nine light emitters, the nine light emitters arranged with a central light emitter having a light emitter above the central light emitter, a light emitter below the central light emitter, a light emitter on the left side of the central light emitter, a light emitter on the right side of the central light emitter, a light emitter on the upper left of the central light emitter, a light emitter on the upper right of the central light emitter, a light emitter on the lower left of the central light emitter, and a light emitter on the lower right of the central light emitter.
In another aspect, the disclosed technology includes a self-compensating circuit for controlling pixels in a display, the self-compensating circuit including: a plurality of light-emitter circuits, each light-emitter circuit including: a light emitter having a power connection to a power supply and an emitter connection; a drive transistor having a gate connected to a drive signal, a drain connected to the emitter connection, and a source connected to a ground; and one or more compensation diodes, each compensation diode connected to the emitter connection of the light-emitter circuit of which the one or more compensation diodes are a part, wherein the number of compensation diodes in each light-emitter circuit is one fewer than the number of light emitters in the self-compensating circuit and each compensation diode in each light-emitter circuit is connected to an other emitter connection of each of one or more light-emitter circuits other than the light-emitter circuit of which the compensation diode is a part, thereby emitting compensatory light from the one or more light-emitter circuits when the light emitter is faulty.
In certain embodiments, the light emitters are inorganic light-emitters.
In certain embodiments, the inorganic light emitters are inorganic light-emitting diodes.
In certain embodiments, the compensation diodes in a light-emitter circuit have a size equal to or smaller than the drive transistor.
In certain embodiments, the size of the compensation diodes in a light-emitter circuit is inversely related to the number of compensation diodes in the light-emitter circuit.
In certain embodiments, the size of the compensation diodes in a light-emitter circuit is less than or equal to the size of the drive transistor divided by the number of compensation diodes.
In certain embodiments, the light emitter is a light-emitting diode with a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In another aspect, the disclosed technology includes a self-compensating display, including an array of light emitters forming rows and columns on a display substrate, each light emitter controlled by a self-compensating circuit as described herein.
In certain embodiments, the display substrate is a polymer, plastic, resin, polyimide, PEN, PET, metal, metal foil, glass, a semiconductor, or sapphire.
In certain embodiments, the light emitters are arranged in exclusive groups of adjacent light emitters so that each light emitter is a member of only one group and wherein the each compensation diode in a light-emitter circuit is connected to a different one of the other emitter connections in the light-emitter circuits of the other light emitters in the exclusive group.
In certain embodiments, the number of compensation diodes in each light-emitter circuit is equal to one less than the number of light emitters in the exclusive group.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent rows.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent columns.
In certain embodiments, each group of adjacent light emitters comprises four light emitters located in a two by two array forming two rows and two columns.
In certain embodiments, each group of adjacent light emitters is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, each light emitter is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, the light emitters are arranged in groups of adjacent light emitters and wherein each compensation diode in each light-emitter circuit is connected to a different one of the emitter connections in the light-emitter circuits of each light emitter in the group.
In certain embodiments, at least one group of light emitters overlaps another group of light emitters so that at least one light emitter is a member of more than one group.
In certain embodiments, each group of adjacent light emitters comprises five light emitters, the five light emitters arranged with a central light emitters having a left light emitters to the left of the central light emitters, a right light emitters to the right of the central light emitters, an upper light emitters above the central light emitters, and a lower light emitters below the central light emitters.
In certain embodiments, each group of adjacent pixels comprises nine light emitters, the nine light emitters arranged with a central light emitter having a light emitter above the central light emitter, a light emitter below the central light emitter, a light emitter on the left side of the central light emitter, a light emitter on the right side of the central light emitter, a light emitter on the upper left of the central light emitter, a light emitter on the upper right of the central light emitter, a light emitter on the lower left of the central light emitter, and a light emitter on the lower right of the central light emitter.
In another aspect, the disclosed technology includes a self-compensating circuit for controlling pixels in a display, the circuit including: a plurality of light-emitter circuits, each light-emitter circuit including: a light emitter having a power connection to a power supply and an emitter connection; a drive transistor having a gate connected to a drive signal, a drain connected to the emitter connection, and a source connected to a ground; a compensation diode connected to the emitter connection and connected to a common compensation connection; and a transfer diode connected to the emitter connection and connected to the common compensation connection with a polarity that is the reverse of the compensation diode polarity, wherein the common compensation connection of each of the plurality of light-emitter circuits is electrically connected in common.
In certain embodiments, the light emitters are inorganic light-emitters.
In certain embodiments, the inorganic light emitters are inorganic light-emitting diodes.
In certain embodiments, the compensation diodes in a light-emitter circuit have a size equal to or smaller than the drive transistor.
In certain embodiments, the size of the compensation diodes in a light-emitter circuit is inversely related to the number of compensation diodes in the light-emitter circuit.
In certain embodiments, the size of the compensation diodes in a light-emitter circuit is less than or equal to the size of the drive transistor divided by the number of compensation diodes.
In certain embodiments, the light emitter is a light-emitting diode with a width from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a length from 2 to 5 μm, 5 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In certain embodiments, the light emitter is a light-emitting diode with a height from 2 to 5 μm, 4 to 10 μm, 10 to 20 μm, or 20 to 50 μm.
In another aspect, the disclosed technology includes a self-compensating display, including an array of light emitters forming rows and columns on a display substrate, each light emitter controlled by a self-compensating circuit as described herein.
In certain embodiments, the display substrate is a polymer, plastic, resin, polyimide, PEN, PET, metal, metal foil, glass, a semiconductor, or sapphire.
In certain embodiments, the light emitters are arranged in exclusive groups of adjacent light emitters so that each light emitter is a member of only one group and wherein the each compensation diode in a light-emitter circuit is connected to a different one of the other emitter connections in the light-emitter circuits of the other light emitters in the exclusive group.
In certain embodiments, the number of compensation diodes in each light-emitter circuit is equal to one less than the number of light emitters in the exclusive group.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent rows.
In certain embodiments, each group of adjacent light emitters comprises two light emitters located in adjacent columns.
In certain embodiments, each group of adjacent light emitters comprises four light emitters located in a two by two array forming two rows and two columns.
In certain embodiments, each group of adjacent light emitters is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, each light emitter is located on a pixel substrate that is independent and separate from the display substrate and the pixel substrates are mounted on the display substrate.
In certain embodiments, the light emitters are arranged in groups of adjacent light emitters and wherein each compensation diode in each light-emitter circuit is connected to a different one of the emitter connections in the light-emitter circuits of each light emitter in the group.
In certain embodiments, at least one group of light emitters overlaps another group of light emitters so that at least one light emitter is a member of more than one group.
In certain embodiments, each group of adjacent light emitters comprises five light emitters, the five light emitters arranged with a central light emitters having a left light emitters to the left of the central light emitters, a right light emitters to the right of the central light emitters, an upper light emitters above the central light emitters, and a lower light emitters below the central light emitters.
In certain embodiments, each group of adjacent pixels comprises nine light emitters, the nine light emitters arranged with a central light emitter having a light emitter above the central light emitter, a light emitter below the central light emitter, a light emitter on the left side of the central light emitter, a light emitter on the right side of the central light emitter, a light emitter on the upper left of the central light emitter, a light emitter on the upper right of the central light emitter, a light emitter on the lower left of the central light emitter, and a light emitter on the lower right of the central light emitter.
The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale since the variation in size of various elements in the Figures is too great to permit depiction to scale.
Referring to the embodiment of both
A drive transistor 40 has a gate connected to a drive signal 42, a drain connected to the emitter connection 24, and a source connected to a ground 60. Transistors are very well known and all variants of transistors may be used in the circuits, such as metal-oxide field effect transistors (MOSFETs), bipolar junction transistors (BJTs), junction field-effect transistors (JFETs), and others. Referring briefly to prior-art
Each light-emitter circuit 10 includes a compensation circuit 50 that has one or more compensation diodes 52, each compensation diode 52 connected to the emitter connection 24 and connected to the emitter connection of a light-emitter circuit 10 other than the light-emitter circuit 10 of which the compensation diode 52 is a part. In different embodiments of the present invention, different compensation circuits 50 include different numbers of compensation diodes 52. In the embodiment of
In an embodiment of the present invention, the light emitters 20 are inorganic light-emitters such as inorganic light-emitting diodes.
In
In
In operation, the compensation diodes 52 of each light-emitter circuit 10 act as switches that operate in response to current flowing through the LED of the light-emitter circuit 10. When no fault is present, the compensation diodes 52 of the same light-emitter circuit 10 are effectively in an OFF state and current ILED flows through the corresponding LED. In this case, current IH is zero and current IDRIVE is equal to current ILED. Referring to the equivalent circuit corresponding to the OFF state illustrated in FIG. 2, the compensation diode 52 turns off so that each of the light-emitter circuits 10 acts independently to control current ILED from the power supply 16 to flow through each LED light emitter 20 in response to the VDRIVE drive signal 42 controlling the drive transistor 40.
In the case of a fault, for example corresponding to a case in which an LED is missing or defective, the compensation diodes 52 of the same light-emitter circuit 10 as the faulty LED are effectively in an ON state.
The four-light-emitter self-compensating circuit 5 of
If a fault is present in a light-emitter circuit 10, the compensation diodes 52 in the faulty light-emitter circuit 10 will turn on and current will flow from each of the other light-emitter circuits 10 through the drive transistor 40 of that light-emitter circuit 10 corresponding to the VDRIVE drive signal 42. In the faulty light-emitter circuit 10, current ILED is zero and current IDRIVE is equal to current IH. The IH current is shared among the compensation diodes 52 in the faulty light-emitter circuit 10 and is derived from the emitter connections 24 of the good light-emitter circuits 10. This will have the effect of increasing the ILED current through each of the LEDs in the other light-emitter circuits 10, so that each of the other LEDs emit more light to compensate for the light missing from the faulty LED.
This self-compensating circuit 5 will continue to work even if two or more light-emitter circuits 10 have faulty light emitters 20 as long as at least one light-emitting circuit 10 is functional. The drive transistors 40 of each of the light-emitter circuits 10 having faulty light emitters 20 will continue to pull current IDRIVE corresponding to their VDRIVE drive signals 42. This will increase the current ILED through the functioning light emitters 20 and increase their brightness to compensate for the faulty light emitters 20.
When the LED of a light-emitter circuit 10 is operating normally throughout its entire operating range, the compensation diodes 52 are turned off. When the LED of a light-emitter circuit 10 is missing or defective, the compensation diodes 52 turn on to provide a compensating current flow through the LEDs of the other light-emitter circuits 10. The compensation diodes 52 are switched from the ON state to the OFF state or vice versa by the emitter connection 24 voltage. When the LED of a light-emitter circuit 10 is operating normally throughout its entire operating range, the emitter voltage is pulled high (less the voltage drop across the LED). The compensation diode 52 then has a high and nearly equal voltage at both diode connections, so no current flows. If the LED is missing or has a large resistance (e.g. millions or billions of ohms), the drive transistor 40 associated with the faulty LED will pull the emitter connection low. The compensation diode 52 will therefore have an operating voltage supplied across its connections that turns the compensation diode 52 on and supplies from the operating light-emitter circuit 10 to the drive transistor 40 of the faulty light-emitter circuit 10.
An embodiment of the present invention was simulated to demonstrate its performance. In this simulation, a resistor Rled was placed in series with the LED2 light emitter 20 and the resistance of the resistor varied from 100Ω to 10 GΩ to simulate the effect of a functioning light emitter 20 at low resistance and a missing or defective light emitter 20 at high resistance. An additional light-emitter circuit 10 was added to the circuit of
Referring next to the alternative embodiment illustrated in
In addition to the compensation diode 52, each compensation circuit 50 includes one transfer diode 54 connected to the emitter connection 24 and to a common compensation connection 56. The transfer diode 54 is connected with a polarity that is the reverse of the compensation diode 52 so that current passing through the transfer diode 54 of one light-emitting circuit 10 passes through the compensation diode 52 and not the transfer diode 54 of another light-emitting circuit 10. The common compensation connection 56 is connected to the compensation diode 52. Thus, each compensation diode 52 in each light-emitter circuit 10 is connected to the emitter connection 24 of one or more different light-emitter circuits 10. In the embodiment of
The common compensation connection 56 of each light-emitter circuit 10 is also electrically connected in common. Each and every transfer diode 54 and each and every compensation diode 52 of the compensation circuit 50 of every light-emitter circuit 10 in the self-compensating circuit 5 are electrically connected together. For clarity, in
The embodiment of
An embodiment of the present invention was simulated to demonstrate its performance. In this simulation, a resistor Rled was placed in series with the LED2 light emitter 20 and the resistance of the resistor varied from 100Ω to 10 GΩ to simulate the effect of a functioning light emitter 20 at low resistance and a missing or defective light emitter 20 at high resistance. An additional light emitter circuit 10 was added to the circuit of
In embodiments of the present invention, the transfer diodes 54 and compensation diodes 52 can be replaced with diode-connected transistors, Schottky diodes, or any other two-terminal device with a diode behavior; such embodiments are included in the present invention. In such an embodiment, the gate and drain of the diode-connected transistors provide a single diode connection and the source provides another diode connection. Thus, a transistor with a gate and drain connected in common is equivalent to a diode and can be used in place of a diode and such an embodiment is included in the present invention.
The relative amount of the current IH passing through each of the compensation diodes 52 is in proportion to the compensation diode 52 size since all of the compensation diodes 52 in the light-emitter circuit 10 have a common connection to the emitter connection 24 that conducts current through the common drive transistor 40. Thus, in an embodiment, the size of the compensation diodes 52 in a light-emitter circuit is selected in correspondence with the size of the drive transistor 40. Since unnecessarily large diodes are a waste of material and substrate space, it is useful to reduce the size of diodes where possible. In a useful example, the compensation diodes 52 in the light-emitter circuit 10 each have a size equal to or less than the drive transistor 40. Moreover, the size of the compensation diodes 52 in the light-emitter circuit 10 can be inversely related to the number of compensation diodes 52 so that as the number of the compensation diodes 52 increases, the size of the compensation diodes 52 decreases. In a particular embodiment, the size of the compensation diodes 52 in the light-emitter circuit 10 is approximately equal to the size of the drive transistors 40 divided by the number of the compensation diodes 52, for example within 20%, within 10%, or within 5%.
For example, the embodiment illustrated in
As shown in
Furthermore, in a useful embodiment and as illustrated in
Referring to
In the embodiment of
Referring to
In an embodiment of the present invention, the self-compensating control circuits 5 are formed in a thin-film of silicon formed on the display substrate 6. Such structures and methods for manufacturing them are well known in the thin-film display industry. In an alternative embodiment illustrated in
Similarly, the supporting electronic circuit components of the light-emitter circuits 10 excluding the light emitters 20 can be constructed in or on a substrate separate from the display substrate 6 or the light emitters 20 as a light-emitter control circuit 11 and transferred to the display substrate 6. Each group 80 of light emitters 20 controlled by a common light-emitter control circuit 11 forms a pixel element 74 and spatially adjacent pixel elements 74 can form groups 80. Alternatively, the group 80 of light emitters 20 controlled by a common light-emitter control circuit 11 and forming the pixel element 74 can also define a group 80 (not shown). Wire interconnections are omitted from
Referring to
The self-compensating circuit 5 of the present invention can be constructed using circuit design tools and integrated circuit manufacturing methods known in the art. LEDs and micro-LEDs are also known, as are circuit layout and construction methods. The self-compensating displays 4 of the present invention can be constructed using display and thin-film manufacturing method independently of or in combination with micro-transfer printing methods, for example as are taught in U.S. patent application Ser. No. 14/743,981, filed Jun. 18, 2015, entitled Micro-Assembled Micro LED Displays and Lighting Elements, the contents of which are hereby incorporated by reference.
Referring also to
In step 110 conductive wires, for example electrical interconnections, are formed on the display substrate 6 using conventional photolithographic and display substrate processing techniques known in the art, for example photolithographic processes employing metal or metal oxide deposition using evaporation or sputtering, curable resin coatings (e.g. SU8), positive or negative photo-resist coating, radiation (e.g. ultraviolet radiation) exposure through a patterned mask, and etching methods to form patterned metal structures, vias, insulating layers, and electrical interconnections. Inkjet and screen-printing deposition processes and materials can be used to form the patterned conductive wires or other electrical elements.
In an embodiment, the light emitters 20 (e.g. micro-LEDs) formed in step 105 are transfer printed to the display substrate 6 in step 120 in one or more transfers. The light-emitter control circuits 11 can also be formed in a separate substrate such as a crystalline semiconductor substrate and transferred to the display substrate 6. Micro-transfer printing methods are known in the art and are referenced above. The transferred light emitters 20 are then interconnected in step 130 using similar materials and methods as in step 110, for example with the conductive wires and optionally including connection pads and other electrical connection structures known in the art, to enable a display controller to electrically interact with the light emitters 20 to emit light in the self-compensating display 4. In alternative processes, the transfer or construction of the light emitters 20 is done before or after all of the conductive wires are in place. Thus, in embodiments the construction of the conductive wires can be done before the light emitters 20 light-emitter control circuits 11 are printed (in step 110 and omitting step 130) or after the light emitters 20 are printed (in step 130 and omitting step 110), or using both steps 110 and 130. In any of these cases, the light emitters 20 and the light-emitter control circuits 11 are electrically connected with the conductive wires, for example through connection pads on the top or bottom of the light emitters 20.
Referring next to
By employing the multi-step transfer or assembly process of
As is understood by those skilled in the art, the terms “over” and “under” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present invention. For example, a first layer on a second layer, in some implementations means a first layer directly on and in contact with a second layer. In other implementations a first layer on a second layer includes a first layer and a second layer with another layer there between.
Having described certain implementations of embodiments, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the invention should not be limited to the described embodiment, but rather should be limited only by the spirit and scope of the following claims.
Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously. The invention has been described in detail with particular reference to certain embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/170,589, filed Jun. 3, 2015, entitled “Self-Compensating Circuit for Faulty Display Pixels,” the contents of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62170589 | Jun 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14809982 | Jul 2015 | US |
Child | 15705341 | US |