Self-contained, buoyant, and water-tight wireless flood detector

Information

  • Patent Grant
  • 10254150
  • Patent Number
    10,254,150
  • Date Filed
    Friday, January 6, 2017
    7 years ago
  • Date Issued
    Tuesday, April 9, 2019
    5 years ago
Abstract
A floatable flood detector has a watertight housing that carries internally a wireless transmitter and a fluid sensor. In the presence of sensed fluid, an alarm message can be transmitted by the transmitter to a displaced monitoring unit. The sensor has a portion exposed to the fluid of interest outside of the housing. The antenna is carried, at least at a fluid level, relative to the floating housing.
Description
FIELD

The application pertains to fluid detectors to provide indicators of flooding in regions of interest. More particularly, the application pertains to such detectors that are self-contained and can wirelessly communicate with systems monitoring various conditions in a region of interest.


BACKGROUND

Systems are known to monitor regions of interest for the presence of various predetermined conditions. These include intrusion, glass breakage, smoke, fire, humidity, and temperature, all without limitation. At times, it is desirable to monitor a region for the presence of fluids, for example, flood water.


Known types of flood detectors have one or two part designs. The one part designs are not buoyant and are designed to be submersible should the flood water rise higher than the sensor. As a result, such products are usually not wireless since the wireless performance would be quite poor when submerged.


An exemplary two part product that exists in the wireless market place includes a probe and a separate transmitter with a wire between the probe and the transmitter. Installation of this type of product involves attaching the probe with screws in the area to be monitored. Then, the transmitter is mounted a distance away from the probe, and a wire is routed between the probe and transmitter. The transmitter is mounted away from the probe to protect it from the water and ensure that the probe does not become submerged, rendering it inoperable.


The above process is time consuming. It may take as much time as an installer may have for installation of an entire monitoring system. Further, this type of product is not something that can be mailed to a home owner for self-installation.


It would be desirable to have available a wireless flood detector that can be easily installed without a need for special installation skills or instructions.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a flood detector in accordance herewith;



FIG. 2 is a bottom view of the detector of FIG. 1;



FIG. 3 is an over-all view of the detector of FIG. 1 with the cover removed;



FIG. 4 is a side sectional view of a detector as in FIG. 1 and FIG. 3; and



FIG. 5 illustrates the detector hereof floating in a fluid.





DETAILED DESCRIPTION

While disclosed embodiments can take many different forms, specific embodiments thereof are shown in the drawings and will be described herein in detail with the understanding that the present disclosure is to be considered as an exemplification of the principles thereof as well as the best mode of practicing the same and is not intended to limit the application or claims to the specific embodiment illustrated.


In a disclosed embodiment, a wireless flood detector is configured with a single housing. The fluid or flood probes or electrodes are molded into the housing on the top, the bottom, or both. The detector is buoyant so as to keep the electronics (radio, antenna, etc.) above water and operational. Installation is as easy as placing it in the area to monitor for flooding. Advantageously, in the disclosed detector, the sensor, radio, and flood probes are mounted in a single, watertight, buoyant housing.


The housing is preferably made of a buoyant material, for example, plastic with an air pocket foam). Molded into this housing are two fluid sensing electrodes on one or both sides that could contact the area to be monitored.


The preferred embodiment has a puck-like shape. Two electrodes can be located on the top of the puck, and two electrodes can be located on the bottom of the puck. It will be understood that other housing shapes come within the spirit and scope hereof. For example, a spherical housing could be used.


Inside the puck resides control circuits and a wireless transmitter. In one embodiment, a Honeywell model 5816 transmitter could be used. The control circuits can be connected to the electrodes. An antenna, coupled to the transmitter, is mounted in the center of the puck such that it will be above water regardless of the orientation of the puck relative to the fluid, such as water.


When the electrodes on either side of the puck are submerged in water, the presence of the water can be detected. A message can be wirelessly transmitted to a displaced control panel.


To install such detectors, an installer would first enroll the flood puck's serial number into the control panel by either submerging the detector in water or by shorting the two electrodes with a wire or screwdriver. Once enrolled, the installer would identify an area for flood monitoring and place the flood puck in that area. When there is a flood, the electrodes will be submerged in the water and send an alarm indicating signal to the control panel. Should the water rise, the flood puck will float on the water, keeping the electronics dry and the antenna above the water, ensuring continued operation.


The figures illustrate various aspects of embodiments hereof. A fluid detector 10 includes a cylindrical, puck-shaped housing 12 having an upper surface 12a, a closed bounding sidewall 12b, and a lower surface 12c. The housing 12 is closed and watertight.


As illustrated in FIG. 3, the housing 12 includes a removable cover 16a and a base portion 16b, which defines an interior region 16c. When the cover 16a is removably attached to the base 16b, for example, by threads or a snap fit, a closed dry interior region is formed, which includes the interior region 16c. It will be understood that other shapes of a housing could be used as well as other structures to attach the cover 16a to the base 16b without departing from the spirit and scope hereof.


The housing 12 can carry an electronics package 20, which includes a printed circuit board 22a. The board 22a supports a replaceable battery 22b, which provides electrical energy for control circuits 22c, sensor interface circuits 22d, and a transmitter or a transceiver 22e, best seen in FIG. 4.


Electrodes or sensors 24a, b can be carried on a surface 12c outside of the housing 12 for exposure to local fluids F, as illustrated in FIG. 2. The electrodes 24a,b could be molded into the lower portion 16b of the housing 12 and connected to the sensor interface circuitry 22d in the region 16c via sealed, fluid excluding ports in the surface 12c and conductors 24-1, -2.


A second set of electrodes 24c, d can be formed in an upper surface 12a of the housing 12, also coupled to the sensor circuits 22d by conductors 24-3, -4. Those of skill will understand that neither the exact type of fluid sensors used nor the structure of the conductors to the interface circuits 22d represent limitations hereof.


First and second antenna sections 26a, b are carried on/by the printed circuit board 22a and are coupled to the transceiver 22e. The antennas 26a,b are configured such that one of them is always above a fluid level surface F1 when the detector 10 is floating in the fluid F to facilitate wireless communications with a displaced monitoring control unit or panel 30.



FIG. 5 illustrates the detector 10 floating in a fluid F. Advantageously, when both surfaces 12a and 12c carry fluid sensors, such as 24a . . . c, the orientation of the detector 10 in the fluid F is irrelevant given the above-noted antenna configuration. Hence, the installer merely needs to place the detector 10 into the region where the fluid might collect without being concerned as to its orientation.


In summary, a flood detector includes a floatable, self-contained housing that carries external fluid sensors. Control circuitry, coupled to the sensors, and a transmitter can be carried in the housing. The detector can communicate wirelessly with a displaced monitoring system control unit or panel.


An antenna is carried in the housing, coupled to the transmitter. When the housing floats in the fluid, a portion of the housing is below the upper surface of the fluid, and a portion is above that upper surface. The housing is configured such that the antenna is above the upper surface of the fluid to improve wireless communications with the displaced control panel while the detector is floating in the fluid.


Further, it will be understood that the type of fluid being sensed is not a limitation hereof. The relative location of the antenna to the surface of the fluid is preferably at the top of the fluid to minimize RF attenuation. Finally, the housing needs only to be fluid resistant long enough to send a transmission indicating that fluid has been sensed.


From the foregoing, it will be observed that numerous variations and modifications may be effected without departing from the spirit and scope hereof. It is to be understood that no limitation with respect to the specific apparatus illustrated herein is intended or should be inferred. It is, of course, intended to cover by the appended claims all such modifications as fall within the scope of the claims. Further, logic flows depicted in the figures do not require the particular order shown or sequential order to achieve desirable results. Other steps may be provided, steps may be eliminated from the described flows, and other components may be added to or removed from the described embodiments.

Claims
  • 1. A system comprising: a housing;a plurality of fluid sensors carried on an external surface of the housing;an electronics package carried within an interior region of the housing and coupled to the plurality of fluid sensors; andat least one antenna carried by the electronics package within the interior region of the housing,wherein, when the housing and at least one of the plurality of fluid sensors are located in and exposed to an ambient fluid, the electronics package detects a presence of the ambient fluid regardless of an orientation of the housing and the plurality of fluid sensors relative to the ambient fluid, andwherein, when the housing and the at least one of the plurality of fluid sensors are located in and exposed to the ambient fluid, the at least one antenna is above an upper surface level of the ambient fluid regardless of the orientation of the housing relative to the ambient fluid, thereby facilitating wireless communications with a displaced monitoring control unit.
  • 2. The system of claim 1 wherein the housing is buoyant.
  • 3. The system of claim 1 wherein the housing is water-tight.
  • 4. The system of claim 1 wherein the housing has a puck-like or spherical shape.
  • 5. The system of claim 1 wherein the plurality of fluid sensors includes electrodes.
  • 6. The system of claim 5 wherein the electrodes are molded into the housing and exposed to an external environment of the housing.
  • 7. The system of claim 5 wherein a first of the electrodes is carried on a first side of the external surface of the housing, and wherein a second of the electrodes is carried on a second, opposite side of the external surface of the housing.
  • 8. The system of claim 1 wherein the electronics package includes circuitry and a wireless transmitter, wherein the circuitry is coupled to the plurality of fluid sensors, and wherein the wireless transmitter is coupled to the at least one antenna.
  • 9. The system of claim 8 wherein the electronics package includes a replaceable battery that provides electrical energy to the circuitry and the wireless transmitter.
  • 10. The system of claim 1 wherein the at least one antenna is mounted in a center of the interior region of the housing.
  • 11. The system of claim 1 wherein, when the housing and the at least one of the plurality of fluid sensors are located in and exposed to the ambient fluid, a first portion of the housing is below the upper surface level of the ambient fluid and a second portion of the housing is above the upper surface level of the ambient fluid.
  • 12. The system of claim 1 wherein, when the housing and the at least one of the plurality of fluid sensors are located in and exposed to the ambient fluid, the at least one of the plurality of fluid sensors is at or below the upper surface level of the ambient fluid and a second of the plurality of fluid sensors is above the upper surface level of the ambient fluid.
  • 13. The system of claim 1 wherein, when the housing and the at least one of the plurality of fluid sensors are located in and exposed to the ambient fluid, the housing floats on the upper surface level of the ambient fluid.
  • 14. The system of claim 1 further comprising two antennas carried by the electronics package, wherein, when the housing and the at least one of the plurality of fluid sensors are located in and exposed to the ambient fluid, a first of the two antennas is above the upper surface level of the ambient fluid and a second of the two antennas is below the upper surface level of the ambient fluid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims the benefit of the filing date of U.S. application Ser. No. 13/913,934 filed Jun. 10, 2013.

US Referenced Citations (65)
Number Name Date Kind
3603952 Smith Sep 1971 A
3719936 Daniels et al. Mar 1973 A
3885418 Kriebel Mar 1975 A
4116045 Potter Sep 1978 A
4203097 Manning May 1980 A
4264902 Miller Apr 1981 A
4325060 Purtell Apr 1982 A
4631956 Walden et al. Dec 1986 A
4644328 Szymansky et al. Feb 1987 A
4771272 Barnes Sep 1988 A
4778957 Crowell Oct 1988 A
4973947 Tax Nov 1990 A
5091715 Murphy Feb 1992 A
5152610 Hallett Oct 1992 A
5169236 Iest Dec 1992 A
D360153 Chacchia Jul 1995 S
5517202 Patel May 1996 A
5532679 Baxter, Jr. Jul 1996 A
5621390 Neal Apr 1997 A
5654692 Baxter, Jr. et al. Aug 1997 A
5767775 Shukla et al. Jun 1998 A
6008728 Wesey Dec 1999 A
6025788 Diduck Feb 2000 A
6113858 Tang Sep 2000 A
6225900 Keon May 2001 B1
6238553 Lin May 2001 B1
6309538 Khan Oct 2001 B1
6340431 Khan Jan 2002 B2
6583724 Rodriguez Jun 2003 B1
6711949 Sorenson Mar 2004 B1
6910498 Cazden Jun 2005 B2
6958693 Rothgeb Oct 2005 B2
D526382 Thompson Aug 2006 S
7409853 Biberger Aug 2008 B2
7471206 Ellerman Dec 2008 B1
8305226 Ho Nov 2012 B2
8459100 Biberger Jun 2013 B2
8508382 Novak Aug 2013 B1
9582987 Eskildsen Feb 2017 B2
9640058 Bollman May 2017 B1
20010045380 Khan Nov 2001 A1
20030068936 Yerazunis et al. Apr 2003 A1
20030227394 Rothgeb et al. Dec 2003 A1
20040004545 Early Jan 2004 A1
20040004550 Early Jan 2004 A1
20040004551 Early Jan 2004 A1
20040031329 Carpenter Feb 2004 A1
20040056779 Rast Mar 2004 A1
20050084418 Hill et al. Apr 2005 A1
20050220169 McGowan-Scanlon Oct 2005 A1
20050279677 Lin Dec 2005 A1
20060292043 Biberger Dec 2006 A1
20080087209 Yoshida et al. Apr 2008 A1
20080150733 Snyder et al. Jun 2008 A1
20090107386 Sampson et al. Apr 2009 A1
20090224930 Burza Sep 2009 A1
20090295566 Weintraub Dec 2009 A1
20110012728 McCane et al. Jan 2011 A1
20110073707 Bossert et al. Mar 2011 A1
20110108370 Therriault May 2011 A1
20110155546 Ford Jun 2011 A1
20120275265 Nielsen et al. Nov 2012 A1
20140266745 Middleton Sep 2014 A1
20140361887 Eskildsen et al. Dec 2014 A1
20160348502 Kim Dec 2016 A1
Foreign Referenced Citations (1)
Number Date Country
101774421 Jul 2010 CN
Non-Patent Literature Citations (4)
Entry
Extended European Search Report, dated Oct. 30, 2014, corresponding to European Patent Application No. EP 14 16 9544.
State Intellectual Property Office, P.R. China's First Office Action with Search Report, dated Feb. 2, 2016, corresponding to Chinese Patent Application No. 201410317170.2.
English-language translation of State Intellectual Property Office, P.R. China's First Office Action with Search Report, dated Feb. 2, 2016, corresponding to Chinese Patent Application No. 201410317170.2.
English-language translation of abstract of CN101774421 (A), obtained Jun. 14, 2016.
Related Publications (1)
Number Date Country
20170115155 A1 Apr 2017 US
Continuations (1)
Number Date Country
Parent 13913934 Jun 2013 US
Child 15399998 US