The present invention relates generally to packaging devices, and more specifically, to a self-contained computational device for protective packaging systems.
Packaging machines are used to create packaging materials, such as cushioning elements that may be used to surround or contain items in a predetermined volume (e.g., box) to allow the item to be shipped, transported, stored, and the like with a reduced risk of damage. Examples of packaging machines include foam-in-bag machines that inflate bags with expandable foam where the foam provides the cushioning support, air-bag machines that inflate bags with air or other similar gas to provide the cushioning support, and dunnage machines that crumple materials such as paper where the crumpled elements provide cushioning for items.
Operational control of packaging machines often requires manual input by a user or machine administrator. For example, for a foam-in-bag machine, such settings can include bag dimensions, the percentage of foam that should be inserted into the bag, and the number of bags desired. Other types of machines include related types of input requirements. These manual inputs can be some limited, as well as time consuming, confusing or difficult to follow, and may result in issues due to human error (e.g., typographical errors, etc.). Furthermore, users of conventional packaging machines may be required to manually enter inputs to make numerous packaging elements, cumbersomely waiting for each packaging element to be created before entering an input for a subsequent packaging element. This can result in an inefficient use of the user's time, as well as the user's employer's resources.
In some embodiments, a machine for creating protective packaging is disclosed. The machine includes a plurality of electromechanical components configured to create protective packaging items, a housing enclosing at least a portion of the plurality of electromechanical components, and a controller communicatively coupled one or more of the electromechanical components and securely mounted to the housing, wherein the controller selectively modifies one or more output characteristics of the one or more electromechanical components to generate the protective packaging items.
In some embodiments, the machine includes a controller enclosure securely mounted to the housing, wherein the controller is received within the enclosure. The enclosure may be movable between two or more positions relative to the housing. The enclosure may rotate from a first position substantially parallel to an outer surface of the housing to a second position substantially parallel to the outer surface. The machine may include a control panel affixed to the housing and configured to selectively control a subset of the plurality of electromechanical components. A subset of the plurality of electromechanical components may include the one or more electromechanical components communicatively coupled to the controller.
In some embodiments, an apparatus is disclosed. The apparatus includes a packaging device for creating packaging elements, and a self-contained computing device mounted to the packaging device and communicatively coupled to the packaging device to control the creation of packaging elements by the packaging device. The apparatus may include a control panel in communication with components of the packaging device to independently control creation of packaging elements by the packaging device. The control panel may be configured to modify a first set of packaging element characteristics and the computing device may be configured to modify the first set of packaging element characteristics and a second set of packaging element characteristics. In some embodiments, at least one of the components is a motor, a drive gear, or a pump. The self-contained packaging device may communicate with components of the packaging device to control the packaging device's creation of packaging elements, and at least one of the components is a motor, a drive gear, or a pump. In some embodiments, the self-contained computing device can communicate with another packaging device to control the other packaging device's creation of other packaging elements. The packaging elements may be different than the other packaging elements. The packaging device may be one of a foam-in-bag device, an inflatable air cushion device, or a paper dunnage machine. The packaging device may include a control panel, and the self-contained computing device and the control panel may both include inputs to control components of the packaging device to control the creation of the packaging elements. The functionality of the inputs on the self-contained computing device may be substantially similar to the functionality of the inputs on the control panel.
In some embodiments, an apparatus is disclosed. The apparatus includes a packaging device including a plurality of device components, a mounting assembly affixed to the packaging device, and a self-contained computing device contained within the mounting assembly, wherein the self-contained computing device controls one or more operations of the packaging device by directly communicating with the device components. The packaging device may be one of a foam-in-bag device, an inflatable air cushion device, or a paper dunnage machine. The mounting assembly may further include a housing having a back plate and an enclosure, and the mounting assembly may rotate from a nested configuration to an extended configuration. The mounting assembly may allow the self-contained computing device to rotate relative to the packaging machine. The mounting assembly may include a hinge that allows the self-contained computing device to rotate on a pivot point to angles between 0 and 180 degrees. The hinge may include a pin exerting a frictional torque against the rotation of the self-contained computing device, and wherein the frictional torque is adjustable. The mounting assembly may further comprise a latch that secures the self-contained computing device. In some embodiments, the mounting assembly includes a top cover and multiple brackets for securing the self-contained computing device within the mounting assembly. The self-contained computing device may include at least one of a microphone or a speaker for communicating with a remote computer. The self-contained computing device may include a locating beacon that can locate the packaging device and communicate the location of the packaging device to a remote computer. In some embodiments, the self-contained computing device is in communication with one or more other packaging devices. The self-contained computing device includes a locating beacon that can locate the one or more other packaging devices. In some embodiments, the self-contained computing device can be entirely removed from the mounting assembly.
In some embodiments, a packaging machine for creating protective packaging components is disclosed. The machine includes a supply material input for receiving raw supplies, one or more machine components configured to convert the raw supplies into completed packaging materials, a material output for outputting completed packaging materials created using the raw supplies, and a self-contained computing device in electrical in communication with one or more machine components and configured to selectively adjust characteristics of the one or more machine components. The self-contained computing device may be contained within a mounting assembly. The self-contained computing device is removable from the mounting assembly.
In some embodiments herein, a packaging system including a self-contained computing device and a packaging machine is disclosed. The self-contained computing device may be a controller communicatively coupled to the packaging machine. The packaging machine is typically a device for making protective packaging, although in other embodiments it can be other types of manufacturing machines. Embodiments of machines include those that create packaging material, including protective packaging materials and other packaging products. Exemplary protective packaging materials include foam-in-bag cushions, foam-in-place protective packaging, inflated pillows and cushions, inflatable bags, paper dunnage, and the like, for example for impact protection, stabilizing products within a box or other container, or void fill. In some embodiments, the controller can be any type of suitable processor, computer, or electronic module associated with or in the machine.
In some embodiments, the controller can be a computer. The computer may be a portable computer, such as a tablet, smart phone, gaming device, or the like, and is placed into communication with the packaging device as well as one or more sensors that may be connected to or integrated with the packaging device. As will be described in more detail below, the controller may control and/or vary one or more components of the packaging machine (e.g., settings, machine selections, cushioning characteristics, etc.) and may sense and control input materials provided to the packaging machine (e.g., sheets of plastic used to create the inflatable bags). Further, the controller may also be in communication with one or more other controllers and/or machines, so as to allow the controller to communicate with and control an entire warehouse or other grouping of packaging machines, where the group of machines may be located in a single location or in two or more locations.
In some embodiments, the controller may receive an input indicating a desired cushioning element to be created and/or a packaged item for which the cushioning element is needed. Based on the input, the controller may adjust the machine parameters to create the desired cushioning element. The input may be a user input (e.g., selection of an icon or entered data), may be sensed by the controller or machine (e.g., first type of material corresponds to a first type of bag), or may be a combination of a sensed and user input. Additionally, the controller may adjust components of the machine based on other users or states of the machines. As one example, during a maintenance setting the controller may provide power to certain components, while withholding power from others. In this example, a user can repair and/or test a machine with a reduced risk of injury to himself and/or the machine. As another example, during a cleaning setting the controller may activate components to operate a cleaning cycle for the machine. Depending on the packaging machine and user preferences, the controller may be configured to selectively modify, control, monitor, and/or activate each component of the packaging machine and may do these actions either based on a user input, automatically (e.g., through sensed data), or a combination thereof.
The controller may be used to track the location of the machine itself and/or one or more components. For example, some users may move or transport the packaging machines across a warehouse, to other locations, based on available storage or the like. Due to this movement of the exact location of a particular machine may not be known to certain users. In some instances the controller may include a locating beacon that can be used locate one or more machines that the controller is attached to or in communication with. This allows a user to know the location and optionally status of any machine within a machine group, which can assist in faster identification of a problematic machine, allow a machine owner or manufacturer to keep updated records of machine locations, and to help deter theft of the machines. As one example, the beacon may be a global positioning satellite (GPS) tracking system or other location identifying system that determines a relative location of the detected component.
As briefly discussed above, the controller may include a display either integrated therewith (e.g., a tablet) or a display that is separate from the controller but in communication therewith. The display may be used to display a graphical user interface (GUI) that allows a user to select and modify parameters of the machine and/or to instruct the machine to create a desired cushioning element or elements in a desired order and with a particular set of characteristics. The GUI may include icons or indicia that mirror or mimic characteristics of particular cushioning elements (e.g., image that matches an image of a particular bag). This allows a user to quickly visually identify the desired input without requiring additional knowledge of the machine. The icons may indicate selected characteristics and parameters of packaging element or elements, and the icons may reflect changes to the parameters. A user can select one or more icons to provide instructions to the machine based on the desire cushioning element or elements to be created by the machine.
The controller may receive user input that loads the selected cushioning element to be created into a manufacturing queue for the packaging machine. Alternatively or additionally, the icons or other input components for the controller may be configured to set a sequence of bags or other cushioning elements that can then be added as a group to the queue of the machine. For example, when the user selects a particular icon on the GUI, a first sequence of cushioning elements may be programmed into the machine in order to be manufactured in the order of the sequence. The cushioning elements within the sequence may then be added to the machine's queue to create those elements. The cushioning elements within the queue may thus be added either via a particular sequence or may be added individually. This allows the queue of the machine to be dynamically tailored to the specific needs of the user. Also, the order of items within the queue may be selected and/or modified. For example, when adding a new item or sequence to the queue the user or the controller may assign the item or sequence a priority, where the priority may determine the item or sequence's placement within the queue. This allows certain cushioning elements to be made before others, depending on the priority. As another example, while or after a queue is created, a user may modify the order of items within the queue. The order of the items within the queue and changes made thereto may be represented by the GUI. For example, the icons representing items or sequences may be presented on the GUI according to the order of the represented items or sequences within the queue.
In one example, the controller may receive data (e.g., input by a user, from a sensor such as a bar code scanner, or the like) regarding an item to be packaged using the packaging elements created by the machine or machines. In this example, the controller may preload a desired item or queue of items to be created based on the packaged item into the machine, as well as may display steps or operations that may be performed by other machines or by the user. In this example, the controller provides instructions (to the machine and/or user) regarding the entirety of, or a portion of, the packaging flow for the item. This allows customized packaging to be more easily created and integrated into an automated process.
Various features provided by the controller may be set to various access levels. For example, an administrator may be able to access and modify features that a user may not be able to access. This allows a manufacturer to prevent some settings on the packaging machine from being modified by a user, while still allowing those features to be modified by a person having the correct access levels. For example, a manufacturer may preset certain queues and the user may not be able to change the parameters of the queues. As another example, an administrator may set certain maximums for queues or minimum time between items to ensure that the machine is operated under efficient conditions.
Turning now to the figures, a system for controlling one or more manufacturing machines will now be discussed. It should be noted that although the below examples are discussed with respect to packaging material manufacturing machines, the present disclosure may be applied to substantially any suitable type of manufacturing machine.
With reference to
The controller 104 is in electrical communication with the machine 102 and the network 106 and optionally the cloud database. With reference to
With reference to
In the system 110 shown in
With reference to
While the sensor 133 is shown in
In some embodiments, using the system 110 shown in
Information for determining, based on the input data, the machine settings may be stored in any one or more of the machines 102, 112, 116, the controller 104, the cloud database 122, and/or the remote computer 128. For example, the information may be stored using data tags that indicate, based on the input data, characteristics of a plurality of packaging elements and/or the machine settings for creating the plurality of packaging elements.
In some embodiments, the input data indicates one or more items 135 to be packed. For example, a stored data tag may associate one or more particular items 135 with a preselected plurality of packaging elements to be created by one or more of the machines 102, 112, 116 for shipping the item. The machine 102, 112, 116, controller 104, and/or remote computer 128 may use the input data and communicate to the memory storing data tags (e.g., machines 102, 112, 116, the controller 104, the cloud database 122, and/or the remote computer 128) and read the data tag for the one or more particular items 135 to determine the machine settings and/or characteristics for the preselected plurality of packaging elements. The data tags may be created and/or modified using any one or more of the machines 102, 112, 116, controller 104, and/or remote computer 128. For example, a user (e.g., a corporate employee) may use the remote computer 128 to create and/or modify the data tags for one or more items 135, according to the user's preferences for packaging the items 135.
In some embodiments, the input data indicates characteristics of one or more items 135. For example, the input data may indicate the size, shape, and/or weight or the item, whether the item 135 is fragile, how the weight of the item 135 is distributed, and/or what type the item 135 is, etc. Thus, any one or more of the machines 102, 112, 116, controller 104, and/or remote computer 128 may determine appropriate packaging elements based on the characteristics of the one or more items 135.
In some embodiments, the input data indicates a preselected plurality of packaging elements. Thus, upon receiving the input data, any one or more of the machines 102, 112, 116, controller 104, and/or remote computer 128 may determine the plurality of packaging elements based on the input data.
Upon determining the characteristics of a plurality of packaging elements, the machine 102, 112, 116, controller 104, and/or remote computer 128 may determine machine settings corresponding to the characteristics. The machine settings may be transmitted to the machine 102, 112, 116 when the settings are determined by another machine 102, 112, 116, the controller 104, and/or the remote computer 128. The machine settings may initiate the machine 102, 112, 116 to automatically adjust its parameters for creating the plurality of packaging elements.
In some embodiments, the data tags indicate machine settings for creating the plurality of packaging elements. Thus, upon receiving the input data, any one or more of the machines 102, 112, 116, controller 104, and/or remote computer 128 may determine the machine settings based on the input data. The machine settings may be transmitted to the machine 102, 112, 116 when the settings are determined by another machine 102, 112, 116, the controller 104, and/or the remote computer 128. The machine settings may initiate the machine 102, 112, 116 to automatically adjust its parameters for creating the plurality of packaging elements.
In some embodiments, the input data indicates parameters of one or more items 135 to be packed. For example, if several similar one or more items are being packaged, one or more of the machines 102, 112, 116, the controller 104, and/or the remote computer 128 may have already determined the particular types of packaging elements (e.g., FIB bags, inflatable air cushions, paper dunnage, etc.), but not the parameters of those packaging elements (e.g., size and/or fill percentage of FIB bag, size and/or density of inflatable air cushion, size and/or crumpling density of paper dunnage), etc. Thus, the input data may indicate the parameters of the one or more items 135, but not the type of packaging elements.
During and/or after the one or more machines 102, 112, 116 is creating the cushioning elements, at least one display screen may display one or more tutorials or videos that instruct the user how to assemble the item 135 in the package with the corresponding cushioning elements (e.g., foam-in-bag cushioning elements go on bottom, dunnage elements on top after item placed into box on foam-in-bag, etc.). The at least one display screen may be a part of one or more machines 102, 112, 116, and/or the controller 104, or it may be a part of a separate device. Further, the display screen may provide instructions to a user regarding steps for shipping or other handling of the item 135 that may not be completed by the machines 102, 112, 116, such as, but not limited to, print shipping label, transfer to a specific station or person, and so on. For example, if the item to be shipped is a large item (e.g., a motorcycle), the display screen may present video content and/or instructions as to how to prepare the item for shipping, without the machines 102, 112, 116 creating packaging elements. Thus, the system 110 of
With reference again to
The controller 104 may include one or more processing elements 130, one or more sensors 132, one or more memory components 134, a display 132, a networking/communication interface 138, and an input/output interface 140. Each of the components may be in communication either directly or indirectly with one another via one or more systems busses and each will be discussed in turn below. It should be noted that
With reference to
With reference again to
The sensors 132 may provide substantially any type of input to the controller 104. For example, the sensors 132 may be one or more accelerometers, microphones, global positioning sensors, gyroscopes, light sensors, image sensors (such as a camera), force sensors, and so on. The type, number, and location of the sensors 132 may be varied as desired and may depend on the desired functions of the system 100. In some examples, the sensors 132 may include at least a camera 117 and a microphone 127 that capture images and sound, respectively.
The memory 134 stores electronic data that may be utilized by the controller 104. For example, the memory 134 may store electrical data or content e.g., audio files, video files, document files, and so on, corresponding to various applications. The memory 134 may be, for example, non-volatile storage, a magnetic storage medium, optical storage medium, magneto-optical storage medium, read only memory, random access memory, erasable programmable memory, flash memory, or a combination of one or more types of memory components.
The display 136 provides a visual output for the controller 104. The display 136 may be substantially any size and may be positioned substantially anywhere on the controller 104. In some embodiments, the display 136 may be a liquid display screen, plasma screen, light emitting diode screen, and so on. The display 136 may also function as an input device in addition to displaying output from the controller 104. For example, the display 136 may include capacitive touch sensors, infrared touch sensors, or the like that may capture a user's input to the display 136. In these embodiments, a user may press on the display 136 in order to provide input to the controller 104. In other embodiments, the display 136 may be separate from or otherwise external to the electronic device, but may be in communication therewith to provide a visual output for the electronic device.
The networking/communication interface 138 receives and transmits data to and from the controller 104. The networking/communication interface 138 may be transmit and send data to the network 106, other machines, and/or other computing devices. For example, the networking/communication interface may transmit data to and from other computing devices through the network 106 which may be a wireless network (WiFi, Bluetooth, cellular network, etc.) or a wired network (Ethernet), or a combination thereof.
As a specific example, the networking/communication interface 138 may be configured to allow the controller 104 to communicate with the machine 152 and control various components within the machine. The networking/communication interface 138 may translate messages from the controller 104 into a form that the machine 104 can understand and receive. For example, with reference to
The input/output interface 140 allows the controller 104 to receive inputs from a user and provide output to the user. For example, the input/output interface 140 may include a capacitive touch screen, keyboard, mouse, stylus, or the like. The type of devices that interact via the input/output interface 140 may be varied as desired. In one example, one or more buttons 119 may be included in the input/output interface 140. The buttons 119 allow a user to provide input to the controller 104 such as returning to a home screen, selecting a particular function, or the like.
The controller 104 may also include a power supply 142. The power supply 142 provides power to various components of the controller 104. The power supply 142 may include one or more rechargeable, disposable, or hardwire sources, e.g., batteries, power cord, or the like. Additionally, the power supply 142 may include one or more types of connectors or components that provide different types of power to the controller 104. In some embodiments, the power supply 142 may include a connector (such as a universal serial bus) that provides power to the controller 104 or batteries within the controller 104 and also transmits data to and from the controller 104 to the machine 102 and/or another computing device.
With reference again to
The FIB machine 152 may be substantially similar to the machine described in U.S. Publication No. 2013/0047552 entitled “Foam-in-Bag Apparatus with Power Failure Protection,” and incorporated by reference herein in its entirety.
The FIB machine 152 may include one or more pumps 171 fluidly connected to one or more foam precursor supply chemicals, Fill Material A and Fill Material B, such as chemical canisters that are used to create a cushioning foam. One or more nozzles or hoses may be used to connect the pumps 171 to the respective fill material supply containers and connect the pumps 171 to the machine 152, allowing the supply containers to be positioned in locations separate from the FIB machine 152. The machine 152 may also include a solution pump 173 connected to its base 156. The solution pump 173 may be fluidly connected to a cleaning solution reservoir that may be attached to or separate from the machine. The machine 152 may also include a roll reception assembly 176 that extends outward from the machine 152. The roll reception assembly 172 may include a dowel or other roll support that receives a roll of film material, such as the material used to form the bag in which the foam is injected into.
The mounting assembly 162 is configured to support the controller 104 on a packaging machine (e.g., FIB machine 152). The mounting assembly 162 may include a housing that includes a back plate 164, an enclosure 166, a hinge 168, and a latch 170 (see
In one embodiment, the hinge 168 may be configured so that the controller 104 may be rotated by a user's hand. For example, the hinge 168 may include a hinge pin that exerts a frictional torque against the rotation of the enclosure 166. The friction may be adjustable, e.g., by turning a lock nut, but generally the friction may be set so that the torque will be high enough so that the hinge 168 will not rotate when the controller 104 is tapped (e.g., such as by a user touching the display 136), but low enough so that the angle of the controller 104 can be adjusted by hand.
The enclosure 166 of the mounting assembly 162 may enclose a portion of the controller 104 to secure the controller 104 to the machine 152. For example, the enclosure 166 may surround the sides of the display 136 and the backside of the controller 104, which allows the display 136 to be viewable by the user and allows the sensors 132, such a camera, to also have a field of view. The enclosure 166 can help to protect the controller 104 from debris, fluids, and secures the controller 104 to the machine 152 to help prevent the controller 104 from being removed. For example, the enclosure 166 may be connected to the controller 104 with specialized fasteners so that only an authorized user can remove the controller 104 from the machine 152 to help prevent theft and damage to the controller 104. Alternative mounting assemblies can be more open allow easy placement and removal of the controller 104.
In this embodiment, the latch 170 secures the controller 104 to the back plate 164 when in the stored position. The latch 170 may be a magnetic fastener that magnetically attaches to the backside of the enclosure 166 to secure the controller 104 adjacent the back plate 164, or substantially any other type of fastener that can selectively secure the controller 104 in a desired position.
For a FIB machine, in operation, one or more foam precursors are fluidly connected to the pump 174, and a film roll is loaded on the roll reception assembly 176. For example, the film may be fed through the machine 152 and the machine 152 seals the edges of two sheets of film together and the foam precursor is sprayed or deposited between the sheets of film. When a desired fill supply has been inserted into the chamber defined by the sheets, and the film is a desired length, the machine 152 seals the ends of the sheets to seal foam precursor within the chamber. The film is then cut to a desired length by a cutting element and the cushioning element is created. Other known types of foam-in-bag machines can also or alternatively be used.
For a machine that makes paper or other crumpled or folded dunnage machine, the machine can use suitable stock materials, such as individual, separate, e.g. pre-cut, sheets, tubes, or a continuous sheet or other material that is cut to length, typically after or during its being formed into dunnage. Continuous type stock material examples include a long strip of sheet material fed from the interior or exterior of one or more supply rolls or fanfolded material stacks. The converter can be configured to crumple the sheets in a desired direction, such as cross-crumpling with folds and creases extending transversely to the feed direction of the sheets, or longitudinal crumpling, with folds and crease extending longitudinally along the direction in which the sheet(s) are fed through the converter, although a combination of directions or other directions can be used.
In an example of a cross-crumpling device, the dunnage converter may include entry-side crumpling rollers or other elements that move a portion of the sheet with which they interact at a faster rate, and exit-side crumpling rollers or other elements that move a portion of the sheet that they interact with at a slower rate. These rollers can be arranged to define a crumpling zone therebetween. A sheet of material is moved through the entry rollers along a longitudinal path at the faster rate. Since the exit-side rollers move at the slower rate, the material is compressed into the crumpling zone and thus crumpled into dunnage. In some embodiments, entry-side and exit-side crumpling rollers may be displaced transversely along the path with respect to each other to cause shearing effect in the material within the crumpling zone, to form tighter and more offset creases in the transverse region that is disposed longitudinally downstream from the crumple zone. Such devices are disclosed, for instance in U.S. Pat. No. 8,267,848, entitled, “Dunnage Device and Handler Disengagement,” the entirety of which is incorporated herein by reference. The control panel 160 and/or the controller 104 may include means for adjusting the speed and/or position of the crumpling rollers to adjust the crumpling of the material. The control panel 160 and/or the controller 104 may include means for controlling a cutting element to cut a predetermined length of the material so to create dunnage of a desired size.
In a longitudinal crumpling machine, typically, long, continuous strips of paper of other material are fed into a converting station. In devices that feed from the inside of a roll, the material may twist along a longitudinal axis as a helix, forming a tube or coil. A drum can be driven to draw the tube or coil through the converting station. A roller can be positioned and biased against the drum to flatten the tube or coil. The biased drum can grip the tube or coil, pull it along the feed path so to pinch the material of the tube or coil so that the material bunches ahead of the pinched portion, and is crumpled so to form dunnage. Such devices are disclosed, for instance in U.S. Application Publication Nos. 2012/0165172 and entitled, “Center-Fed Dunnage System Feed and Cutter” and 2014/0038805 entitled, “Dunnage Supply Daisy Chain Connector,” the entireties of which are incorporated herein by reference. The control panel 160 and/or the controller 104 may include means for adjusting the speed and/or position of the roller relative to adjust the crumpling of the material. Adjusting the speed and/or position of the roller relative to the drum may also create creases of a desired tightness. The control panel 160 and/or the controller 104 may include means for controlling a cutting feature to cut a predetermined length of the material so to create dunnage of a desired size.
In devices that feed from the outside of a roll, the device may crumple the material in a generally longitudinal pattern, thereby putting a series of longitudinal folds and/or pleats within the sheeting. The device may include a rake having tines and spaces therebetween, over which paper is fed to create waves within the sheeting. The sheeting may then pass through a space between a drum and a guide roller, so that the waves form folds and/or pleats within the paper sheeting. Such devices are disclosed, for instance, in U.S. Pat. No. 8,016,735 entitled, “Apparatus for Crumpling Paper Substrates,” the entirety of which is incorporated herein by reference. The control panel 160 and/or the controller 104 may include means for adjusting the positions of the tines and spaces to adjust the size of the waves and thus adjust the configuration of the folds and/or pleats. The control panel 160 and/or the controller 104 may include means for adjusting the speed and/or positions of the drum and guide roller to adjust the folding and/or pleating of the material. The control panel 160 and/or the controller 104 may include means for controlling a cutting feature to cut a predetermined length of the material so to create dunnage of a desired size.
In other devices that feed from the outside of a roll, the device may include a throat section and a pair of crumpling rollers. As material is pulled through the throat section, it may gather or pleat. The gathered or pleated material may be fed between the pair of crumpling rollers, which may press the gathered or pleated material together to form dunnage. Such devices are disclosed, for instance, in U.S. Pat. No. 6,910,997 entitled, “Machine and Method for Making Paper Dunnage,” the entirety of which is incorporated herein by reference. The control panel 160 and/or the controller 104 may include means for adjusting the size of the throat, and/or the speed and/or position of the crumpling rollers to adjust the crumpling of the material. The control panel 160 and/or the controller 104 may include means for controlling a cutting element to cut a predetermined length of the material so to create dunnage of a desired size.
With reference now to
With reference to
With reference to
In some embodiments, the control panel 160 may form part of a machine control system for controlling various components of the machine 152 to form packaging elements. For example, buttons 180a-180g, which corresponding to the dimensions of the bag, may cause the machine control system to control one or more drive mechanisms that output certain amounts of web material to form bags of a particular size. In doing so, when a user activates (e.g., pushes on) a button 180a-180g, data is sent to the drive mechanisms, to thereby activate and control the drive mechanisms.
The controller 104 may send data to the machine 102 to activate and control the drive mechanisms, similarly to the control panel 160. In some embodiments, the controller 104 communicates with the control panel 160. For example, the controller 104 may send data to the control panel 160, and based on the data, the control panel 160 may send data to the drive mechanisms for activating and controlling the drive mechanisms. In some embodiments, the controller 104 may communicate directly to the components of the machine themselves. For example, the controller 104 may send data directly to the drive mechanisms to activate and control the drive mechanisms. In some embodiments, the control panel 106 may be omitted and/or varied as the controller 104 may include functionality of the control panel 106. Additionally, it should be noted that the buttons and their functions as shown in
As discussed in more detail below, the controller 104 can control the operation, characteristics, and parameters of these machines. For example, the controller 104 may be used to operate the machine 102, track data regarding the machine, the cushioning elements, user inputs, and the like, and may also be used to communicate between machines, users, and the network 106. In one example, the controller 104 may track data corresponding to the usage of the machine (e.g., number of cushioning elements created, the amount of fill materials, time of peak usage, and so on), the location of the machine (e.g., through global positioning system or beacon) and may then provide this data to another computing device through the network 106 and/or through a direct connection means (e.g., cable, removable memory, etc.). This allows a manufacture to track the operation of its machines and ensure that the machines are operating as desired. Additionally, the data tracking and transmission may allow a manufacture to better service its machines and clients as it can better track customer needs, trends, common issues, and so on.
As the controller 104 can operate the machine, it is able to modify settings of certain components within the machine, and can tailor the components and operation of the machine to particular customers, types of cushioning elements, operating environment, and other factors.
As one example, the controller 104 may selectively provide power to certain components within the machine 152. For example, during a maintenance setting, the controller 104 may restrict power to the film-cutting device (such as a heating element) but may provide power to the feed roller. The components may be selectable by a user or may be predetermined based on a setting or the like.
The controller 104 may allow a user to manually vary certain machine parameters. For example the controller 104 may allow a user to adjust the film feed rate, the heating time or temperature, the fill material (e.g., foam-precursor or air) percentage or the like. However, in some embodiments the features that may be modified by a user may be restricted to various levels of user access. For example, a typical user may not be able to modify certain components below or above threshold levels. As another example, certain components may be restricted to typical users. The number of access levels and components that are restricted may be varied as desired.
The controller 104 can set the characteristics for packaging elements (e.g., pillows, paper dunnage) that are created by the machine 102 and can also determine the order in which packaging elements with certain characteristics are created (i.e., a manufacturing queue). In embodiments where the controller 104 is used with the FIB machine 152, the controller 104 may be used to control the length of each cushioning pillow, the amount of fill material deposited into the pillow, the type of fill material used, and the order and number of cushioning pillows that are created. Additionally, it should be noted that the features controlled by the controller 104, such as the sequences and queues, may be assigned to manual inputs to the machine 152 as well. For example, a foot pedal and/or the control panel 160 buttons may be assigned to match one or more icons for the controller 104 so that the functionality of the manual inputs to the machine may correspond to the functionality of certain electronic inputs from the controller 104.
With continued reference to
Similarly, the length adjustment inputs 210 allow the user to increase or decrease the length of the bag. The length adjustment inputs 210 may corresponds to the length of the film that is cut by the cutting device (see machine 152). The length adjustment inputs 210 may be similar to the fill adjustment inputs 206 and a user may provide input to the controller 104 in a similar manner, but correspond to a different component of the machine 152. As with the fill adjustment inputs, the length adjustment inputs 210 may have minimum and/or maximum values that a typical user may not be able to exceed. Additionally, in some embodiments, the minimum and maximum values of the fill adjustment and the length adjustment may be tied together, i.e., as the bag length increases, the maximum fill percentage may increase and vice versa. As such, the minimum and maximum values for both the fill adjustment inputs 206 and the length adjustment inputs 210 may be dynamically variable.
The editing or control icons 208 allow the user to save the custom bag he or she has created by varying the fill percentage and length, cancel the custom bag operation, and/or delete the custom bag he or she has created or modified. The editing tasks and corresponding icons 208 may be varied as desired.
The custom bag settings created using the individual element GUI 200 may be saved and used by the controller 104 to upload to a queue and/or sequence of the machine 152 as will be discussed in more detail below.
An illustrative GUI for creating a sequence for the machine 152 will now be discussed.
The title 217 of the custom sequence GUI 212 allows a user to edit or input a title or name that corresponds to the custom sequence of items that he or she creates using the GUI 212. For example, the title 217 may allow a user to input a name and then using the editing icons 208, the user can save the particular sequence of items in the controller 104 memory 134.
The sequence GUI 212 may also include adding icons 221, 223 that allow a user to add additional items to the sequence, such as custom bags, standard bags, or the like. The adding icons 221, 223 may lead the user to another menu page that allows to select the features of the item to be added and/or select an item with previously stored characteristics (e.g., standard item or the item created via the item element GUI 200). After one of the adding icons 221, 223 is selected, the item icon 214, 218 corresponding to the selected item is added into the sequence order.
A custom sequence may be created using the custom sequence GUI 212 and when the user has arranged the items and delays as he or she wishes, the sequence can be stored in the memory 134 of the controller 104. As will be discussed below, the sequence may be selected and provided to the machine 152 as part of a queue for making cushioning elements, where the machine goes through the sequence and creates the listed items and introduces delays between each item based on the sequence.
A queue GUI for arranging the manufacturing queue for the machine 152 will now be discussed in more detail.
The queue GUI 220 may also include a menu icon 226 that allows a user to return to a home screen or previous menu screen. In other words, the menu icon 226 exits the queue GUI 220 to allow a user to access other features of the controller 104.
The queue GUI 220 may also include one or more control icons, such as a clear queue icon 228, enable continuous mode 238, and an enable editing icon 240. These icon control the queue and the machine. For example, when the clear queue icon 228 is selected, the queue that has been created is deleted and the items of the queue are removed from the line of the machine 152. When the enable continuous mode icon 238 is selected, the queue selected by the user may be repeated for a predetermined number of loops. The enable editing icon 240 may be selected to allow a user to make modifications to a queue that he or she has already created or may remove the editing ability to a specific queue.
The queue GUI 220 also includes an activation icon 224. The icon displayed in the activation icon 224 varies based on the state of the queue and the machine. When in “play” or “active” mode the queue is provided to the machine 152 which then manufactures the various items and within “pause” or “stop” mode, the machine 152 is stopped from manufacturing the items in the queue.
The queue GUI 220 may include a film feed icon 230, a calibration bag icon 232, an agile bag icon 234, and a run tip cleaning cycle icon 234. Each of these icon 230, 232, 236 may add items to a queue. The calibration bag icon 232 activates a particularly configured bag that is used to calibrate the machine 152. The agile bag icon 234 may be similar to the item icon 222a-222h and may allow a user to customize a bag for the queue instantaneously. For example, rather than entering into the item GUI 200, the user can define the features of a bag while in the queue GUI 220.
The queue GUI 220 may also include a plurality of production step icon, such as a pause icon 216 and a run tip cleaning cycle icon 234, which may be added to the queue. The pause icons 216 may be positioned between each item icon 214, 218. The pause icons 216 may be similar to the length and fill icons 206, 210 of the item GUI 200, but may correspond to a pause or time delay. For example, the pause icons 216 may include a numeric display and a set of arrows that allow a user to adjust the numeric display. The pause icons 216 correspond to a pause that is introduced into the machine 152 between each item. The pauses may be beneficial to allow the previous bag to be properly created, the components to be cooled/heated, cleaned, or the like. In instances where a pause is not required or desired, the pause may be set to 0.0 (as shown in
When the run tip cleaning cycle icon 236 is selected, a cleaning fluid, such as a solvent, may be administered (e.g., to the tips that administer the foam precursor) to remove debris from the tips. The tip cleaning cycle is run by the machine 152 in the order it is presented in the queue and is similar to other items in the queue, but rather than selecting characteristics of a bag, the tip cleaning cycle activates other components of the machine 152.
As will be discussed in more detail below, as items are added to the queue, the item icons are added to the queue pathway 243 on the queue GUI 220. This allows a user to view the order of the items within the queue and vary them if desired. For example,
With reference to
An illustrative method for using the controller 104 to determine one or more queues for items for the machine will now be discussed in more detail.
With continued reference to
If in operation 302, the queue process is selected, the method 300 may proceed to operation 304. In operation 304, the controller 104 determines whether a sequence is to be added to the queue. For example, the user may select one of the item icons 222a-222h that may be assigned to a sequence or the user may select a custom sequence he or she has created. If a sequence is selected, the method 300 proceeds to operation 308 and the controller 104, in particular, the processing element 130, adds the items from the sequence into the queue for the machine 152. Additionally, with reference to
If in operation 304 the sequence is not selected, the method 300 proceeds to operation 306. In operation 306, the processing element 130 adds the selected item (rather than sequences) to the queue for the machine and causes the corresponding item to be displayed in the queue pathway 243 on the queue GUI 220. As shown in
With reference again to
After the delay is set, the method 300 may proceed to operation 312. In operation 312, the controller 104 determines whether the user wishes to add another item to the queue. The controller 104 determines whether the user has hit the clear queue 228 or the activate icon 224 to either delete the queue or run the queue, respectively. If neither of those inputs have been received, the method 300 may return to operation 304 and the controller 304 may determine whether a sequence icon has been selected to add another sequence to the queue or whether an item icon has been selected to add another item to the queue.
With continued reference to
It should be noted that although the queues and sequences have been discussed with respect to the GUIs on the controller 104, in other embodiments the queues (and corresponding items/sequences) may be programmed to correspond to certain input buttons on the control panel 106 of the machine 102 or a remote machine (e.g., a computer at a corporate office overseeing the packaging device). This allows a user to automatically select a predetermined queue by selecting an input button on the controller panel 106 or other computer.
In operation, the controller 104 and/or a control panel 106 for a machine 102 may receive user input corresponding to one or more parameters for forming a plurality of packaging elements in a particular order. Based on this user input, the controller 104 and/or control panel 106 may create and store a queue. The controller 104 and/or the control panel 106 may use the stored queue to cause the machine 102 to create the plurality of packaging elements in the particular order.
A user may enter input corresponding to parameters for forming packaging elements. For example, if the machine is a FIB machine 102 and the user wants to create one first bag of a first size and having a first density, and two second bags of a second size and having a second density, the user may input parameters corresponding to the bags' sizes, fill percentages, and quantities. For example, the user may input data corresponding to one first bag having a first size and having a first fill percentage and data corresponding to a sequence of second bags, for example, two second bags having a second size and second fill percentages. The user may store these parameters as icons (e.g., icon 222c for the bag having the first size and icon 222d for the sequence of the two bags having the second size). For cases in which the user uses controller 104 to create queues, the user may activate these icons to add items and/or sequences to a queue. For example, the user could activate icon 222c for adding the first bag and icon 222d for adding the sequence of second bags to the queue. The user may also add a customized bag to the queue. For example, user may activate the agile bag icon 234 to create a customized bag for the queue. The queue GUI 212 may include icons allowing a user to select a quantity and/or spacing of secondary seals within the bag, to create a series of adjoining chambers filled with the foam.
This input for parameters for forming packaging elements may cause the controller 104 and/or control panel 106 to create a queue containing instructions for forming each of the packaging elements (e.g., first instructions for forming one first bag having the first size and fill percentage, and second instructions for forming the sequence of two second bags having the second size and the second fill percentage). The queue may indicate the order of forming the first bag and then the two second bags. For example, the queue may include information indicative of the order of forming the first and second bags (e.g., information that indicates: form the first bag, and then form the two second bags), and/or the manner in which the first and second instructions are stored in the queue may indicate the order of forming them (e.g., the first instructions may be written prior to the second instructions). Any suitable type and number of parameters corresponding to any suitable type and number of packaging elements may be added to the queue.
The queue may contain a stored set of instructions for creating a plurality of packaging elements having selected parameters, and the queue may indicate an order for forming the plurality of elements and/or timing parameters (e.g., pauses) associated with the packaging element creation. The queue may be used by the controller 104 and/or by the control panel 106 to cause the machine to create the plurality of packaging elements having the selected parameters. In some embodiments, the controller 104 and/or the control panel 106 may receive information that runs or activates the queue.
While discussion has been directed on selecting the length and/or fill percentage of packaging cushions, the queue may include instructions for controlling any suitable type of machine. The queue GUI 212 may include icons corresponding to various types and configurations of packaging elements for controlling various types of machines (e.g., FIB machines, inflatable air cushion machines, paper dunnage machines, etc.). For example, the queue GUI 212 may include icons corresponding to air cushions, and a user may select the size of bag, the amount of air to be inserted therein, whether the bag includes a seal of a valve, etc. The queue GUI 212 may include icons allowing a user to select a quantity and/or spacing of secondary seals within an inflatable air cushion, to create a series of adjoining air chambers.
For example, the queue GUI 212 may include icons for causing a paper dunnage machine to create paper dunnage. For example, the queue GUI 212 may include icons for controlling parameters of one or more paper dunnage machines, such as a cutting mechanism to control the size of material to be cut, the speed and/or positions of one or more crumpling rollers and/or drums, etc. As such, a user can use the queue GUI 212 to cause one or more paper dunnage machines to create paper dunnage elements, similarly to the discussion of FIB machines.
When the queue is activated, the controller 104 and/or the control panel 106 may cause the instructions contained within the queue to be read so to create the plurality of packaging elements having the selected parameters. In some embodiments, the queue may be stored in the control panel 106. In some embodiments, the queue may be stored in the controller 104 and/or in external storage (e.g., cloud 122), and when the queue is activated, the queue is sent to the control panel 106. The control panel 106 may parse the queue and read the instructions contained therein, causing the machine components to form the packaging elements according to the instructions.
The queue may be stored in the controller 104, the control panel 106 of the machine 102, and/or in an external database (e.g., cloud database 122). In some embodiments, the queue is stored in the control panel 106 and/or in external storage (e.g., cloud 122), and when the queue is activated, the queue is sent to the control panel 104. In some embodiments, the queue is stored in the controller 104, which may selectively activate the queue based on user input or other types of inputs. Upon activating the queue, the controller 104 may parse the queue and read the instructions contained therein. Based thereon, the controller 104 may communicate with the machine according to the timing and order associated with the queue. For example, in the scenario for creating a first FIB bag and then two second FIB bags, when the controller 104 activates the queue, the controller 104 may read the queue to determine the first instructions, the second instructions, and their order (e.g., first and then second). Thus, the controller 104 may send to the machine 102 (to the control panel 106 and/or to the drive mechanisms and/or other components of the machine 102) the first instructions, and then the second instructions. In some embodiments, the controller 104 may read the pause instructions, and based thereon, may wait a predetermined amount of time before sending the second instructions. In some embodiments, the pause instructions may be read by the control panel 106. For example, the pause instructions may cause the control panel 106 to pause between sending information to the drive mechanisms and/or other components of the machine 102.
These queues may be stored and later retrieved and used by the machine 102. For example, if a packaging facility packs on a regular basis similarly shaped items with a particular set of packaging elements, a user may store a queue associated with the set of packaging elements. The user may enter input that associated the stored queue with one or more icons controller 104 and/or control panel 106. Thus, when a user desires to pack an item using the set of packaging elements, the user can simply activate the icon on the controller 104 and/or control panel 106, which may cause trigger the queue. The queue instructions may be read and used to cause the machine 102 to create the set of packaging elements.
As explained above, the queue may contain instructions for controlling any suitable number and type of packaging machines 102. For example, a user may add to the queue third instructions for forming an air filled cushion by an air pillow machine 112, having a selected size and/or containing a selected amount of air. For cases in which the queue is run by the controller 104, in some embodiments, the controller may determine, for each set of instructions within the queue, which machine (e.g., 102, 112) is to receive the instructions. In some embodiments, the controller 104 may send all of the instructions to all of the machines. For cases in which the queue is run by a machine (e.g., 102, 112), in some embodiments, a machine (e.g., 102) may parse the queue and send instructions contained in the queue to one or more other machines (e.g., 112).
Stored queues may be updated, for example, via network. For example, a packaging facility may employ several queues that contain instructions for a small FIB element that is filled 40% with foam. It may become known that the functionality of the cushion is not noticeably diminished if it is filled only 35% with foam precursor, and/or the chemical composition of the foam precursor may be altered so that less chemical substance is needed. Thus, a user may update some or all of the queues (e.g., within network) having instructions for a creating a small FIB element filled 40% so that the instructions instead cause the machine 102 to produce a small FIB element that is 35% filled with foam precursor. For example, in cases when the queues are stored in an external database (e.g., cloud database 122) the instructions contained in the queues may be changed and/or modified. As such, the queues may be controlled an updated, for example, as analytics data develops, or as new technology is introduced. The queues may allow different levels of access by different users. For example, a first user (e.g., an upper level employee) may be allowed to create, program, update and/or modify the queues, while a second user (e.g., a lower level employee, such as an operator of a packaging device) may not be allowed to modify the queues, but may only be allowed to run particular queues.
The foregoing description has broad application. For example, while examples disclosed herein may focus on packaging machines, it should be appreciated that the concepts disclosed herein may equally apply to substantially any other type of machine that is used for manufacturing elements or components. Similarly, although the controller may be discussed with respect to a tablet computing device, the devices and techniques disclosed herein are equally applicable to other types of computing devices. Accordingly, the discussion of any embodiment is meant only to be exemplary and is not intended to suggest that the scope of the disclosure, including the claims, is limited to these examples.
The present application claims priority to U.S. provisional patent application No. 62/018,267 entitled, “Computerized Controller for Packaging Machines,” the entirety of which is incorporated herein by reference. The present application is related to U.S. No. ______, (Attorney Docket No. P252833.US.01 485252-640) entitled “Protective Packaging Device Sequences Control,” U.S. No. ______ (Attorney Docket No. P252835.US.01 485252-644) entitled, “Protective Packaging System Consumable Resupply System,” U.S. No. ______(Attorney Docket No. P252834.US.01 485252-642) entitled “Protective Packaging Machines Demonstrative Content,” U.S. No. ______ (Attorney Docket No. P252834.US.01 485252-642) entitled “Integrated Protective Packaging Control,” and U.S. No. ______ (Attorney Docket No. P252837.US.01 485252-648) entitled “Protective Packaging Machines Demonstrative Content,” all of which are hereby incorporated by reference herein in their entireties.
Number | Date | Country | |
---|---|---|---|
62018267 | Jun 2014 | US |