Self-contained downhole sensor and method of placing and interrogating same

Abstract
The present invention provides a self-contained sensor module for use in a subterranean well that has a well transmitter or a well receiver associated therewith. In one embodiment, the sensor module comprises a housing, a signal receiver, a parameter sensor, an electronic control assembly, and a parameter transmitter; the receiver, sensor, control assembly and transmitter are all contained within the housing. The housing has a size that allows the module to be positioned within a formation about the well or in an annulus between a casing positioned within the well and an outer diameter of the well. The signal receiver is configured to receive a signal from the well transmitter, while the parameter sensor is configured to sense a physical parameter of an environment surrounding the sensor module within the well. The electronic control assembly is coupled to both the signal receiver and the parameter sensor, and is configured to convert the physical parameter to a data signal. The parameter transmitter is coupled to the electronic control assembly and is configured to transmit the data signal to the well receiver.
Description




TECHNICAL FIELD OF THE INVENTION




The present invention is directed, in general, to subterranean exploration and production and, more specifically, to a system and method for placing multiple sensors in a subterranean well and obtaining subterranean parameters from the sensors.




BACKGROUND OF THE INVENTION




The oil industry today relies on many technologies in its quest for the location of new reserves and to optimize oil and gas production from individual wells. Perhaps the most general of these technologies is a knowledge of the geology of a region of interest. The geologist uses a collection of tools to estimate whether a region may have the potential for holding subterranean accumulations of hydrocarbons. Many of these tools are employed at the surface to predict what situations may be present in the subsurface. The more detailed knowledge of the formation that is available to the geophysicist, the better decisions that can be made regarding production.




Preliminary geologic information about the subterranean structure of a potential well site may be obtained through seismic prospecting. An acoustic energy source is applied at the surface above a region to be explored. As the energy wavefront propagates downward, it is partially reflected by each subterranean layer and collected by a surface sensor array, thereby producing a time dependent recording. This recording is then analyzed to develop an estimation of the subsurface situation. A geophysicist then studies these geophysical maps to identify significant events that may determine viable prospecting areas for drilling a well.




Once a well has been sunk, more information about the well can be obtained through examination of the drill bit cuttings returned to the surface (mud logging) and the use of open hole logging techniques, for example: resistivity logging and parameter logging. These methods measure the geologic formation characteristics pertaining to the possible presence of profitable, producible formation fluids before the well bore is cased. However, the reliability of the data obtained from these methods may be impacted by mud filtration. Additionally, formation core samples may be obtained that allow further, more direct verification of hydrocarbon presence.




Once the well is cased and in production, well production parameters afford additional data that define the possible yield of the reservoir. Successful delineation of the reservoir may lead to the drilling of additional wells to successfully produce as much of the in situ hydrocarbon as possible. Additionally, the production of individual zones of a multi-zone well may be adjusted for maximum over-all production.




Properly managing the production of a given well is important in obtaining optimum long-term production. Although a given well may be capable of a greater initial flow rate, that same higher initial production may be counter to the goal of maximum overall production. High flow rates may cause structural changes to the producing formation that prevents recovering the maximum amount of resident hydrocarbon. In order to optimize production of a given well, it is highly desirable to know as much as possible about the well, the production zones, and surrounding strata in terms of temperature, pressure, flow rate, etc. However, direct readings are available only within the confines of the well and produce a two-dimensional view of the formation.




As hydrocarbons are depleted from the reservoir, reductions in the subsurface pressures typically occur causing hydrocarbon production to decline. Other, less desirable effects may also occur. On-going knowledge of the well parameters during production significantly aids in management of the well. At this stage of development, well workover, as well as secondary and even tertiary recovery methods, may be employed in an attempt to recover more of the hydrocarbon than can be produced otherwise. The success of these methods may only be determined by production increases. However, if the additional recovery methods either fail or meet with only marginal success, the true nature of the subsurface situation may typically only be postulated. The inability to effectively and efficiently measure parameters in existing wells and reservoirs that will allow the determination of a subterranean environment may lead to the abandonment of a well, or even a reservoir, prematurely.




One approach to obtaining ongoing well parameters in the well bore has been to connect a series of sensors to an umbilical, to attach the sensors and umbilical to the exterior of the well casing, and to lower the well casing and sensors into the well. Unfortunately, in the rough environment of oil field operation, it is highly likely that the sensors or the umbilical may be damaged during installation, thus jeopardizing data acquisition.




Accordingly, what is needed in the art is a multi-parameter sensing system that: (a) overcomes the damage-prone shortcomings of the umbilical system, (b) may be readily placed in a well bore, as deep into the geologic formation as possible, (c) can provide a quasi three-dimensional picture of the well, and (d) can be interrogated upon command.




SUMMARY OF THE INVENTION




To address the above-discussed deficiencies of the prior art, the present invention provides a self-contained sensor module for s use in a subterranean well that has a well transmitter or a well receiver associated therewith. In one embodiment, the sensor module comprises a housing, a signal receiver, a parameter sensor, an electronic control assembly, and a parameter transmitter. The receiver, sensor, control assembly and transmitter are all contained within the housing. The housing has a size that allows the module to be positioned within a formation about the well or in an annulus between a casing positioned within the well and an outer diameter of the well. The signal receiver is configured to receive a signal from the well transmitter, while the parameter sensor is configured to sense a physical parameter of an environment surrounding the sensor module within the well. The electronic control assembly is coupled to both the signal receiver and the parameter sensor, and is configured to convert the physical parameter to a data signal. The parameter transmitter is coupled to the electronic control assembly and is configured to transmit the data signal to the well receiver.




In an alternative embodiment, the sensor module further includes an energy storage device coupled to the signal receiver and the electronic control assembly. The energy storage device may be various types of power sources, such as a battery, a capacitor, or a nuclear fuel cell. In another embodiment, the sensor module also includes an energy converter that is coupled to the signal receiver. The energy converter converts the signal to electrical energy for storage in the energy storage device. In yet another embodiment, the signal receiver may be an acoustic vibration sensor, a piezoelectric element or a triaxial voice coil.




In a preferred embodiment, the sensor module has a size that is less than an inner diameter of an annular bottom plug in the casing. In this embodiment, there is an axial aperture through the annular bottom plug and a rupturable membrane disposed across the axial aperture.




In another embodiment, the signal receiver and the parameter transmitter are a transceiver. The physical parameter to be measured may be: temperature, pressure, acceleration, resistivity, porosity, or flow rate. In advantageous embodiments, the signal may be electromagnetic, seismic, or acoustic in nature. The housing may also be a variety of shapes, such as prolate, spherical, or oblate spherical. The housing, in one embodiment, may be constructed of a semicompliant material.




The foregoing has outlined, rather broadly, preferred and alternative features of the present invention so that those skilled in the art may better understand the detailed description of the invention that follows. Additional features of the invention will be described hereinafter that form the subject of the claims of the invention. Those skilled in the art should appreciate that they can readily use the disclosed conception and specific embodiment as a basis for designing or modifying other structures for carrying out the same purposes of the present invention. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the invention in its broadest form.











BRIEF DESCRIPTION OF THE DRAWINGS




For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:





FIG. 1

illustrates a sectional view of one embodiment of a self-container sensor module for use in a subterranean well;





FIG. 2

illustrates a sectional view of an alternative embodiment of the self-container sensor module of

FIG. 1

;





FIG. 3

illustrates a sectional view of another embodiments of the self-contained sensor module of

FIG. 1

;





FIG. 4A

illustrates a sectional view of one embodiment of a subterranean well employing the self-contained sensor module of

FIG. 1

;





FIG. 4B

illustrates a sectional view of the subterranean well of

FIG. 4A

with a plurality of the self-contained sensor modules of

FIG. 1

placed in the formation;





FIG. 5A

illustrates a sectional view of an alternative embodiment of a subterranean well employing the self-contained sensor module of

FIG. 1

;





FIG. 5B

illustrates a sectional view of the subterranean well of

FIG. 5A

with the plurality of self-contained sensor modules of

FIG. 1

placed in the well annulus; and





FIG. 6

illustrates a sectional view of a portion of the subterranean well of

FIG. 5

with a plurality of self-contained sensor modules distributed in the well annulus.











DETAILED DESCRIPTION




Referring initially to

FIG. 1

, illustrated is a sectional view of one embodiment of a self-contained sensor module for use in s a subterranean well. A self-contained sensor module


100


comprises a housing


110


, and a signal receiver


120


, an energy storage device


130


, a parameter sensor


140


, an electronic control assembly


150


, and a parameter transmitter


160


contained within the housing


110


. In an alternative embodiment, the signal receiver


120


and parameter transmitter


160


may be a transceiver. The housing


110


may be constructed of any suitable material, e.g., aluminum, steel, etc., that can withstand the rigors of its environment; however in a particular embodiment, the housing may be, at least partly, of a semicompliant material, such as a resilient plastic. The housing


110


preferably has a size that enables the module


100


to be positioned in a producing formation or in an annulus between a well casing and a well bore to be described below. While the shape of the housing


110


illustrated may be prolate, other embodiments of spherical or oblate spherical shapes are also well suited to placing the housing


110


in a desired location within a subterranean well. However, any shape that will accommodate necessary system electronics and facilitate placing the module


100


where desired in the well may be used as well.




In the illustrated embodiment, the signal receiver


120


is an acoustic vibration sensor that may also be termed an energy converter. In a preferred embodiment, the acoustic vibration sensor


120


comprises a spring


121


, a floating bushing


122


, bearings


123


, a permanent magnet


124


, and electrical coils


125


. Under the influence of an acoustic signal, which is discussed below, the floating bushing


122


and permanent magnet


124


vibrate setting up a current in electrical coils


125


. The current generated is routed to the energy storage device


130


, which may be a battery or a capacitor. In an alternative embodiment, the energy storage device


130


may be a nuclear fuel cell that does not require charging from the signal receiver


120


. In this embodiment, the signal receiver


120


may be coupled directly to the electronic control assembly


150


. However, in a preferred embodiment, the energy storage device


130


is a battery. The electronic control assembly


150


is electrically coupled between the energy storage device


130


and the parameter sensor


140


. The parameter sensor


140


is configured to sense one or more of the following physical parameters: temperature, pressure, acceleration, resistivity, porosity, chemical properties, cement strain, and flow rate. In the illustrated embodiment, a strain gauge


141


, or other sensor, is coupled to the parameter sensor


140


in order to sense pressure exerted on the compliant casing


110


. Of course other methods of collecting pressure, such as piezoelectric elements, etc., may also by used. One who is skilled in the art is familiar with the nature of the various sensors that may be used to collect the other listed parameters. While the illustrated embodiment shows sensors


141


located entirely within the housing


110


, sensors may also by mounted on or extend to an exterior surface


111


of the housing while remaining within the broadest scope of the present invention.




Referring now to

FIG. 2

, illustrated is a sectional view of an alternative embodiment of the self-contained sensor module of FIG.


1


. In the illustrated embodiment, a signal receiver


220


of a self-contained sensor module


200


is a piezoelectric element


221


and a mass


222


. In a manner analogous to the acoustic vibration sensor


120


of

FIG. 1

, the mass


222


and piezoelectric element


221


displace as the result of an acoustic signal, setting up a current in the piezoelectric element


221


that is routed to the energy storage device


130


. Self-contained sensor module


200


further comprises an energy storage device


230


, a parameter sensor


240


, an electronic control assembly


250


, and a parameter transmitter


260


that are analogous to their counterparts of FIG.


1


and are well known individual electronic components.




Referring now to

FIG. 3

, illustrated is a sectional view of another embodiment of the self-contained sensor module of FIG.


1


. In the illustrated embodiment, a signal receiver


320


of a self-contained sensor module


300


is a triaxial voice coil


321


consisting of voice coils


321




a


,


321




b


, and


321




c


. In response to an acoustic vibration, signals generated within the voice coils


321




a


,


321




b


, and


321




c


are routed through ac to dc converters


322




a


,


322




b


,


322




c


and summed for an output


323


to an energy storage device


330


or, alternatively, directly to an electronic control assembly


350


. The functions of parameter sensor


340


, electronic control assembly


350


, and parameter transmitter


360


are analogous to their counterparts of FIG.


1


.




Referring now to

FIG. 4A

, illustrated is a sectional view of one embodiment of a subterranean well employing the self-contained sensor module of

FIG. 1. A

subterranean well


400


comprises a well bore


410


, a casing


420


having perforations


425


formed therein, a production zone


430


, a conventional hydraulic system


440


, a conventional packer system


450


, a module dispenser


460


, and a plurality of self-contained sensor modules


470


. In the illustrated embodiment, the well


400


has been packed off with the packer system


450


comprising a well packer


451


between the casing


420


and the well bore


410


, and a casing packer


452


within the casing


420


. Hydraulic system


440


, at least temporarily coupled to a surface location


421


of the well casing


420


, pumps a fluid


441


, typically a drilling fluid, into the casing


420


as the module dispenser


460


distributes the plurality of self-contained sensor modules


470


into the fluid


441


.




Referring now to

FIG. 4B

, illustrated is a sectional view of the subterranean well of

FIG. 4A

with a plurality of the self-contained sensor modules of

FIG. 1

placed in the formation. The fluid


441


is prevented from passing beyond casing packer


452


; therefore, the fluid


441


is routed under pressure through perforations


425


into a well annulus


411


between the well casing


420


and the well bore


410


. The module


470


is of such a size that it may pass through the perforations with the fluid


441


and, thereby enable at least some of the plurality of self-contained sensor modules


470


to be positioned in the producing formation


430


. The prolate, spherical, or oblate spherical shape of the modules


470


facilitates placement of the modules in the formation


430


.




Referring now to

FIG. 5A

, illustrated is a sectional view of an alternative embodiment of a subterranean well employing the self-contained sensor module of

FIG. 1. A

subterranean well


500


comprises a well bore


510


, a casing


520


, a well annulus


525


, a production zone


530


, a hydraulic system


540


, an annular bottom plug


550


, a module dispenser


560


, a plurality of self-contained sensor modules


570


, a cement slurry


580


, and a top plug


590


. In the illustrated embodiment, the annular bottom plug


550


has an axial aperture


551


therethrough and a rupturable membrane


552


across the axial aperture


551


. After the annular bottom plug


550


has been installed in the casing


520


, a volume of cement slurry


580


sufficient to fill at least a portion of the well annulus


525


is pumped into the well casing


520


. One who is skilled in the art is familiar with the use of cement to fill a well annulus. While the cement slurry


580


is being pumped into the casing


520


, the module dispenser


560


distributes the plurality of self-contained sensor modules


570


into the cement slurry


580


. When the desired volume of cement slurry


580


and number of sensor modules


570


have been pumped into the well casing


520


, the top plug


590


is installed in the casing


520


. Under pressure from the hydraulic system


540


, a drilling fluid


545


forces the top plug


590


downward and the cement slurry


580


ruptures the rupturable membrane


552


.




Referring now to

FIG. 5B

, illustrated is a sectional view of the subterranean well of

FIG. 5A

with the plurality of self-contained sensor modules of

FIG. 1

placed in the well annulus. The cement slurry


580


and modules


570


flow under pressure into the well annulus


525


. The size of the modules


570


is such that the modules


570


may pass through the axial aperture


551


with the cement slurry


580


and enable at least some of the plurality of self-contained sensor modules


570


to be positioned in the well annulus


525


. The prolate, spherical, or oblate spherical shape of the module


570


facilitates placement of the module in the well annulus


525


. One who is skilled in the art is familiar with the use of cement slurry to fill a well annulus.




Referring now simultaneously to FIG.


6


and

FIG. 1

,

FIG. 6

illustrates a sectional view of a portion of the subterranean well of

FIG. 5

with a plurality of self-contained sensor modules


570


distributed in the well annulus


525


. For the purpose of this discussion, the sensor module


100


of FIG.


1


and the sensor modules


570


of

FIG. 5

are identical. One who is skilled in he art will readily recognize that the other embodiments of

FIGS. 2 and 3

may readily be substituted for the sensor module of FIG.


1


. When the sensor modules


570


are distributed into the cement slurry


580


and pumped into the well annulus


525


, the sensor modules


570


are positioned in a random orientation as shown. In the illustrated embodiment, a wireline tool


610


has been inserted into the well casing


520


and proximate sensor modules


570


. The wireline tool


610


comprises a well transmitter


612


that creates a signal


615


configured to be received by the signal receiver


120


. The signal


615


may be electromagnetic, radio frequency, or acoustic. Alternatively, a seismic signal


625


may be created at a surface


630


near the well


500


so as to excite the signal receiver


120


. One who is skilled in the art is familiar with the creation of seismic waves in subterranean well exploration.




For the purposes of clarity, a single sensor module


671


is shown reacting to the signal


615


while it is understood that other modules would also receive the signal


615


. Of course, one who is skilled in the art will understand that the signal


615


may be tuned in a variety of ways to interrogate a particular type of sensor, e.g., pressure, temperature, etc., or only those sensors within a specific location of the well by controlling various parameters of the signal


615


and functionality of the sensor module


570


, or multiple sensors can be interrogated at once. Under the influence of the acoustic signal


615


or seismic signal


625


, the floating bushing


122


and permanent magnet


124


vibrate, setting up a current in coils


125


. The generated current is routed to the energy storage device


130


that powers the electronic control assembly


150


, the parameter sensor


140


, and the parameter transmitter


160


. In one embodiment, the electronic control assembly


150


may be directed by signals


615


or


625


to collect and transmit one or more of the physical parameters previously enumerated. The physical parameters sensed by the parameter sensor


140


are converted by the electronic control assembly


150


into a data signal


645


that is transmitted by the parameter transmitter


160


. The data signal


645


may be collected by a well receiver


614


and processed by a variety of means well understood by one who is skilled in the art. It should also be recognized that the well receiver


614


need not be collocated with the well transmitter


612


. The illustrated embodiment is of one having sensor modules


570


deployed in the cement slurry


580


of a subterranean well


500


. Of course, the principles of operation of the sensor modules


570


are also readily applicable to the well


400


of

FIG. 4

wherein the modules


470


are located in the production formation


430


. It should be clear to one who is skilled in the art that modules


100


,


200


,


300


,


470


, and


570


are interchangeable in application to well configurations


400


or


500


, or various combinations thereof.




Therefore, a self-contained sensor module


100


has been described that permits placement in a producing formation or in a well annulus. A plurality of the sensor modules


100


may be interrogated by a signal from a transmitter on a wireline or other common well tool, or by seismic energy, to collect parameter data associated with the location of the sensor modules


100


. The modules may be readily located in the well annulus or a producing formation. Local physical parameters may be measured and the parameters transmitted to a collection system for analysis. As the sensor modules


100


may be located within the well bore at varying elevations and azimuths from the well axis, an approximation to a 360 degree or three dimensional model of the well may be obtained. Because the sensor modules are self-contained, they are not subject to the physical limitations associated with the conventional umbilical systems discussed above. In one embodiment, the interrogation signal may be used to transmit energy that the module can convert and store electrically. The electrical energy may then be used to power the electronic control assembly, parameter sensor, and parameter transmitter.




Although the present invention has been described in detail, those skilled in the art should understand that they can make various changes, substitutions and alterations herein without departing from the spirit and scope of the invention in its broadest form.



Claims
  • 1. For use in a subterranean well bore having a well transmitter or a well receiver associated therewith, a self-contained sensor module, comprising:a housing having a size that allows said module to be positioned within a formation about said well or between a casing positioned within said well and an outer diameter of said well bore; a signal receiver contained within said housing and configured to receive a signal from said well transmitter; a parameter sensor contained within said housing and configured to sense a physical parameter of an environment surrounding said sensor module within said well; an electronic control assembly contained within said housing, said electronic control assembly coupled to said signal receiver and said parameter sensor and configured to convert said physical parameter to a data signal; and a parameter transmitter contained within said housing, said parameter transmitter coupled to said electronic control assembly and configured to transmit said data signal to said well receiver.
  • 2. The sensor module as recited in claim 1 further comprising an energy storage device coupled to said signal receiver and said electronic control assembly, said energy storage device selected from the group consisting of:a battery, a capacitor, and a nuclear fuel cell.
  • 3. The sensor module as recited in claim 2 further comprising an energy converter coupled to said signal receiver, said energy converter configured to convert said signal to electrical energy for storage in said energy storage device.
  • 4. The sensor module as recited in claim 3 wherein said signal receiver is selected from the group consisting of:an acoustic vibration sensor; a piezoelectric element; and a triaxial voice coil.
  • 5. The sensor module as recited in claim 1 wherein said size is less than an inner diameter of an annular bottom plug of said casing, said annular bottom plug having an axial aperture therethrough and a rupturable membrane disposed across said axial aperture.
  • 6. The sensor module as recited in claim 1 wherein said signal receiver and said parameter transmitter are a transceiver.
  • 7. The sensor module as recited in claim 1 wherein said physical parameter is selected from the group consisting of:temperature; pressure; acceleration; resistivity; porosity; gamma radiation; magnetic field; and flow rate.
  • 8. The sensor module as recited in claim 1 wherein said signal is selected from the group consisting of:electromagnetic; radio frequency; seismic; and acoustic.
  • 9. The sensor module as recited in claim 1 wherein a shape of said housing is selected from the group consisting of:prolate; spherical; and oblate spherical.
  • 10. The sensor module as recited in claim 1 wherein said housing is constructed of a semicompliant material.
  • 11. A subterranean well, comprising:a well bore having a casing therein, said casing creating a well annulus between an outer surface of said casing and an inner surface of said well bore; a production zone about said well; and a plurality of self-contained sensor modules wherein said self-contained sensor modules are positioned within said well annulus or said production zone, said self-contained sensor modules including: a housing having a size that allows said module to be positioned within a formation about said subterranean well or between a casing positioned within said subterranean well and an outer diameter of said well bore; a signal receiver contained within said housing and configured to receive a signal from said well transmitter; a parameter sensor contained within said housing and configured to sense a physical parameter of an environment surrounding said sensor module within said subterranean well; an electronic control assembly contained within said housing, said electronic control assembly coupled to said signal receiver and said parameter sensor and configured to convert said physical parameter to a data signal; and a parameter transmitter contained within said housing, said parameter transmitter coupled to said electronic control assembly and configured to transmit said data signal to a receiver associated with said well.
  • 12. The subterranean well as recited in claim 11 wherein said self-contained sensor module further comprises an energy storage device coupled to said signal receiver and said electronic control assembly, said energy storage device selected from the group consisting of:a battery, a capacitor, and a nuclear fuel cell.
  • 13. The subterranean well as recited in claim 12 wherein said self-contained sensor module further comprises an energy converter coupled to said signal receiver, said energy converter configured to convert said signal to electrical energy for storage in said energy storage device.
  • 14. The subterranean well as recited in claim 11 wherein said signal receiver is selected from the group consisting of:an acoustic vibration sensor; a piezoelectric element; and a triaxial voice coil.
  • 15. The subterranean well as recited in claim 11 wherein said size is less than an inner diameter of an annular bottom plug of said casing, said annular bottom plug having an axial aperture therethrough and a rupturable membrane disposed across said axial aperture.
  • 16. The subterranean well as recited in claim 11 wherein said signal receiver and said parameter transmitter are a transceiver.
  • 17. The subterranean well as recited in claim 11 wherein said physical parameter is selected from the group consisting of:temperature; pressure; acceleration; resistivity; porosity; gamma radiation; magnetic field; and flow rate.
  • 18. The subterranean well as recited in claim 11 wherein said signal is selected from the group consisting of:electromagnetic; seismic; and acoustic.
  • 19. The subterranean well as recited in claim 11 wherein a shape of said housing is selected from the group consisting of:prolate; spherical; and oblate spherical.
  • 20. The subterranean well as recited in claim 11 wherein said housing is constructed of a semicompliant material.
  • 21. The subterranean well as recited in claim 11 wherein at least some of said plurality of self-contained sensor modules are distributed throughout said well annulus.
  • 22. The subterranean well as recited in claim 11 wherein at least some of said plurality of self-contained sensor modules are embedded in said production zone.
  • 23. A method of operating a sensor system disposed within a subterranean well, comprising:positioning a self-contained sensor module into said subterranean well, said self-contained sensor module including: a housing having a size that allows said module to be positioned between a casing within said subterranean well and an outer diameter of said subterranean well; a signal receiver contained within said housing and configured to receive a signal from a well transmitter; a parameter sensor contained within said housing and configured to sense a physical parameter of an environment surrounding said sensor module within said subterranean well; an electronic control assembly contained within said housing, said electronic control assembly coupled to said signal receiver and said parameter sensor and configured to convert said physical parameter to a data signal; and a parameter transmitter contained within said housing, said parameter transmitter coupled to said electronic control assembly and configured to transmit said data signal to a receiver associated with said well; exciting said signal receiver,; sensing a physical parameter of an environment surrounding said sensor module; converting said physical parameter to a data signal; and transmitting said data signal to a receiver associated with said well.
  • 24. The method as recited in claim 23 wherein positioning includes positioning said modules in a production formation.
  • 25. The method as recited in claim 23 wherein positioning includes positioning said modules in an annulus between said casing and said outer diameter of said subterranean well.
  • 26. The method as recited in claim 23 wherein exciting includes exciting with a transmitter on a wireline tool.
  • 27. The method as recited in claim 23 wherein exciting includes exciting with a seismic wave.
  • 28. The method as recited in claim 23 wherein exciting includes interrogating said module to cause said parameter transmitter to transmit said data signal.
US Referenced Citations (19)
Number Name Date Kind
4199026 McCollum Apr 1980 A
4478294 Sumner Oct 1984 A
5029943 Merriman Jul 1991 A
5087099 Stolarczyk Feb 1992 A
5121971 Stolarczyk Jun 1992 A
5130705 Allen et al. Jul 1992 A
5260660 Stolarczyk Nov 1993 A
5268683 Stolarczyk Dec 1993 A
5353873 Cooke, Jr. Oct 1994 A
5363094 Staron et al. Nov 1994 A
5455573 Delatorre Oct 1995 A
5458200 Lagerlef et al. Oct 1995 A
5662165 Tubel et al. Sep 1997 A
5706896 Tubel et al. Jan 1998 A
5721538 Tubel et al. Feb 1998 A
5730219 Tubel et al. Mar 1998 A
5732773 Parks et al. Mar 1998 A
5767680 Torres-Verdin et al. Jun 1998 A
5955666 Mullins Sep 1999 A
Foreign Referenced Citations (9)
Number Date Country
0 882 871 Dec 1998 EP
2 323 443 Sep 1998 GB
2 352 042 Jan 2001 GB
WO 9809163 Mar 1998 WO
WO 9857030 Dec 1998 WO
WO 9902819 Jan 1999 WO
WO 9966172 Dec 1999 WO
WO 0073625 Dec 2000 WO
WO 0142622 Jun 2001 WO
Non-Patent Literature Citations (1)
Entry
Penatrator and Dart NMR Probes, NASA Tech Briefs, May 1997.