1. Field of the Invention
This invention relates to a sprayer device used in the dispensing of at least one but preferably two liquids, such as the components of a fast-setting adhesive aerosol.
2. Description of the Prior Art
A fast-setting two-component adhesive is an adhesive compound that cures within seconds of the components being mixed together. Such fast-setting two-component adhesives have many applications, including use as tissue adhesives for a number of potential medical applications. Such potential medical applications include closing topical wounds, delivering drugs, providing anti-adhesion barriers to prevent post-surgical adhesions, and supplementing or replacing sutures or staples in internal surgical procedures. To be suitable for medical applications such tissue adhesives must be fast-curing, have good mechanical strength, be able to bind to the underlying tissue and pose no risk of infection.
The components of such fast-setting two-component adhesives must be mixed either at the site of application or immediately (i.e., typically within a few seconds) before application.
One conventional technique employs a static mixer connected to the discharge ends of the containers holding the liquid components and moving these components through a serpentine passage to the tissue being treated. The components are mixed in the serpentine passage before the adhesive exits the passage. Representative of such conventional static mixer are those devices sold by Med Mix Systems AG, Rotkreuz, Switzerland and Mix Tek System LLC, New York, N.Y. U.S. Pat. No. 5,595,712, assigned to the assignee of the present invention, also discloses a static mixing device employing a serpentine passage within a planar structure.
Prior art static mixers are believed disadvantageous for use in any medical application which requires intermittent application of adhesive. If flow of the adhesive through the mixer is interrupted, even momentarily, the mixed components increase in viscosity. This increase in viscosity, known as gelling, may occur so rapidly that the mixer passage becomes clogged, thus preventing the resumption of flow of the adhesive.
Besides the static mixers, dynamic mixers such as powered impellers and magnetic stir bars have been used. However these devices are costly and cumbersome and not particularly amenable to medical use as they may damage the adhesive by over-mixing.
Hand-held mixing devices that entrain the liquid components in a gas stream are also known. Some of these devices join the liquid components in a common discharge line prior to application to the site and are thus subject to the same risk of gelling as in a static mixer.
Other hand-held mixing devices use separate discharge lines for each of the liquid components. In these cases a gas entrains each liquid and carries the liquid through a separate discharge line. However, when the device is used with relatively high viscosity liquids of the type used in some adhesives (ranging in viscosity from about ten to one thousand centipoise) the liquid deposits appear on the deposit site as segregated clumps which are not well mixed.
Neither of these gas powered devices are self-contained since the gas used in both hand-held devices is supplied through a tethered connection to a fluid source. Such a tethered arrangement is believed disadvantageous because it limits the ease with which an operator can handle the device.
Accordingly, in view of the foregoing there is believed to be a need for a self-contained, hand-held dispensing device capable of delivering two well-mixed liquid components directly to a desired site while avoiding the clogging problems of prior art devices.
The present invention is directed toward a self-contained, hand-held spray dispensing device for dispensing one or more liquid material(s). Preferably, the dispensing device is useful to dispense a spray containing a mixture of two liquid materials, such as the components of a fast-setting two-part adhesive, onto a site.
The dispensing device of the present invention is able to receive and to support at least one, but more preferably two, container(s) each having a discharge port therein and a liquid ejecting element associated therewith.
In a first type of a container with which a first embodiment of the invention may be used, the liquid ejecting element is connectable to a force transmitting yoke. The yoke has an actuating disc with a working surface thereon. The liquid ejecting element may be positioned to operate on either the interior or the exterior of the container.
A container of a second type (wherein the liquid ejecting element is received within the container) may be used with a second embodiment of the invention. In this case the end of the container is closed by an end cap with a fluid passage therethrough. With a container of this type the liquid ejecting element has the working surface thereon.
In the preferred instance of either embodiment the liquid ejecting element takes the form of a piston movably disposed on the interior of a container. Each piston is able to respond to a motive force imposed thereon to displace within its container, thereby to cause a liquid material in that container to be ejected through the discharge port.
The dispensing device includes a housing that has a first and a second liquid discharge line disposed therein. Each liquid discharge line has an inlet end and an outlet end. A flow interrupter is connected within the liquid discharge lines for controlling the passage of liquid material therethrough.
A container support arrangement is provided within the housing. The container support arrangement is able to receive and to support a first and a second liquid container (of either type) within the housing such that the discharge port of each container is disposed in fluid communication with the inlet end of a liquid discharge line. The container(s) (and the force transmitting yoke, if needed) may be removable from the container support arrangement after use.
A cartridge support arrangement that includes a bottom closure is disposed within the housing. The cartridge support arrangement is able to receive and to support a cartridge holding a pressurized fluid, such as carbon dioxide gas. By providing a support arrangement for a motive fluid cartridge internal to the housing, the dispenser is able to be self-contained and easily handled by an operator, and the need for a tethered connection eliminated. The cartridge may be removable from the cartridge support arrangement after use.
In the first embodiment of the dispensing device an actuator is disposed within the housing. The actuator is sized to receive therein an actuating disc of a force transmitting yoke. In this embodiment a first pressurized fluid line is connected between a cartridge receivable within the housing and the actuator cylinder and into fluid communication with the working surface of a plunger so that a motive force may be applied to the actuating disc of the yoke.
In the second embodiment of the dispensing device the first pressurized fluid line extends from a cartridge receivable within the housing to the fluid passage in the end cap of each container and, thus, directly into fluid communication with the working surface of the piston.
A second pressurized fluid line within the housing connects the cartridge into fluid communication with the outlet end of each liquid discharge line. A valve controls the flow of pressurized fluid through the first and the second pressurized fluid lines.
A trigger is operatively associated with both the valve and the flow interrupter. The trigger is movable from a rest position to a first operational position. When in the first operational position the trigger opens the valve to permit simultaneous pressurized fluid flow through both pressurized fluid lines. The pressurized fluid flow through the first line acts on the working surface of a plunger or on the working surface of the piston of a container received within the housing, as the case may be, thereby to impose a motive force on each piston to eject a liquid in the container through its discharge port. The flow through the second line provides a flow of fluid over the outlet ends of the liquid discharge lines.
The trigger is sequentially movable from the first operational position to a second operational position. In the second operational position the flow interrupter is opened to permit the passage of a liquid material through each liquid discharge line. Liquid material emanating from the outlet ends of the liquid discharge lines is aerosolized by the pressurized fluid flow from the second pressurized fluid line.
With the spray dispensing device of the present invention the two liquid materials are isolated from each other until they exit the outlet ends of the liquid discharge lines, thus avoiding any possibility of premature reaction of the liquids with each other. At a region spaced away from the outlet ends of the discharge lines the liquids are aerosolized into droplets by an annular stream of pressurized fluid flow from the second pressurized fluid line. The aerosolized liquid streams intermix with each other as they transit toward the target site, thus avoiding the clogging problems associated with prior art dispensing devices.
A spray dispensing device in accordance with either embodiment of the present invention may form a part of a kit for dispensing liquid materials. The kit may include a cartridge having a pressurized fluid therein, and/or one or more containers (of either type) having a liquid material therein.
The invention will be more fully understood from the following detailed description taken in connection with the accompanying drawings, which form a part of this application, and in which:
the views in
the view in
Throughout the following detailed description similar reference numerals refer to similar elements in all Figures of the drawings. It should be understood that various details of the structure and operation of the present invention as shown in various Figures have been stylized in form, with some portions enlarged or exaggerated, all for convenience of illustration and ease of understanding.
The sprayer 10 is operative to dispense an aerosolized spray of one or two liquid material(s) over a predetermined site. Any liquid material, such as sterile water, disinfectant(s) and/or antibiotic(s), may be delivered to a site. The liquid materials may be the same or different from each other. The sprayer 10 is also able to dispense relatively higher viscosity liquids as a well-mixed aerosolized spray. The sprayer 10 is thus believed particularly useful to dispense different first and second liquid components of a two-part adhesive. These liquids adhesive components may have viscosities ranging from about ten to one thousand centipoise. The sprayer is capable of covering areas as small as about 2.5 cm2 to relatively larger areas about four hundred (400 cm2) or more.
The sprayer 10 includes a generally hollow housing 12 formed from first and second conjoined side shells 12S-1, 12S-2 that meet each other along a substantially planar joinder plane. The shells cooperate to define an elongated body with rounded front and rear edges. As will be described various structural features are integrally formed in complementary positions on the confronting interior surfaces of the shells. Thus, when the shells are conjoined these complementary structural features cooperate to securely support the various functional elements of the sprayer 10. The shells 12S-1, 12S-2 are conveniently held together by screws 14S (
Referring to FIGS. 4B/4D and 5B, the peripheral edges at the lower ends of the shells 12S-1, 12S-2 are bent and form inwardly directed flanges that cooperate to define an interior floor 12F. The floor 12F partially closes the bottom of the hollow interior of the housing 12, leaving an access opening 12J that affords access to a compartmentalized region 16R on the interior of the housing. A cartridge support arrangement generally indicated by the reference character 16 is disposed in the compartmentalized region 16R. As will be developed the cartridge support arrangement 16 is able to receive and to support on the interior of the housing a cartridge 18 holding a pressurized fluid.
As illustrated in
As is best seen in
Referring again to
A portion of the rear margin of each side shell 12S-1, 12S-2 (extending from the back of the head 12H through the nape of the neck 12N) is bent inwardly to form another pair of flanges. These flanges cooperate to define a planar platform 22P (
A lip 12L (
Cut-outs 12C (
In the preferred instance the shells and various other parts of the housing are injection molded from a suitable plastic material, such as polycarbonate. However, it should be understood that the housing may be made from any other suitable material such as metal or any other injection moldable thermoplastic.
An array of semi-cylindrical cradles 16C (FIGS. 4B/4D and 5B) is integrally formed on the interior of the shells in the compartmentalized region 16R. The cradles 16C extend in spaced relationship inwardly into the housing from the access opening 12J. The cradles 16C cooperate with the door 16D to form the cartridge support arrangement 16 which is able to receive and support a pressurized fluid cartridge 18. The cartridge 18 defines a reservoir holding a charge of a pressurized fluid for the sprayer. The axis 18A of the cartridge 18 lies substantially collinear with the axis 10A of the sprayer (
The cartridge 18 is preferably implemented using a sixteen gram liquefied carbon dioxide bottle, having an initial internal pressure of eight hundred (800) psi available from Innovations In Cycling, Inc. Tucson, Ariz., as part number 2170. Carbon dioxide gas is the pressurized fluid of choice because of its compatibility with tissues of the human body. However, pressurized air, nitrogen or some other gaseous fluid may also be used as the motive fluid for the sprayer, if desired.
A semi-cylindrical boss 30B is integrally formed substantially midway along the interior of the shell 12S-1, 12S-2, above the cradles 16C. The inside surface of the boss 30B has spaced grooves 30G that accept annular ridges 32R formed on the exterior of a pressure regulator 32. The regulator acts as a pressure reducer to regulate the pressure of the gaseous fluid leaving the cartridge and entering the various pressurized fluid lines to be described. The inlet opening of the regulator has a tubular barb 32B (shown diagrammatically in
As perhaps best seen in
Lower and upper spaced partitions 42, 44 are provided on the interior of the shells 12S-1, 12S-2 above the region occupied by the valve 38 (see also,
Parallel guide tracks 46, 48 are disposed on the interior surfaces of the shells in the space between the partitions 42, 44. As best seen in
The trigger 26 takes the form of a substantially rectanguloid body member having a front edge surface 26F that is contoured to receive the finger of an operator. An upper and a lower slot 26U, 26L extend in parallel through the rear half of the trigger body. Each of the upstanding guide legs 46L, 48L extends into a respective one of the slots 26U, 26L.
The guide tracks 46, 48 together with the lower and upper partitions 42, 44 cooperate to define an internal passageway for the trigger 26. The interposition of each leg 46L, 48L into its respective guide slot 26U, 26L serves to guide the trigger 26 as it reciprocates with respect to the housing 12 of the sprayer 10. The reciprocating motions of the trigger 26 are substantially perpendicular to the axis 10A of the sprayer 10. A biasing spring 26S captured in one of the slots 26U, 26L biases the trigger 26 to its forward, rest, position illustrated in
An actuating arm 26A projects from the upper edge surface of the trigger body. The arm 26A terminates in a rearwardly projecting finger 26F. The forward edge of the arm is undercut to define a notch 26N. An inward extension 12I on the head 12H registers into the notch 26N when the trigger 26 occupies its rest position and prevents the trigger 26 from being ejected from the housing 12 by the force of the biasing spring 26S. The lower edge surface of the trigger 26 has a detent recess 26D formed therein. The detent recess 26D is positioned to accept the tip of the actuating rod 38R of the valve 38 when the trigger 26 is in the rest position (e.g.,
A first and a second liquid container 52, 54, each holding a liquid material to be dispensed by the sprayer 10, are receivable in side-by-side relationship on the support platform 22P located in the support chamber 22C. In both embodiments illustrated herein the containers 52, 54 are implemented using a unitized dual syringe structure such as that available from Med Mix Systems AG, Rotkreuz, Switzerland.
As noted earlier the sprayer 10 is preferably used to dispense a well-mixed aerosolized spray of different first and second liquid components of a two-part adhesive. Some of the components of such adhesives having viscosities in the range from about one centipoise to about one thousand centipoise or more, that is, a range of consistency from water (one centipoise) to castor oil. For example, an aqueous solution of a dextran aldehyde adhesive component has a viscosity in the range from about two to about two hundred (2-200) centipoise. An aqueous solution of a polyethylene glycol amine adhesive component (also known as “PEG amines”) has a viscosity in the range from about ten to about three hundred (10-300) centipoise. Other adhesives that may be dispensed by a dispenser of the present invention include DuraSeal™ Dural Sealant System synthetic absorbable hydrogel available from Covidien; CoSeal® surgical sealant available from Baxter Healthcare; and Tisseel® fibrin sealant also available from Baxter Healthcare.
With particular reference to
Each portion 52S, 54S of the unitary end cap 52C has a discharge port 52Q, 54Q extending therethrough. Each discharge port 52Q, 54Q communicates with the interior of its associated barrel 52T, 54T and defines the opening through which liquid material is ejected from the container. The exterior surface of the end cap 52C has a pair of forwardly extending annular rims 52R, 54R. Each annular rim 52R, 54R surrounds a respective discharge port 52Q, 54Q.
The discharge ends of the containers 52, 54 are connected to the support fitting 22E that is part of the container support arrangement 22. The fitting 22E is mounted in a boss 22B that is formed on the back of the discharge head 12H. The fitting 22E is secured in place by a strap 22S which is attached to the boss 22B by screws 22W (
At their opposite ends the containers 52, 54 are provided with a pair of gripping wings 52G, 54G (
Referring again to
The discharge port 52Q, 54Q of each container is connected to a liquid discharge line generally indicated by the reference character 62, 64, respectively (e.g.,
The flow interrupter 66 is supported on the upper partition 44 and is there held in place by a bracket 66B extending from the inside surface of the discharge head 12H. The flow interrupter 66 may take the form of a spool valve having two valving stations 66-1, 66-2 (
The flow control element of the flow interrupter 66 is an elongated, generally cylindrical spool 66P. The spool 66P is reciprocally movable in the valve bore 66B that extends axially through the housing 66H. In the embodiments illustrated the valve spool 66P reciprocates in directions that are substantially perpendicular to the sprayer axis 10A. The valve spool 66P is made of stainless steel.
For each valve station 66-1, 66-2 the valve spool 66P has two lands 66L and 66S separated by adjacent grooves. Each of the grooves receives a sealing gasket 66K that bears in sealing engagement against the inside surface of the valve bore 66B.
The outside diameter of the lands 66L is less than the inside diameter of the valve bore 66B such that an annular flow space 66F is defined therebetween. In the implementation chosen the axial extent of the shorter land 66S is less than the spacing 66D between the ports, while the axial extent of the longer land 66L is greater than the spacing 66D therebetween.
An enlarged coaxial counterbore 66C is provided in the rearward end of the valve housing. A collar 66R attached to the valve spool 66P serves as a retainer for one end of a biasing spring 66S. The other end of the spring 66S is held by a plug 66G that is threaded into the counterbore 66C.
The valve spool 66P is movable against the bias of the spring 66S from a closed, flow interdicting position to a second, open, position. In the closed position the bias spring 66S urges the collar 66R into contact against the internal shoulder 66H formed by the difference in diameters between the valve bore and the counterbore. The length of the spool 66P is such that in the flow interdicting position the free end 66F of the valve spool 66P projects beyond the housing 66H toward the finger 26F on the trigger arm 26A.
When the spool 66P occupies the closed position (e.g.,
The structure of the outlet nozzle is illustrated in
A pair of hollow stainless steel sleeves 68, 70 extends axially into the nozzle 20 from the flattened end surface 20S. The sleeves 68, 70 terminate in fluid communication with a transversely extending passage 20T that is itself connected to a fluid supply passage 20P. After the passage 20T is machined into the nozzle the transverse passage 20T is closed by a plug 20G (
Two stainless steel tubes 62F, 64F extend axially through the entire length of the nozzle 20. The tubes are potted in place. In the forward frustoconical tip portion of the nozzle 20 the tubes 62F, 64F extend coaxially through a respective sleeve 68, 70. The tubes 62F, 64F terminate at the flat surface 20S of the nozzle. The inside surface of each sleeve 68, 70 and the outside surface of a respective tube 62F, 64F cooperate to define annular flow spaces 76, 78 extending through the forward portion of the nozzle. The annular flow spaces 76, 78 have a predetermined flow area defined in a plane perpendicular to the axes of the tubes 62F, 64F and to the axes of the respective concentric sleeves 68, 70. The sleeves 68, 70 may be omitted, in which case the tubes 62F, 64F extend through bore formed in the nozzle.
In the embodiments illustrated each respective liquid discharge line 62, 64 is implemented by interconnected lengths of rigid and flexible tubing.
The initial section of each discharge line 62, 64 is defined by a substantially ninety degree bent length of metal tubing 62A, 64A (
A pressurized fluid supply line 82 connects the pressurized fluid reservoir (i.e., the cartridge 18) receivable by the cartridge support arrangement 16 into fluid communication with the outlet end of each liquid discharge line. The pressurized fluid supply line 82 includes (
In accordance with the first embodiment of the invention the pistons 52P, 54P in the barrel of each respective container 52, 54 are connected to a common force transmitting yoke arrangement 84 (
The actuating disc 84D of the yoke 84 is itself able to be received within and reciprocally movable with respect to an actuator 86. The actuator 86 extends though an opening provided in a support partition 86P located just rearwardly of the support platform 22P. The actuator 86 is supported along its length by an array of cradles 86C. The actuator 86 includes a cylinder 86B the inlet end of which is closed by a fitting 86F. A fluid inlet passage 861 extends through the fitting 86F. The actuator 86 is securely affixed to the interior surface of the shells by a clamp 86K.
A movable abutment, or plunger, 86A is disposed in slidable sealed relationship with respect to the interior of the actuating cylinder 86B. The surface 86W of the plunger 86A presented to the fitting 86F defines a working surface against which a pressurized fluid introduced into the interior of the cylinder 86B through the fluid inlet 861 passage may act (in the direction 87). The opposite surface of the plunger 86A defines a force transmitting surface that is engagable in force transmitting contact with the working surface 84W of the disc 84D receivable in the cylinder 86B. It should be appreciated that in an alternative implementation the plunger 86A may be integrated with the disc 84D. In that event the working surface exposed to pressurized fluid is carried on the actuating disc 84D itself and constitutes the working surface of the disc.
Another pressurized fluid supply line generally indicated by reference character 90 (branching from the outlet port 38P of the valve 38) connects the pressurized fluid reservoir (i.e., the cartridge 18) into fluid communication with the working surface 84W of the yoke 84. This pressurized fluid supply line also includes the length 82F of flexible tubing disposed between the regulator and the valve, as well as a length 90F of flexible tubing connecting the valve outlet 38P to the inlet passage 861 formed in the fitting 86F. The valve 38 also controls the flow of pressurized fluid through this pressurized fluid supply line.
As seen from
-o-0-o-
With the structure of a sprayer in accordance with both embodiments of the present invention having been fully described, the details of its operation may be set forth.
It is assumed for purposes of discussion that the sprayer 10 in accordance with either embodiment of the invention is loaded with at least one but more preferably a pair of containers 52, 54, one or both of which contain a liquid material. In a typical implementation a pre-filled five (5) ml dual syringe (available from Med Mix Systems AG) with a first liquid bioadhesive component in one barrel and a second liquid bioadhesive component in the other barrel are received by the container support arrangement 22.
Any of the other adhesives mentioned above may also be used. Moreover, the device could also be used to spray single component liquids such as sterile water for irrigation, disinfectants or antibiotics. Single component spraying can be done by filling both barrels with the same liquid material or by providing a single syringe design.
The preferred ratio of the volume of material in the first container to the ratio of the volume of material in the second container is about 1:1. However, the ratio of the volume of material in the first container to the ratio of the volume of material in the second container may lie within a range from about 1:1 to about 1:10; more particularly in the range from about 1:4 to about 1:10; and even more particularly in the range from about 1:7 to about 1:10.
It is also assumed that a gas cartridge 18 is inserted in the cartridge support arrangement 16.
In this disposition the discharge ends of the containers 52, 54 are supported by the fitting 22E such that the discharge port 52Q, 54Q of each container is in fluid communication with the inlet end 621, 641 of its respective liquid discharge line 62, 64. The containers may be individual or dual containers of either type already discussed.
As seen in
The sequence of operations involved in loading of the cartridge 18 into the cartridge support arrangement 16 are illustrated in
Once the cartridge 18 is received in the regulator 32 a further advantage attendant with the use of the over-center cam mechanism provides a fail-safe mechanism that prevents the cartridge from being removed from the dispenser. Recoil of the gas cartridge 18 from the regulator forces the cartridge into contact with a point 105 on the interior of the door 16. The point 105 lies on the axis 18A of the cartridge 18. This contact generates a reaction on the door 16D (in the direction 106) that levers the door toward the closed position (i.e., in the direction 16N). The door 16D is thus prevented from opening while the cartridge 18 contains gas. However, when the cartridge 18 is spent, the reaction force falls to zero, allowing the over-center hinge to be opened.
With one or both of the containers 52, 54 received in the container support arrangement 22 and with the cartridge reservoir 18 received in the cartridge support arrangement 16, the operator grasps the sprayer 10 with one hand using the pistol grip. The protruding tip of the nozzle 20 is pointed at a target tissue and the two stage trigger 26 is depressed by the index finger.
The trigger 26 responds by moving in the direction of the arrow 93 from a rest position shown in
This movement of the trigger 26 moves the detent recess 26D so that the lower edge surface of the trigger 26 depresses the operating rod 38R (in the direction 94,
The flow through the first pressurized fluid imposes a motive force on either the working surface 86W of the plunger 86A or directly onto the working surface defined on each piston. In either event the pistons 52P, 54P are displaced within the barrels 52T, 54T causing the liquid in the container 52, 54 to be ejected through the discharge port thereof and into the discharge lines. However, owing to the presence of the flow interrupter 66, liquid is prevented from flowing through the liquid discharge lines to the outlet ends.
The trigger 26 is sequentially movable from the first operational position (
As diagrammatically illustrated in
To halt liquid flow the steps are reversed. The trigger 26 is released and sequentially reverts toward the first operational position and then to the rest position. Owing to the two stage trigger operation described, aerosolizing flow through the nozzle 20 starts before and finishes after the passage of any liquid material through each liquid discharge line. Pressurized fluid drains from the actuator through the nozzle 20.
The streams 96, 98 are kept apart until after they exit the respective discharge lines, thus avoiding any problem of gellation. The continued gas flow will strip any liquid remaining at the end of the discharge lines and prevent clogging.
It is important to maintain a consistent flow rate of the liquids with respect to the flow rate of the carbon dioxide gas since the relative velocities of these fluids determine the liquid droplet size and thus the efficiency of mixing. Smaller droplets are more easily dispersed and have a higher surface area to mass ratio and thus create more efficient mixing. The droplet size decreases when the liquid velocity is decreased at constant gas velocities. The droplet size also decreases when the gas velocity is increased at a constant liquid velocity.
Accordingly, it is important that the first and second pressurized fluid lines are complementarily configured with respect to each other such that:
For a given area of the annular flow spaces 76, 78, this balance is achieved by first adjusting the fluid pressure at the outlet of the regulator 32 to aerosolize the liquids, and then adjusting the area of the working surface against which the pressurized fluid acts to generate the motive force on the pistons 52P, 54P.
Once the proper balance for a particular application is achieved, the liquid flow rates and the gas flow rates are maintained, thus insuring consistent liquid flow and efficient mixing of the liquid streams without reliance upon any particular action on the part of the operator.
As a specific example, a sprayer as described in
It was also necessary to determine empirically the area needed for the plunger 86A to generate a force sufficient to displace the pistons in the containers given the viscosities of the liquid components and frictional forces inherent in the system. These frictional forces include friction between the plunger 86A and actuating cylinder 86B, between the pistons 52P, 54P and their respective barrels 52T, 54T, and the friction between the liquids and gaseous fluids and their passages. This area was found to be 0.30 in2 (196 mm2).
The embodiment of the invention utilizing the force transmitting yoke 84 may be preferable in situations in which it is necessary to have a consistent ratio of liquid components, time after time, batch to batch and sprayer to sprayer, so that a consistent hydrogel is formed and with the expected adhesive properties produced.
Since each liquid material is stored separately in a container and expelled by the motion of a piston, if the distances moved by the pistons expelling the liquid components are the same, the ratio of the volumes of the components expelled will be equal to the ratio of the cross-sectional areas of the barrels. Thus, linking the various pistons through a yoke so that both pistons travel the same distance guarantees that the ratio of the components will be constant for any distance traveled by the yoke.
As noted earlier the liquid components may be dispensed in ratios other than 1:1. With the yoke embodiment if the liquid containers have different inside diameters and the liquid components are intended to be dispensed in non equal but proportional volumes such as 1:4 or 1:10 ratios, then the diameters of the containers need to be sized so that the cross-sectional areas have the same ratios.
For example if a 1:4 ratio is desired the diameter of the larger barrel must be twice the diameter of the smaller. As another example, if a 1:10 ratio is desired the diameter of the barrel containing the greater volume of liquid must be approximately 3.162 times as large as the diameter of the other barrel.
In some situations the embodiment of
In addition, this embodiment may also be used with liquids of different viscosities, volume ratios other than 1:1, and containers with different diameters if adjustable flow restrictors are added into the liquid discharge lines. These restrictors are adjusted to obtain the proper flow of liquids without the need to adjust the fluid pressures. Alternatively, this embodiment may be accomplished by having two individual lines, one going to each piston, with a regulator and valve added to the second line.
-o-0-o-
A sprayer 10 in accordance with either embodiment of the present invention may also be used in kit form.
In one form a kit 110A (the components of which are grouped by a bracket 112) comprises a sprayer 10 together with a cartridge 18 able to be received by the cartridge support arrangement 16 of the sprayer. In this kit 110A the container support arrangement 22 of the sprayer 10 may or may not be preloaded with suitable liquid container(s).
An alternative form of kit 110B (the components of which are grouped by a bracket 114) comprises a sprayer 10 together with one or more containers of liquid materials. The containers may be implemented as dual containers 52/54 of the first type (in which each container includes a piston connectable to a force transmitting yoke 84, e.g.,
It is believed that the most convenient configuration of a kit combines an unloaded sprayer (i.e., no container(s) or cartridge preloaded therein) together with a cartridge and container(s) carrying the appropriate liquid(s) for a given application.
Those skilled in the art, having the benefits of the teachings of the present invention as hereinabove set forth may effect numerous modifications thereto. It should be understood that such modifications lie within the contemplation of the present invention, as defined in the appended claims.
For example, in the embodiments of the invention illustrated and discussed the cartridge reservoir 18 served as the fluid source for both pressurized fluid lines 82 and 90, through the regulator 32 and the valve 38. It should be understood that a separate, dedicated fluid cartridge, regulator and/or valve may be used for each line. It is also noted that the first and second pressurized fluid lines 82 and 90 share the same length of flexible tubing extending between the cartridge and the regulator. Separate dedicated lengths of line may similarly be provided.
In the embodiment of the invention shown in
In all embodiments of the invention illustrated and discussed, it should be further understood that the motive force for any liquid ejecting element may be provided by arrangements other than using gas pressure. Examples of such other arrangements include spring mechanisms and motors.
That is to say, in connection with the first embodiment, the pressurized fluid line 90F from the valve 38 to the actuator may be eliminated and an actuating element in the form of a spring is placed in the actuator cylinder 86B behind the plunger 86A. In use, the plunger 86A is depressed manually as the yoke 84 is inserted, and the pistons 52P, 54P of the liquid containers 52, 54 are connected to the shafts 84S of the yoke. The spring supplies motive force to the yoke to cause the pistons to eject liquid material from the containers.
In another implementation the actuator 86 may be implemented using an electric motor-powered linear drive.
In connection with the second embodiment, the pressurized fluid line 90F from the valve 38 may be eliminated. An actuating element in the form of a spring is placed behind the piston 52P, 54P of each container 52, 54. The springs supply motive force to the pistons to eject liquid material from the containers.
This application is a continuation of U.S. application Ser. No. 12/827,372, filed Jun. 30, 2010, which is incorporated herein in its entirety by reference and made a part thereof. Subject matter disclosed herein is disclosed and claimed in the following copending application, filed contemporaneously herewith and assigned to the assignee of the present invention: Self-Contained Hand-Held Direct Drive Device For Dispensing A Two-Part Adhesive Aerosol (CL-5122).
Number | Name | Date | Kind |
---|---|---|---|
3841555 | Lilja | Oct 1974 | A |
4359049 | Redl et al. | Nov 1982 | A |
4631055 | Redl et al. | Dec 1986 | A |
4902281 | Avoy | Feb 1990 | A |
5166315 | Summerton et al. | Nov 1992 | A |
5582596 | Fukunaga et al. | Dec 1996 | A |
5656035 | Avoy | Aug 1997 | A |
5665067 | Linder et al. | Sep 1997 | A |
5722950 | Fujita et al. | Mar 1998 | A |
5989215 | Delmotte et al. | Nov 1999 | A |
6059749 | Marx | May 2000 | A |
6165201 | Sawhney et al. | Dec 2000 | A |
6179862 | Sawhney | Jan 2001 | B1 |
6454786 | Holm et al. | Sep 2002 | B1 |
6461325 | Delmotte et al. | Oct 2002 | B1 |
6565539 | Zinger et al. | May 2003 | B1 |
6673093 | Sawhney | Jan 2004 | B1 |
6874657 | Metzner et al. | Apr 2005 | B2 |
7217254 | Kirwan et al. | May 2007 | B2 |
20070213683 | Cassingham et al. | Sep 2007 | A1 |
20080121657 | Voegele et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
0835667 | Nov 2005 | EP |
Number | Date | Country | |
---|---|---|---|
20120032000 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12827372 | Jun 2010 | US |
Child | 12850745 | US |