Self-contained minimal action invasive blood constituent system

Information

  • Patent Grant
  • 12127838
  • Patent Number
    12,127,838
  • Date Filed
    Tuesday, April 20, 2021
    3 years ago
  • Date Issued
    Tuesday, October 29, 2024
    2 months ago
Abstract
A minimal action, invasive blood constituent device can streamline the process for the self-monitoring of blood-related tests by holding and facilitating the use of some or all of the tools for obtaining and testing a blood sample. The device can include a slider, that when pumped, causes the device to spring-load a lancet and eject a testing strip. The device can include a trigger that, when pressed, activates the lancet by unloading the spring. A strip-lancet apparatus can combine the roles of two disposable products—a testing strip and a lancing needle—into an apparatus that can be configured for piercing the testing site as well as receiving the blood sample. A testing strip apparatus can facilitate the use and/or disposal of testing strips. A lancet apparatus can facilitate the use and/or disposal of lancets.
Description
TECHNICAL FIELD

The present disclosure relates generally to the field of physiological monitoring. More specifically, the present disclosure relates to systems, methods, and/or apparatuses for taking blood analyte measurements.


BACKGROUND

Monitoring of blood glucose (blood sugar) concentration levels has long been critical to the treatment of diabetes in humans. Current blood glucose monitoring generally involves a chemical reaction between blood serum and a test strip, requiring an extraction of blood via a lancet or pinprick. Small handheld monitors have been developed to enable a patient to perform this procedure anywhere, at any time. But the procedure—specifically the blood extraction and the use and disposition of test strips—can often require numerous pieces of equipment and a number of tedious steps.


SUMMARY

A blood constituent device can include a trigger, a testing strip, a lancet, and a slider. A predefined movement of the slider can cause the device to load the lancet. A predefined movement of the slider can cause the device to present the testing strip. Activation of the trigger after loading the lancet can cause the device to activate the lancet. Activation of the lancet can cause the lancet to prick a measurement site of a user.


The blood constituent device of the preceding paragraph and/or any of the apparatuses, systems, or devices disclosed herein can include one or more of the following features. The predefined movement can include sliding the slider in a first direction and/or sliding the slider in a second direction. Sliding the slider in the first direction can cause the device to load the lancet. Sliding the slider in the second direction can cause the device to present the testing strip. The device can include a lancing spring. Loading the lancet can include compressing the lancing spring, wherein activation of the lancet can include decompressing the lancing spring. The device can include a testing strip cartridge that can include a plurality of stacked testing strips. The plurality of stacked testing strips can include the testing strip. The device can include a strip guiding rod. A predefined movement of the slider can cause the strip guiding rod to move the testing strip from the plurality of stacked testing strips and present the testing strip.


The blood constituent device of any of the preceding paragraphs and/or any of the apparatuses, systems, or devices disclosed herein can include one or more of the following features. The device can include a testing strip disposal bin configured to store testing strips. A predefined movement of the slider can cause the device to add a used testing strip to the testing strip disposal bin. The device can include a lancet cartridge that can include a plurality of lancets. The plurality of lancets can include the lancet. A predefined movement of the slider can cause the device to select the lancet from the lancet cartridge and load the lancet. The device can include a lancet disposal bin configured to store lancets. A predefined movement of the slider can cause the device to add a used lancet to the lancet disposal bin. The testing strip disposal bin can be the same container as the lancet disposal bin. A user can place a blood sample on the testing strip. The device can include a glucometer configured to obtain data from the blood sample on the testing strip.


A method of using an invasive blood constituent device that can include sliding a slider of an invasive blood constituent device according to a predefined movement. Sliding the slider in the predefined movement can cause the device to load the lancet and/or present the testing strip. The method can include, after loading the lancet, activating a trigger of the invasive blood constituent device. Activation of the trigger after loading the lancet can cause the device to activate the lancet. Activation of the lancet can cause the lancet to prick a measurement site of a user.


The method of any of the preceding paragraphs can include one or more of the following steps or features. The predefined movement can include sliding the slider in a first direction and/or sliding the slider in a second direction. The invasive blood constituent device that can include one or more of the features of the device of any of the previous claims.


A testing strip apparatus can include a trigger, a testing strip cartridge that can include a plurality of stacked testing strips, and a strip guiding rod. Activation of the trigger can cause the strip guiding rod to move a testing strip from the plurality of stacked testing strips and present the testing strip to a user.


The testing strip apparatus of the preceding paragraph and/or any of the apparatuses, systems, or devices disclosed herein can include one or more of the following features. The testing strip apparatus can include a testing strip disposal bin configured to store testing strips for later disposal. Activation of the trigger can cause a previously used testing strip to move into the testing strip disposal bin.


A lancet apparatus can include a trigger and a lancet cartridge that can include a plurality of lancets. Activation of the trigger can cause the device to select a lancet from the plurality of lancets and load the selected lancet.


The lancet apparatus of the preceding paragraph and/or any of the apparatuses, systems, or devices disclosed herein can include one or more of the following features. The lancet apparatus can include a lancet disposal bin configured to store lancets for later disposal. Activation of the trigger can cause a previously used lancet to move into the lancet disposal bin. Activation of the trigger can cause the selected lancet to project from the lancet apparatus to prick a measurement site of a user.


A strip-lancet apparatus that can include a first layer that can include a testing strip for accepting a blood sample, and a second layer that can include a lancing needle for pricking skin at a measurement site.


The strip-lancet apparatus of the preceding paragraph and/or any of the apparatuses, systems, or devices disclosed herein can include one or more of the following features. The first layer can be configured to move relative to the second layer. In a first configuration the lancing needle can be exposed to a user. In a second configuration the lancing needle can be isolated from the user. In a first configuration the first layer can be offset from the second layer. In a second configuration the first layer can be aligned with the second layer. To transition from the first configuration to the second configuration, the first layer can be shifted relative to the second layer. The first layer can be retractable relative to the second layer. The second layer can be retractable relative to the first layer. The strip-lancet apparatus can transition from the second configuration to the first configuration responsive to force applied on the first layer by a launching mechanism. The launching mechanism can be a spring. The strip-lancet apparatus can transition from the first configuration to the second configuration responsive to force applied on the first layer by a recoil mechanism. The recoil mechanism can be a spring. A direction of the force applied on the first layer by the launching mechanism can be opposite to a direction of the force applied on the first layer by the recoil mechanism. The strip-lancet apparatus can be rectangular.


A strip-lancet apparatus that can include a lancing needle for pricking skin at a measurement site and a testing strip for accepting a blood sample. In a first configuration the lancing needle can protrude from an edge of the strip-lancet apparatus. In a second configuration the strip-lancet apparatus can be recoiled into the strip-lancet apparatus.


For purposes of summarizing the disclosure, certain aspects, advantages, and novel features are discussed herein. It is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment of the invention and an artisan would recognize from the disclosure herein a myriad of combinations of such aspects, advantages or features.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIGS. 1A-1 and 1A-2 (individually or collectively referred to as FIG. 1A) illustrate a side perspective view of an example handheld invasive blood constituent device.



FIGS. 1B-1 and 1B-2 (individually or collectively referred to as FIG. 1B) illustrate a top perspective view of the handheld invasive blood constituent device of FIG. 1A.



FIG. 1C illustrates a bottom perspective view of the handheld invasive blood constituent device of FIG. 1A.



FIGS. 1D-1 and 1D-2 (individually or collectively referred to as FIG. 1D) illustrate example interview components of the handheld invasive blood constituent device of FIG. 1A.



FIGS. 2A-1 and 2A-2 (individually or collectively referred to as FIG. 2A), FIGS. 2B-1, 2B-2 (individually or collectively referred to as FIG. 2B), FIGS. 2C-1 and 2C-2 (individually or collectively referred to as FIG. 2C), and FIGS. 2D-1 and 2D-2 (individually or collectively referred to as FIG. 2D) illustrate cross-sectional views of a transitional sequence of internal physical mechanical motions of an example handheld invasive blood constituent device.



FIG. 3 illustrates an example flow diagram for interacting with an invasive blood constituent device.



FIGS. 4A and 4B illustrate perspective views of an example strip-lancet apparatus.



FIGS. 5A and 5B illustrate side pictorial view of an example strip-lancet apparatus.





While the foregoing “Brief Description of the Drawings” references generally various embodiments of the disclosure, an artisan will recognize from the disclosure herein that such embodiments are not mutually exclusive. Rather, the artisan would recognize a myriad of combinations of some or all of such embodiments.


DETAILED DESCRIPTION

The present disclosure will now be described with reference to the accompanying figures, wherein like numerals refer to like elements throughout. The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure. Furthermore, embodiments disclosed herein can include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the systems, devices, and methods disclosed herein.


INTRODUCTION

And individuals with Type 1 or Type 2 diabetes and those that perform Glucose monitoring are often tasked with self monitoring of blood glucose (or SMBG) using a blood analyte monitor, sometimes multiple times per day. The traditional process for SMBG, which includes opening a carrying case, loading a lancet into a lancing device, opening a testing strip container to obtain a testing strip, loading the testing strip into a blood constituent meter, preparing the test site, pricking the testing site, placing a blood sample on the testing strip, repeating one or more of the steps if an error occurs, discarding the used lancet, and discarding the used testing strip, can be tedious, time consuming, and far from discrete. Moreover, many self-monitors feel embarrassed by the SMBG process, as they are often bothered with explaining to others why they test and what type of diabetes they have. These and other factors have led to a low level of compliance and a strong need for added convenience, simplicity, and discreetness.


Disclosed herein is a minimal action, invasive blood constituent device that can streamline the process for the self-monitoring of blood-related tests. The device can be a handheld or pocket-able apparatus that holds and facilitates the use of some or all of the tools for obtaining and testing a blood sample. For example, the device can hold a set of lancing needles and/or a set of testing strips and can include internal mechanisms for facilitating the user's use of those items. For instance, in some cases, a user can quickly, efficiently, and discreetly obtain a measurement by simply pumping a handle of the device to load a lancing needle and/or testing strip, pressing a button to launch the lancing needle (and cause the finger prick), and swiping the finger on a testing strip.


Users of SMBG systems often require numerous disposable components, such as testing strips and lancets, to facilitate the drawing of whole blood and collecting a sample. These components are often handled individually by users, potentially multiple times per day, before being disposed of. In practice, disposing of the components, particularly the lancets, can pose a safety hazard due at least in part to the potential for inadvertent pricks.


Disclosed herein is strip-lancet apparatus that can address one or more of these or other challenges. As described herein, a strip-lancet apparatus can combine the roles of two disposable products—a testing strip and a lancing needle—into an apparatus that can be configured for piercing the testing site as well as receiving the blood sample. In some cases, the strip-lancet apparatus can be configured such that a user rarely handles it when the lancing needle is exposed. For example, the strip-lancet apparatus can include a retractable lancet feature that ensures the lancing needle is isolated from the user, except for a limited amount of time during which it is used to prick the measurement site. In this way, the strip-lancet apparatus can improve the user's safety.


Example Blood Constituent Device

A minimal action, invasive blood constituent device can streamline the process for the self-monitoring of blood-related tests. The device can be a handheld or pocket-able apparatus that holds and facilitates the use of some or all of the tools for obtaining and testing a blood sample. Thus, the device can provide added convenience, simplicity, and discreetness to blood-related testing, such as testing relating to blood analyte(s) (such as blood glucose or cholesterol), glucotype, Mononucleosis, Epstein-Barr Virus, genetic testing, IgG antibodies for food sensitivity, cancer biomarkers, the like, or a combination thereof.



FIGS. 1A-1C illustrate perspective views, and FIG. 1D illustrates an exploded view, of an example invasive blood constituent device 100. As illustrated, the device 100 can be a handheld or pocket-able apparatus with a sleek design and small footprint. The device 100 can include a lancet 102, a finger alignment wall 104, a testing strip 106, an entry door 108 for a testing strip cartridge 138, a trigger 110, a slider 112, a display 114, a dial wheel 116, and a base portion 118. Further, as shown in FIG. 1D, the device 100 can include a lancet holder 120, one or more lancing springs 122, 124, a lancing frame 134, a strip guiding rod 126, a testing strip cartridge 138, a testing strip reader 130, and a power source 132. However, the device 100 can include fewer, more, or additional components.


In this implementation, the general controls of the device 100 include the slider 112 and the trigger 110. The slider 112 is configured for longitudinal movement. For instance, the user can pull or slide the slider 112 away from the base portion 118 in one motion, and then push or slide the slider 112 back towards the base portion 118 in another motion. These two motions (sometimes collectively referred to as “pumping” the slider 112 or “loading” the device 100) can, among other things, compress one or more of the lancing springs 122, 124 to spring-load the lancet 102. Pumping the slider 112 can also reveal the testing strip 106. In some cases, movement of the slider 112 can be locked for each transportation and/or safety concerns.


Once the device 100 is loaded, the user can place her finger against or proximate to the finger alignment wall 104 and activate the lancet 102. The way(s) in which the lancet 102 can be activated can vary across embodiments. For instance, in the illustrated implementation, the lancet 102 is activated by pressing the trigger 110 while the device 100 is loaded. When the trigger 110 is pressed down, the downward force on the trigger 110 causes the button to exert a downward force on the lancing frame 134, which displaces the lancing frame 134 in a downward direction. When the lancing frame 134 is displaced by a threshold amount, a stopper 136 on the lancing frame 134 that is held by the wheel 116 is released. The release of the stopper 136 causes the springs 122, 124 to unload, causing the lancing frame 134 and the lancet 102 to launch in the direction of the spring force (e.g., toward the finger alignment wall 104). Activating the lancet 102 in this way causes the lancing needle of the lancet 102 to move through a hole in the finger alignment wall 104 and prick the user's finger.


As another example, the lancet 102 can be activated by a motion sensing device. For instance, the device 100 can include a motion sensing device that detects if and/or when a user places her finger against or sufficiently proximate to the finger alignment wall 104, and can activate the lancet 102 based on such detection. As another example, the launching of the lancet 102 can be voice- or pressure-activated. As another example, the trigger 110 can be implemented in software and/or can be configured to activate the lancet 102 according to a predefined schedule.


Although the lancet 102 and the trigger 110 are depicted as being located in separate regions on the device 100, in some cases, the lancet 102 and the trigger 110 may reside in proximate or overlapping regions of the device 100. For example, the lancet 102 can be integrated or part of the trigger 110, can be proximate to the trigger 110, or can be configured to launch through a hole in the trigger 110. In some such cases, the user can press or active the trigger 110 with her finger and the lancet 102 can prick that same finger. In some cases, for example as illustrated in the device of FIG. 2A, the pricking of the finger by the lancet 102 can occur as part of the same motion as the pressing or activating of the trigger 110 by the user. Furthermore, in some cases, the device 100 does not include a trigger 110.


The lancet 102 may remain retracted, or unloaded, within the device 100 until activation. For instance, the lancet 102 can be is temporarily activated before returning to its retracted, or deactivated, state. For example, activating the lancet 102 can cause the lancet 102 to launch from the device 100 to a particular depth beyond the device housing 118 or at a particular launching force. The lancet 102 can remain activated, protruding from the device 100, for a short period of time, such as a time just long enough to prick the finger, before returning to its retracted, deactivated position. In this way, the lancet 102 can remain generally inaccessible to a user, which can reduce the risk of inadvertent pricks.


The launching depth or launching force of lancet 102 can be fixed or controllable. For example, in the illustrated example, the device 100 includes a dial wheel 116, which can be rotated to adjust the launching depth or launching force of lancet 102, for example by adjusting the compression of one or more of the lancing springs 122, 124. However, it will be understood that the launching depth or launching force of lancet 102 can adjusted in a variety of ways, which can vary based on the embodiment. For example, in some cases, the launching depth or launching force of lancet 102 can be based at least in part on the distance over which the user pulls back on the slider 112. As another example, the launching depth or launching force of lancet 102 can be based at least in part on a force applied to the trigger 110. As another example, the launching depth or launching force of lancet 102 can be controllable and/or configurable by a processor, or can be based on a size of the lancet 102 itself.


Once blood is present, the user can move her finger a small distance to place a blood drop on to the testing strip 106.


The testing strip cartridge 138 can be configured to hold a set of testing strips 106, such as a single testing strip 106 or a plurality of stacked testing strips 106. For example, the testing strip cartridge 138 can hold several days' supply of testing strips. When the testing strip cartridge 138 becomes empty or low, the testing strip cartridge 138 can be refilled and/or replaced. For example, a user can squeeze the release button 109 on the entry door 108 to open the entry door 108 and remove, replace, and/or refill the testing strip cartridge 138. Additionally or alternatively, testing strip cartridge 138 can hold a set of strip-lancet apparatuses, as described herein. In some cases, the device 100 can eject a used testing strip 106 after it is used. For example, a used testing strip 106 can be ejected in response to the user performing a small or normal pump of the slider 112. In some cases, the device 100 compiles used testing strips internally, for example in an internal bin to be emptied by the user. In some cases, a blank test strip comes out last, which may indicate to the user that the internal bin is empty of testing strips or needs replenishing or replacement. In some cases, the display 114 can display a prompt telling the user that the cartridge is empty.


The device 100 can be configured to replace the lancet 102 after use. The lancet 102 can be replaced automatically by the device 100, or as a result of one or more actions performed by the user on the user device 100. For example, in some cases, pumping the slider 112 can remove a currently-loaded lancet 102 and can load a new lancet 102. For example, the device 100 can include another cartridge (not shown) that stores replacement and/or used lancets. In some cases, the device 100 can eject a used lancet 102 after it is used. For example, a used lancet 102 can be ejected in response to the user performing a small or normal pump of the slider 112. In some cases, the device 100 compiles used lancets 102 internally, for example in an internal bin. In some examples, the internal bin may be configured to be emptied of used lancets 102 by the user.


The display 114 can be configured to display content relating to the user, one or more measurements, or the like. For example, the display 114 can be configured to provide feedback regarding whether a correct amount of blood was placed on testing strip 106, or can display blood values, historical trends, glucotypes, etc.


The device 100 can include a processor for processing data, communicating with the testing strip reader 130, or controlling the display 114. In some cases, the device 100 may be configured to communicate with a mobile device (e.g., patient monitor, mobile phone, laptop, wearable device, etc.) For example, the device 100 may be configured with a wireless connection protocol, such as Bluetooth or a cellular connection. In some cases, the processor can be configured to count the remaining testing strips 106. For example, an electric contact can be tripped when the strip door reaches a minimum strips position. In some cases, the processor can be configured to count a number of times the slider 112 has been pumped, determine a number of glucose measurements made.


Although illustrated as a handheld device, the device 100 can be of various shapes and/or sizes. For example, in some cases, the device 100 could be implemented as a wearable device, such as a watch, watch band, bracelet, anklet, ring, or other jewelry.


In some cases, the device 100 can be configured to provide treatment or medicine to a user. For example, in some cases, the device 100 includes an insulin treatment feature, which allows a user to inject herself with insulin. For example, the injection of insulin could be performed in a similar manner to the activation of the lancet, as described herein.


In some cases, the front cap 105 of the device 100 can be removed and replaced with a magnetic alignment. Additionally or alternatively, the device 100 may use magnets on the entry door 108 for the testing strip cartridge 138 and for testing strip cartridge 138 placement. In some cases, the front cap 105 can be removed so that the user can pull out and/or replace a lancet 102.


In some cases, the device 100 may not include a lancet. For example, the device 100 can be configured to facilitate the storage and/or distribution of testing strips. In some such cases, the device 100 can be referred to as a testing strip apparatus. As an example, the device 100 can include a trigger 110. Further, the device 100 can include a testing strip cartridge 138 that includes a plurality of stacked testing strips. The device 100 can include a strip guiding rod 126. In some cases, activation of the trigger 110 causes the strip guiding rod 126 to move a testing strip 106 from the plurality of stacked testing strips and present the testing strip to a user. The device 100 can include a testing strip disposal bin (not pictured) configured to store testing strips for later disposal. In some cases, activation of the trigger 110 causes a previously used testing strip to move into the testing strip disposal bin.


In some cases, the device 100 may not include a testing strip. For example, the device 100 can be configured to facilitate the storage and/or distribution of lancets. In some such cases, the device 100 can be referred to as a lancet apparatus. As an example, the device 100 can include a trigger 110. Further, the device 100 can include a lancet cartridge (not pictured) that includes a plurality of lancets. In some cases, activation of the trigger 110 causes the device to select a lancet from the plurality of lancets and load the selected lancet. As described herein, wherein activation of the trigger can cause the selected lancet to project from the device 100 to prick a measurement site of a user. The device 100 can include a lancet disposal bin (not pictured) configured to store lancets for later disposal. In some cases, activation of the trigger 110 causes a previously used lancet to move into the lancet disposal bin. The lancet disposal bin can be separate from the lancet cartridge, such that the lancet cartridge includes unused lancets and the lancet disposal bin includes used or previously-loaded lancets.



FIGS. 2A-2D illustrate cross-sectional views of a transitional sequence of internal physical mechanical motions of an example invasive blood constituent device 200, which can be an embodiment of the handheld invasive blood constituent device 100 of FIG. 1A. As illustrated, the device 200 can include a lancet 102, a finger alignment wall 104, a testing strip 106, a testing strip cartridge 138, a trigger 110, a slider 112, a base portion 118, a lancet holder 120, a lancing frame 134, a lancing spring 224, a strip guiding rod 126, a testing strip reader 130, and a strip reader frame 142. However, the device 100 can include fewer, more, or additional components.



FIG. 2A illustrates a cross-sectional view of the device 200 in an unloaded or beginning state. In this state, the lancing spring 224 is unloaded such that pressing the trigger 110 will not cause the lancet 102 to activate. Furthermore, no testing strip 106 is revealed. The device 200 may be in an unloaded state prior to the first use of the device 100, or may be in an unloaded state responsive to a usage of the device 100 (e.g., activation of the lancet 102).


As shown in FIG. 2B, as the user begins to shift the slider 112 in the first direction 240 relative to the base portion 118 of the device 200. In this implementation, the slider 112 includes a projection 218 that catches the end 219 of the strip guiding rod 222 as the slider 112 is shifted, thereby causing the strip guiding rod 222 to shift as well.


As shown in FIG. 2C, as the user continues to pull the slider 112 in the first direction 240, the slider 112 and the strip guiding rod 222 continue to pull back until the protrusion 202 hits the end stop 212 base portion 118, thereby limiting the range of motion of the strip guiding rod 222 and the slider 112. Furthermore, as the strip guiding rod 222 is moved in the first direction 240, the protrusion 206 of the strip guiding rod 222 catches the protrusion 216 of the lancing frame 134, causing the lancing frame 134 to be displaced in the direction of the pull force and further causing the lancing spring 224 to become compressed, thereby loading the lancet 102. Furthermore, as the strip guiding rod 222 is moved in the first direction 240, the protrusion 204 of the strip guiding rod 222 catches the protrusion 214 of the strip reader frame 142.


As shown in FIG. 2D, as the user pushes the slider 112 in the second direction 250, toward its forward position, the forward motion (in the second direction 250) of the slider 112 causes the testing strip cartridge 138 to drop down and causes the strip reader frame 142 to move in the second direction 250. Furthermore, a portion 146 of the slider 112 moves the top testing strip 106 of the cartridge 138 forward, towards the testing strip exit hole 220, thereby revealing the testing strip 106 to the outside of the device 100.



FIG. 2D illustrates a cross-sectional view of the device 200 in a loaded or ready state. For example, the user can press the trigger 110 with part of her finger against or proximate to the finger alignment wall 104, and the lancet 102 will prick the finger, as described herein. Once blood is present, the user can then move her finger a small distance to place the blood drop directly on to the revealed testing strip 106. Once the user presses the trigger 110 and uses the testing strip 106, the device 200 again resides in the beginning or unloaded state, as shown in FIG. 2A.


Flow Diagrams



FIG. 3 is a flow diagram illustrative of an example of a routine 300 performed by a user for interacting with an invasive blood constituent device. The elements outlined for routine 300 can be implemented by a user of any invasive blood constituent device disclosed herein, such as the invasive blood constituent device 100 of FIGS. 1A-1D or the invasive blood constituent device 200 of FIGS. 2A-2D. For ease of reference, routine 300 has been logically associated to the invasive blood constituent device 200 of FIGS. 2A-2D. However, the following illustrative embodiment should not be construed as limiting. Furthermore, it will be understood that an invasive blood constituent device can include few, more, or additional components to what is describe, which could affect the order or implementation of one or more steps of the routine 300.


At block 310, the user causes the lancet 102 to become spring-loaded. In some cases, to spring-load the lancet 102, the user may slide the slider 112 in a first direction. As the slider is pulled in the first direction, the slider 112 causes the strip guiding rod 222 to also move in the first direction. This movement by the strip guiding rod 126 causes the lancing spring 224 to become compressed, thereby spring-loading the lancet 102.


At block 320, the user causes the invasive blood constituent device 200 to reveal a testing strip 106 from its testing strip exit hole 220. In some cases, to reveal the testing strip 106, the user slides the slider 112 in a second direction, which can be opposite the first direction, such that the slider 112 is back in its forward position. As described herein, pushing the slider 112 forward also pushes the strip guiding rod 126 forward, causing the strip guiding rod 126 to push the testing strip 106 out the testing strip exit hole 220.


At block 330, the user places her finger against or proximate to the finger alignment wall 104 and activates the lancet 102 to prick her finger. As described, to activate the lancet 102, the user can press the trigger 110, causing the lancing spring 224 to unload and launch the lancet 102 to prick her finger.


At block 340, once blood is present, the user moves her finger a small distance to place a blood drop on to the testing strip 106.


Example Strip-Lancet Apparatus

Users of SMBG systems often require numerous disposable components, such as testing strips and lancets, to facilitate the drawing of whole blood and collecting a sample. These components are often handled individually by users, potentially multiple times per day, before being disposed of. In practice, disposing of the components, particularly the lancets, can pose a safety hazard.


A strip-lancet apparatus can combine the roles of two disposable products—a testing strip and a lancing needle—into an apparatus that can be configured for piercing the testing site and then receiving the blood sample. In this way, the strip-lancet apparatus can streamline the process for SMBG, for example by reducing the required number of distinct components. For example, a single strip-lancet apparatus can be use instead of a testing strip and a lancing needle. In addition or alternatively, the disclosed strip-lancet apparatus can facilitate safer disposal practices. For example, the strip-lancet apparatus can include a retractable feature of the lancing needle, which can reduce the likelihood that users will inadvertently prick themselves when disposing of the apparatus.



FIGS. 5A and 5B illustrate perspective views, and FIGS. 6A and 6B illustrate pictorial representations of side views, of an example strip-lancet apparatus 500. As shown, the strip-lancet apparatus 500 can be implemented as a relatively flat strip that includes a plurality of layers. A first layer 402 can include a lancet 102 for pricking skin at a measurement site and a second layer 404 can include a testing strip 106 for accepting a blood sample. As shown, the first layer 402 and the second layer 404 can be relatively rectangular. However, it will be understood that the strip-lancet apparatus 500 can be implemented in various ways, including various shapes and sizes. Furthermore, the strip-lancet apparatus 500 can have multiple configurations, as describe herein.



FIGS. 4A and 5A illustrate a first configuration of the strip-lancet apparatus 400 in which the lancet 102 extends or protrudes from the strip-lancet apparatus 400 and is exposed to a user. In this example, the first layer 402 is shifted relative to the second layer 402 such that the first layer 402 extends past the edge of the second layer 402.



FIGS. 4B and 5B illustrate a second configuration of the strip-lancet apparatus 400 in which the lancet 102 is isolated from the user. For example, in the second configuration, the first layer 602 can be aligned with the second layer 604 such that the second layer 604 covers or protects the lancet 102.


In some cases, the strip-lancet apparatus can transition from the first layer 402 to the second layer 404 and/or the second layer 404 to the first layer 402.


For example, the strip-lancet apparatus can transition from the first configuration to the second configuration responsive to a force applied on the first layer 402 by a launching mechanism. For example, FIGS. 5A and 5B illustrate a launching spring 502. When loaded, the launching spring 502 can be released to slide or push the first layer 402 out and expose the lancet 102. It will be understood that the launching mechanism can vary across embodiments.


Further, in some cases, the strip-lancet apparatus can transition from the second configuration to the first configuration responsive to a force applied on the first layer 402 by a recoil mechanism. For example, FIGS. 5A and 5B illustrate a recoil spring 504. When stretched, the recoil spring 504 can respond by retracting the first layer 402 and/or the lancet 102. In some such cases, the recoil spring 504 can be stretched responsive to the decompressed of the launching spring 502. In this way, the first layer 402, and thus the lancing needle 102, are only temporarily exposed.


In some cases, the strip-lancet apparatus can be configured such that a user rarely handles it when the lancing needle is exposed. For example, the strip-lancet apparatus can include a retractable lancet feature that ensures the lancing needle is isolated from the user, except for a limited amount of time during which it is used to prick the measurement site. In this way, the strip-lancet apparatus can improve the user's safety.


In some cases, an invasive blood constituent device, such as the invasive blood constituent device 100 of FIGS. 1A-1D or the invasive blood constituent device 200 of FIGS. 2A-2D, can include a plurality of strip-lancet apparatuses. For example, the strip-lancet apparatus 400 could be ejected or launched from a device and then left at the site until the blood sample draws into the well. Furthermore, the strip-lancet apparatus 400 could be arranged in a replaceable cartridge that can hold several strips.


In one embodiment the strip could be customized in a smaller size or form factor. Furthermore, in some cases, the strip-lancet apparatus may not be a strip. For example, the strip-lancet apparatus have a needle-like appears that draws blood into the well of the needle.


ADDITIONAL EXAMPLES

Disclosed herein are additional examples of systems and methods described herein. Any of the disclosed examples may be combined in whole or in part.


Example 1: An invasive blood constituent device comprising:

    • a trigger;
    • a testing strip;
    • a lancet; and
    • a slider,


      wherein a predefined movement of the slider causes the device to load the lancet and/or present the testing strip,


Example 2: wherein activation of the trigger after loading the lancet causes the device to activate the lancet, wherein activation of the lancet causes the lancet to prick a measurement site of a user.


Example 3: The device of Example 1, wherein the predefined movement comprises sliding the slider in a first direction and/or sliding the slider in a second direction.


Example 4: The device of Example 2, wherein said sliding the slider in the first direction causes the device to load the lancet, wherein said sliding the slider in the second direction causes the device to present the testing strip.


Example 5: The device of any of the previous examples, further comprising a lancing spring, wherein loading the lancet comprises compressing the lancing spring, wherein activation of the lancet comprises decompressing the lancing spring.


Example 6: The device of any of the previous examples, further comprising:

    • a testing strip cartridge comprising a plurality of stacked testing strips, wherein the plurality of stacked testing strips comprises the testing strip; and
    • a strip guiding rod,
    • wherein the predefined movement of the slider causes the strip guiding rod to move the testing strip from the plurality of stacked testing strips and present the testing strip.


Example 7: The device of any of the previous examples, further comprising:

    • a testing strip disposal bin configured to store testing strips,
    • wherein the predefined movement of the slider causes the device to add a used testing strip to the testing strip disposal bin.


Example 8: The device of any of the previous examples, further comprising:

    • a lancet cartridge comprising a plurality of lancets, wherein the plurality of lancets comprises the lancet,
    • wherein the predefined movement of the slider causes the device to select the lancet from the lancet cartridge and load the lancet.


Example 9: The device of any of the previous examples, further comprising:

    • a lancet disposal bin configured to store lancets,
    • wherein the predefined movement of the slider causes the device to add a used lancet to the lancet disposal bin.


Example 10: The device of any of Examples 6-8, wherein the testing strip disposal bin is the same container as the lancet disposal bin.


Example 11: The device of any of the previous examples, wherein a user places a blood sample on the testing strip.


Example 12: The device of any of the previous examples, further comprising a glucometer configured to obtain data from the blood sample on the testing strip.


Example 13: A method of using an invasive blood constituent device comprising:

    • sliding a slider of an invasive blood constituent device according to a predefined movement, said sliding the slider in the predefined movement causes the device to load the lancet and/or present the testing strip; and
    • after loading the lancet, activating a trigger of the invasive blood constituent device, wherein activation of the trigger after loading the lancet causes the device to activate the lancet, wherein activation of the lancet causes the lancet to prick a measurement site of a user.


Example 14: The method of Example 12, wherein the predefined movement comprises sliding the slider in a first direction and/or sliding the slider in a second direction.


Example 15: The method of Example 12, wherein the invasive blood constituent device comprising one or more of the features of the device of any of the previous examples.


Example 16: A testing strip apparatus comprising:

    • a trigger;
    • a testing strip cartridge comprising a plurality of stacked testing strips; and a strip guiding rod,
    • wherein activation of the trigger causes the strip guiding rod to move a testing strip from the plurality of stacked testing strips and present the testing strip to a user.


Example 17: The testing strip apparatus of Example 15, further comprising a testing strip disposal bin configured to store testing strips for later disposal.


Example 18: The testing strip apparatus of Example 15, wherein the activation of the trigger causes a previously used testing strip to move into the testing strip disposal bin.


Example 19: A lancet apparatus comprising:

    • a trigger;
    • a lancet cartridge comprising a plurality of lancets; and
    • wherein activation of the trigger causes the device to select a lancet from the plurality of lancets and load the selected lancet.


Example 20: The lancet apparatus of Example 18, further comprising a lancet disposal bin configured to store lancets for later disposal.


Example 21: The lancet apparatus of Example 19, wherein the activation of the trigger causes a previously used lancet to move into the lancet disposal bin.


Example 22: The lancet apparatus of any of Examples 18-20, wherein activation of the trigger causes the selected lancet to project from the lancet apparatus to prick a measurement site of a user.


Example 23: A strip-lancet apparatus comprising:

    • a first layer comprising a testing strip for accepting a blood sample; and
    • a second layer comprising a lancing needle for pricking skin at a measurement site.


Example 24: The strip-lancet apparatus of Example 22, wherein the first layer is configured to move relative to the second layer.


Example 25: The strip-lancet apparatus of any Examples 22 or 23, wherein in a first configuration the lancing needle is exposed to a user, and wherein in a second configuration the lancing needle is isolated from the user.


Example 26: The strip-lancet apparatus of any Examples 22-24, wherein in a first configuration the first layer is offset from the second layer, and wherein in a second configuration the first layer is aligned with the second layer.


Example 27: The strip-lancet apparatus of any Examples 22-25, wherein to transition from the first configuration to the second configuration, the first layer is shifted relative to the second layer.


Example 28: The strip-lancet apparatus of any Examples 22-26, wherein the first layer is retractable relative to the second layer.


Example 29: The strip-lancet apparatus of any Examples 22-27, wherein the second layer is retractable relative to the first layer.


Example 30: The strip-lancet apparatus of any Examples 22-28, wherein the strip-lancet apparatus transitions from the second configuration to the first configuration responsive to force applied on the first layer by a launching mechanism.


Example 31: The strip-lancet apparatus of Example 29, wherein the launching mechanism is a spring.


Example 32: The strip-lancet apparatus of any Examples 22-30, wherein the strip-lancet apparatus transitions from the first configuration to the second configuration responsive to force applied on the first layer by a recoil mechanism.


Example 33: The strip-lancet apparatus of Example 31, wherein the recoil mechanism is a spring.


Example 34: The strip-lancet apparatus of any of the Examples 29-32, wherein a direction of the force applied on the first layer by the launching mechanism is opposite to a direction of the force applied on the first layer by the recoil mechanism.


Example 35: The strip-lancet apparatus of any Examples 22-33, wherein the strip-lancet apparatus is rectangular.


Example 36: A strip-lancet apparatus comprising:

    • a lancing needle for pricking skin at a measurement site; and
    • a testing strip for accepting a blood sample,
    • wherein in a first configuration the lancing needle protrudes from an edge of the strip-lancet apparatus, and wherein in a second configuration the strip-lancet apparatus is recoiled into the strip-lancet apparatus.


Example 37: An invasive blood constituent device, a testing strip apparatus, a lancet apparatus, and/or a strip-lancet apparatus as illustrated and/or described.


Example 38: A method of using any of the apparatuses, systems, or devices of any of Examples 1-24.


Example 39: A method of operating an invasive blood constituent device, a testing strip apparatus, a lancet apparatus, and/or a strip-lancet apparatus of any of claims 1-24, as illustrated, and/or described.


Terminology

Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, in some cases, the same reference numbers will be used in the drawings to identify similar elements. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.


The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Likewise the term “and/or” in reference to a list of two or more items, covers all of the following interpretations of the word: any one of the items in the list, all of the items in the list, and any combination of the items in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application.


Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof means any connection or coupling, either direct or indirect, between two or more elements; the coupling or connection between the elements can be physical, logical, or a combination thereof. Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, covers all of the following interpretations of the word: any one of the items in the list, all of the items in the list, and any combination of the items in the list. Likewise the term “and/or” in reference to a list of two or more items, covers all of the following interpretations of the word: any one of the items in the list, all of the items in the list, and any combination of the items in the list.


Depending on the embodiment, certain operations, acts, events, or functions of any of the algorithms described herein can be performed in a different sequence, can be added, merged, or left out altogether (non-limiting example: not all are necessary for the practice of the algorithms). Moreover, in certain embodiments, operations, acts, functions, or events can be performed concurrently, e.g., through multi-threaded processing, interrupt processing, or multiple processors or processor cores or on other parallel architectures, rather than sequentially.


The various illustrative logical blocks, modules, routines, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as electronic hardware, or as a combination of electronic hardware and executable software. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, or as software that runs on hardware, depends upon the particular application and design constraints imposed on the overall system. The described functionality can be implemented in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the disclosure.


Moreover, the various illustrative logical blocks and modules described in connection with the embodiments disclosed herein can be implemented or performed by a machine, such as a processor device, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor device can be a microprocessor, but in the alternative, the processor device can be a controller, microcontroller, or combinations of the same, or the like. A processor device can include electrical circuitry configured to process computer-executable instructions. In another embodiment, a processor device includes an FPGA or other programmable device that performs logic operations without processing computer-executable instructions. A processor device can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Although described herein primarily with respect to digital technology, a processor device may also include primarily analog components. For example, some or all of the signal processing algorithms described herein may be implemented in analog circuitry or mixed analog and digital circuitry. A computing environment can include any type of computer system, including, but not limited to, a computer system based at least in part on a microprocessor, a mainframe computer, a digital signal processor, a portable computing device, a device controller, or a computational engine within an appliance, to name a few.


The elements of a method, process, routine, or algorithm described in connection with the embodiments disclosed herein can be embodied directly in hardware, in a software module executed by a processor device, or in a combination of the two. A software module can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, a removable disk, a CD-ROM, or any other form of a non-transitory computer-readable storage medium. An exemplary storage medium can be coupled to the processor device such that the processor device can read information from, and write information to, the storage medium. In the alternative, the storage medium can be integral to the processor device. The processor device and the storage medium can reside in an ASIC. The ASIC can reside in a user terminal. In the alternative, the processor device and the storage medium can reside as discrete components in a user terminal.


Further, the processing of the various components of the illustrated systems can be distributed across multiple machines, networks, and other computing resources. In addition, two or more components of a system can be combined into fewer components. Various components of the illustrated systems can be implemented in one or more virtual machines, rather than in dedicated computer hardware systems and/or computing devices.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For example, the actual steps or order of steps taken in the disclosed processes may differ from those shown in the figure. Depending on the embodiment, certain of the steps described above may be removed, others may be added. For instance, the various components illustrated in the figures may be implemented as software or firmware on a processor, controller, ASIC, FPGA, or dedicated hardware. Hardware components, such as processors, ASICs, FPGAs, and the like, can include logic circuitry. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.


User interface screens illustrated and described herein can include additional or alternative components. These components can include menus, lists, buttons, text boxes, labels, radio buttons, scroll bars, sliders, checkboxes, combo boxes, status bars, dialog boxes, windows, and the like. User interface screens can include additional or alternative information. Components can be arranged, grouped, displayed in any suitable order.


Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based at least in part on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. An invasive blood constituent device comprising: a trigger;a testing strip;a lancet; anda slider, the slider configured to, upon sliding in a first direction, cause the device to load the lancet, and the slider configured to, upon sliding in a second direction, cause the device to present the testing strip,wherein activation of the trigger after loading the lancet causes the device to activate the lancet, wherein activation of the lancet causes the lancet to prick a measurement site of a user.
  • 2. The device of claim 1, further comprising a lancing spring, wherein loading the lancet comprises compressing the lancing spring, wherein activation of the lancet comprises decompressing the lancing spring.
  • 3. The device of claim 1, further comprising: a testing strip cartridge comprising a plurality of stacked testing strips, wherein the plurality of stacked testing strips comprises the testing strip; anda strip guiding rod,wherein the sliding of the slider in the second direction causes the strip guiding rod to move the testing strip from the plurality of stacked testing strips and present the testing strip.
  • 4. The device of claim 1, further comprising a glucometer configured to obtain data from a blood sample on the testing strip.
  • 5. A method of using an invasive blood constituent device comprising: sliding a slider of the invasive blood constituent device in a first direction to cause the invasive blood constituent device to load a lancet;sliding the slider in a second direction to cause the invasive blood constituent device to present a testing strip; andafter loading the lancet, activating a trigger of the invasive blood constituent device, wherein activation of the trigger after loading the lancet causes the device to activate the lancet, wherein activation of the lancet causes the lancet to prick a measurement site of a user.
  • 6. The method of claim 5, further comprising loading a lancing spring, wherein loading the lancet comprises compressing the lancing spring, and wherein activating the trigger decompresses the lancing spring.
  • 7. The method of claim 5, the invasive blood constituent device comprising: a testing strip cartridge comprising a plurality of stacked testing strips, wherein the plurality of stacked testing strips comprises the testing strip; anda strip guiding rod,wherein sliding the slider in the second direction causes the strip guiding rod to move the testing strip from the plurality of stacked testing strips and present the testing strip.
  • 8. The method of claim 5, further comprising receiving, using the testing strip, a blood sample from the user.
  • 9. The method of claim 8, further comprising obtaining data from the blood sample on the testing strip.
  • 10. The method of claim 9, wherein the obtaining data is performed by a glucometer of the invasive blood constituent device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 63/013,718, filed on Apr. 22, 2020, entitled “SELF-CONTAINED MINIMAL ACTION INVASIVE BLOOD CONSTITUENT SYSTEM,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (661)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
D353195 Savage et al. Dec 1994 S
D353196 Savage et al. Dec 1994 S
5377676 Vari et al. Jan 1995 A
D359546 Savage et al. Jun 1995 S
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
D361840 Savage et al. Aug 1995 S
D362063 Savage et al. Sep 1995 S
D363120 Savage et al. Oct 1995 S
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5561275 Savage et al. Oct 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5890929 Mills et al. Apr 1999 A
5919134 Diab Jul 1999 A
5987343 Kinast Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6040578 Malin et al. Mar 2000 A
6066204 Haven May 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6232609 Snyder et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6505059 Kollias et al. Jan 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6595316 Cybulski et al. Jul 2003 B2
6597932 Tian et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6697656 Al-Ali Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
RE38492 Diab et al. Apr 2004 E
6738652 Mattu et al. May 2004 B2
6760607 Al-Ali Jul 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6816241 Grubisic Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6934570 Kiani et al. Aug 2005 B2
6943348 Coffin IV Sep 2005 B1
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7027849 Al-Ali Apr 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7225006 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7356365 Schurman Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7377794 Al-Ali et al. May 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7500950 Al-Ali et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
RE41912 Parker Nov 2010 E
7880626 Al-Ali et al. Feb 2011 B2
7892185 Freeman et al. Feb 2011 B2
7909772 Popov et al. Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7941199 Kiani May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7976472 Kiani Jul 2011 B2
7990382 Kiani Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8028701 Al-Ali et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8182443 Kiani May 2012 B1
8190223 Al-Ali et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8229532 Davis Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8255026 Al-Ali Aug 2012 B1
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8401602 Kiani Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457707 Kiani Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8630691 Lamego et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8666468 Al-Ali Mar 2014 B1
8670811 O'Reilly Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8755535 Telfort et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8840549 Al-Ali et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8897847 Al-Ali Nov 2014 B2
8911377 Al-Ali Dec 2014 B2
8989831 Al-Ali et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9131881 Diab et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9153112 Kiani et al. Oct 2015 B1
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9204834 DePaul Dec 2015 B1
9211095 Al-Ali Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9245668 Vo et al. Jan 2016 B1
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9392945 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9463463 He et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480435 Olsen Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9622692 Lamego et al. Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9649054 Lamego et al. May 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9861298 Eckerbom et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9877650 Muhsin et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986952 Dalvi et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123729 Dyell et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10205291 Scruggs et al. Feb 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10279247 Kiani May 2019 B2
10292664 Al-Ali May 2019 B2
10299720 Brown et al. May 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
D864120 Forrest et al. Oct 2019 S
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463340 Telfort et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10505311 Al-Ali et al. Dec 2019 B2
10524738 Olsen Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
D999244 Indorf et al. Sep 2023 S
D999245 Indorf et al. Sep 2023 S
D999246 Indorf et al. Sep 2023 S
11766198 Pauley et al. Sep 2023 B2
D1000975 Al-Ali et al. Oct 2023 S
11803623 Kiani et al. Oct 2023 B2
11832940 Diab et al. Dec 2023 B2
D1013179 Al-Ali et al. Jan 2024 S
11872156 Telfort et al. Jan 2024 B2
11879960 Ranasinghe et al. Jan 2024 B2
11883129 Olsen Jan 2024 B2
11951186 Krishnamani et al. Apr 2024 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040106163 Workman, Jr. et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050089861 Allen Apr 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275844 Al-Ali Nov 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100004522 Varela Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100087754 Rush Apr 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100210970 Horikawa Aug 2010 A1
20100222703 Takashima Sep 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100256526 Harttig Oct 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110118561 Tari et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110178435 Roe Jul 2011 A1
20110282173 Fonduca Nov 2011 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120172760 Roe Jul 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120271123 Castle Oct 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120330189 Shaanan Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130085349 Shaanan et al. Apr 2013 A1
20130096405 Garfio Apr 2013 A1
20130172711 Tamir Jul 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140166076 Kiani et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213935 Hsu Jul 2014 A1
20140243635 Arefieg Aug 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140364767 Terashima Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150160186 Garner-Richards Jun 2015 A1
20160196388 Lamego Jul 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000349 Krief Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170035337 Wilkinson Feb 2017 A1
20170143245 Cohen May 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180296148 Gelfand Oct 2018 A1
20190117070 Muhsin et al. Apr 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190320906 Olsen Oct 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20200054260 Hatamian Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210186390 Postle Jun 2021 A1
20210196164 Ivosevic Jul 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kianíet al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
20230284943 Scruggs et al. Sep 2023 A1
20230301562 Scruggs et al. Sep 2023 A1
20230346993 Kiani et al. Nov 2023 A1
20230368221 Haider Nov 2023 A1
20230371893 Al-Ali et al. Nov 2023 A1
20230389837 Krishnamani et al. Dec 2023 A1
20240016418 Devadoss et al. Jan 2024 A1
20240016419 Devadoss et al. Jan 2024 A1
20240047061 Al-Ali et al. Feb 2024 A1
20240049310 Al-Ali et al. Feb 2024 A1
20240049986 Al-Ali et al. Feb 2024 A1
20240081656 DeJong et al. Mar 2024 A1
20240122486 Kiani Apr 2024 A1
Foreign Referenced Citations (2)
Number Date Country
WO 02078533 Oct 2002 WO
WO 2021216596 Oct 2021 WO
Non-Patent Literature Citations (2)
Entry
US 2024/0016391 A1, 01/2024, Lapotko et al. (withdrawn)
International Search Report and Written Opinion received in PCT Application No. PCT/US2021/028224, as mailed Aug. 6, 2021 in 11 pages.
Related Publications (1)
Number Date Country
20210330228 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
63013718 Apr 2020 US