The field of the current invention relates to self-contained single-use fluidically-operated analytical devices considered to be portable and operable to perform one or more analytical test requiring a liquid or semi-solid environment. Applications related to the present invention are realized fields employing analytical testing such as environmental testing, food safety, national defense, research tools, drug development, and medical diagnostics.
A microfluidic device is a solid-state mixing device enabled by a fixed-configuration continuous-flow fluid control network physically disposed within an appropriate substrate. This fluid control network enables the mixing of small volumes of analytical material in a controlled manner without external user assistance and by doing so possesses the potential to enable the automation of many complex analytical procedures. A broad spectrum of microfluidic devices exist ranging from simple mixing manifolds to fully integrated self-contained analytical systems. Each type of device varies in the degree of its self-containment, the quantity and types of test it can perform, its fluid management, and its method of manufacture. The subject of the present invention pertains most closely to fully integrated analytical systems embodied as portable self-contained fluidically controlled cartridges operable to facilitate one or more quantitative or qualitative analytical tests within a liquid or semi-solid environment.
To meet the requirements of portability and self-containment these devices must be easily transportable and operable in the field at the point of sample collection. These devices must also be enabled to store, dispense, and facilitate the controlled mixing of one or more analytical materials without external assistance and retain the collective volumes of spent solutions used during the course of the analytical test. Such devices are generally manufactured as singularly-indivisible holistically self-contained articles of manufacture fabricated by advanced lithography techniques or laminating progressive stencil layers to form the requisite fluid control structures of a fluid control network. These structures are then loaded with the requisite analytical materials needed to carry out a test, and then the device is sealed to form a closed system. With a few exceptions this is a contiguous manufacturing process that generates a device having inseparable constituent parts. Such devices are generally operated by establishing a pressure gradient force within the device that induces the movement of fluid through the device from regions of elevated pressure to regions of lower pressure. An operable pressure gradient force can be generated directly by pneumatic, hydraulic, or peristaltic pumps which add a gas or immiscible liquid to one or more inlets while subtracting a proportional amount from an outlet or, by the elevation in pressure generated by releasing materials from blister packaging integrated into the fluid control network. Such a force can also be generated by indirect means through the use of plunger systems, squeeze blubs, and centrifuges; and, it is also possible to exploit the electrochemomotive properties of charged molecules within an electrical field. These devices generally control the mixing of fluids by simultaneously releasing multiple fluids along individually calibrated paths that vary in length and diameter; and/or, by releasing each fluid in a temporal sequence by selectively establishing an operable motive force at one or more fluid reservoirs strategically positioned about the device. Briefly, different analytical reagents exhibit different flow and mixing rates and weak forces such as capillary action and surface tension, generally overlooked in large volumes, become dominate forces in the fluid dynamics of small volumes. Likewise, different tests require different types and volumes of reagents administered in differing temporal sequences. The act of designing an operable fluid control network to store, mix, and retain the collective volumes of materials in a temporally controlled manner typically renders a highly specialized device specific for a given test; meaning, a new device is required for each test or combination of tests.
How a device configures its fluid control pathways and the mode of operation it employs determines the number and types of test it can perform. Devices configured to perform more than one test can be classified either as a homogenous or heterogeneous testing platforms; and, the difference between, and within, these two classes can lead to some confusion depending on whether “a test” is referred to by its sample source, the variable it is measuring or, both. For purposes of clarity, “a test”, “multiple tests”, or “one or more test” as may be used herein, is intended to be interchangeable with “one or more of a type of test”. A homogenous testing platform can perform multiple tests in at least one of two ways; it can hold the test protocol constant and vary the sample being tested or it can hold the sample constant and vary a type of reagent used in the test protocol without altering its volume or sequence of administration. In the first example a number of sample sources are tested for the same compound and, in the second example a single sample source is tested for multiple compounds. Regardless how you define “a test”, in both examples, the volumes and temporal sequence of administering each fluid is held constant which allows one fluid control network to be calibrated for the type of test and then symmetrical replicated for the number of tests desired which enables all test to be actuated simultaneously in a uniform fashion. Due to the symmetry of the system, the means (ports, electrodes, plungers, etc.) that actuate the motive force to move these fluids can be placed predictably about various iterations of the device while also conserving the overall dimension of the device. This in turn, enables multiple devices to be operated by a common analytical instrument and, doing so, has a high commercial value. The term “analytical instrument”, as used herein, is intended to generically refer to a second instrument specially enabled to operate and analyze data acquired from the device. Heterogeneous testing platforms, on the other hand, integrate different types of tests involving different types, volumes, and temporal release sequence of reagents. While these testing platforms derive greater commercial value from the diversity of test they can perform on a single sample source, due to their asymmetry they are easily orders of magnitudes more difficult to design and operate compared to homogenous testing platforms. While some simultaneously actuated heterogeneous testing platforms exist, their commercial utility is generally limited to a small number of tests. Heterogeneous testing platforms that perform a commercially relevant number of tests generally require differentially configured fluid control networks actuated independently of each other. This generally precludes the predictable placement of means (ports, electrodes, plungers, etc.) to actuate the motive force needed to move fluids within the system. This in turn, leads to the need for different analytical instruments or the use of complex adaptors to operate these systems, neither of which is commercially favorable.
In addition to being difficult to design and operate, being singularly-indivisible and holistically self-contained, most of these devices have poor fault tolerances and are difficult to manufacture. For example, the shelf-life of a device possessing numerous analytical reagents would be defined by those reagents with the shortest life expectancy. From a production standpoint, it would be favorable to maximize the operational life-expectancy of each device by strategically pairing the tests on any single device to ones with compatible shelf-lives and storage conditions. Doing so diversifies the number of devices needed to perform the equivalent number of tests which limits the full utility of such a device. As a device that is inseparable into constituent parts the individual elements of the device cannot be individually fault-tested which, when coupled to a contiguous manufacturing process, results in an incrementing risk profile as the device is assembled which increases the cost of sacrificing the entire device if any single element fails to conform to specification. Likewise, without the ability to interchange defective components, entire production lots are placed at risk when an analytical reagent, sensor, or other material reaches its life-expectancy or, is found to expire prematurely or malfunction post-manufacture.
As previously mentioned, it is commercially favorable to perform as many types of tests as possible from a single sample source and employ different iterations of devices to diversify the testing capability of the system employing a common analytical instrument. In order to do so, each device iteration must have both a conserved mechanism-of-operation and overall dimension so as to operably interface with a common analytical instrument. This means that, depending on the circumstances of the tests, the fluid control network must be scaled up or down to accommodate the total reaction volumes of the aggregate number of tests being performed and as more tests are integrated into the system the total reactant volumes per test must be scaled-down in order to free-up physical space. While the physical layout of the fluid control network is largely a design issue that is self-limiting; the total reactant volume of a test, the sample volume in-particular, can only be decrease so much before it ceases to meaningfully represent the larger system. Therefore, in circumstances where low abundance targets are present in dilute environments, as is the case in most bioanalytics, an adequate sample size must be tested meaning. Thus, fluid control systems must be scaled-up to handle larger reactant volumes which limits the total number of tests the device can perform. This again, is commercially unfavorable. It would therefore be commercially favorable to reduce the physical foot-print by simplifying the fluid control network needed to perform a given tests.
While not an exhaustive list, a commercially viable microfluidic cartridge design should be able to perform multiple types of tests on an adequate sample size with precision, sensitivity and reproducibility. The fluid control network should be simplified and standardized in order to be adaptable to new test and test combinations without significant retooling. The mode of operation and overall device dimension should be such that enables multiple devices to be operated by a single analytical instrument, and the device should be easy to manufacture at commercial scales and provide improved fault testing and fault tolerances.
The subject of the present invention pertains to the use of a modular system to create a plurality of possible analytical cartridges, a method to create a modular analytical cartridge derived from a common continuous-flow fluid control network, a plurality of possible module types that can be rendered operable to perform one or more steps of an analytical task, a plurality of possible modular assemblages operable to perform an analytical task as a self-contained device, the use of individually packaged reagents in an analytical cartridge, the use of a serialized reagent cluster in an analytical cartridge, a method of programming the release sequence of a dispensable material to an analytical task, and a method to temporally synchronize the release sequences of a variety of dispensable materials to two or more analytical tasks.
Certain aspects of the present invention pertain to various aspects of a fluidically controlled system. Within the context of the present disclosure the terms “fluid control network”, “fluid control structure”, and “fluid control pathway” are used as follows: “Fluid control pathways” refer to structures that define a path enabling the transfer of a fluid material between two structures; “fluid control structure” pertains to various structural elements that comprise a fluid control network; such as, reservoirs, analytical chambers, etc.; “fluid control network” refers to the fluid control system in aggregate comprising and referring to among other things the physical disposition of various fluid control pathways and fluid control structures and may enable the controlled mixing of analytical materials. Similarly, the term “mode-of-operation”, “mechanism-of-operation”, and “method-of-operation” are used as follows: “mode-of-operation” references the type of gradient force employed within various modules or modular assemblages; for example by, centrifugational force, pressure-gradient force, or electrochemomotive force, etc.; “mechanism-of-operation” references the means used to establish a gradient force; for example, linear actuators, centrifuges, pneumatic or peristaltic pumps, or the flow of a electrical current, etc.; and, “method-of-operation” references how the cartridge is operated and generally refers to an automated, a manual, or a combination of an automated and manual process that may be facilitated by a computer assisted device programmed or mechanical configured to automate a predetermined step-wise process, and/or the use of a human hand that may grasp and otherwise operate a device.
It is realized that many articles can be employed to interconnect different types of modules, control the movement of fluids, and perform various tasks essential to the operation of a cartridge as the circumstances of a specific test dictate. Such articles may be unambiguous configurations of cooperative mechanical attachment, cooperating slide and slide guides, clips, appliques or other means capable of directing the assembly of specific modules into specific cartridge types; means to receive, store and/or make available fluids by means of cavities, bladders, and/or prepackaged reagent cells; means enabling fluid transfer within and between modules in the form of tubes or channels or other geometric configurations that facilitate the transfer and possibly separation of fluids; means to improve the interrelationship and transfer of fluids between the cooperating fluid transfer pathways of interconnected modules, such as mechanical seals, gaskets, sterile seal barriers, or self healing stoppers; means to improve fluid control, such as switches, tubes, valves, choke points, diverters, piercing devices, shunts, ports, vents, gaskets, compression forms, and/or magnetized or magnetic material; mechanical or chemical means intended to prepare a sample for analysis, such as analytical reagents, membranes, sieves, filters, or features that enable a module to undergo centrifugation; means to assist in the acquisition of data pertaining to an analytical procedure, such as electrical, chemical, and/or light: sensors, meters, filters, photomultipliers, polarizers, or light blocking, reflective, or transparent materials, structures, or appliques; means that further enable the operation of the device by means of an electrical current generated within or about a module or module assembly, such as electrical circuits, electrically conductive material, or electricity storage devices, such as batteries or capacitors; and, means that allow module to move relative to other modules as set forth by guide paths within or about other modules, such as plungers, select module configurations, linear actuators, slides or other types motion directing or imparting devices.
One aspect of the present invention provides for a modular system enabled to create a wide variety of analytical cartridges operable to perform one or more analytical test in a liquid or semi-solid environment. Various aspects of this modular system enables a conserved overall dimension and mechanism-of-operation for a number of possible modular assemblages in their final assembled state. This enables a common analytical instrument to operate multiple types of cartridges derived from said system. Other aspects of the modular system provide for functional groupings of fluid control structures to be manufactured as discrete modules enabled to be rendered operable to perform one or more steps of an analytical process as a functionally self-contained unit. This provides for a segmented manufacturing process that can uncouple the production cost of modules requiring specialized facilities, such as clean rooms, from less specialized modules while also improving the scalability of manufacturing various modules at a commercially meaningful scales of production. Other aspects of this system provides for the fault-testing of individual modules independently of the final assembled device form while also providing for improved fault-tolerances of the final assembled device. For example, if a module fails to meet operational specifications at any point prior to the initialization of a test, the module can be readily disconnected from the device and replaced with a functioning module without undue hardship or the need to sacrifice the entire device. Still other aspects of this modular system enable a unique mechanism-of-operation. In certain modular assemblages a module may be positioned internally to another module and made to move relative to that module. While many types of cartridges enabled by this system employ pneumatically driven pressure gradients to induce the movement of fluid within and between modules, certain embodiments that possess this type of modular configuration may also employ mechanical force to leverage the compressive force imparted by the movement of two objects inwardly relative to each other in order to operate additional aspects provided for by the present system. Other aspects of the present modular system provide for means that direct an unambiguous assembly pattern of a number of cooperating modules derived from a common fluid control network into a specific modular assemblage that may also enable the operation of the final assembled device. This may be favorable when employing a modular system that presents a possibility of misassembling a device at one or more locations. Such means may include the specific disposition and interrelation of one or more physical elements of cooperative mechanical attachment between cooperating modules, and/or appliques, or other visual elements that provide visual indications of proper modular assemblages that may further possess information as to the type of analytical device and its specific operational parameters. Such means may also be divisions of electrical circuits disposed about cooperating modules enabled to close a circuit when properly assembled that may further enable the communication of information pertaining to the operation of a cartridge to an analytical instrument designed to operate the cartridge. Other aspects of the present system are found in the ability to vary the physical dimensions and configurations between of individual modules to meet the requirements of a specific analytical task while conforming to a standard overall dimension and mechanism-of-operation of the finished device form. This provides high adaptability of the present modular system in performing a wide-variety of analytical tasks while relying on a common analytical instrument.
Another aspect of the present invention provides for a method for creating a modular analytical device operable to perform an analytical test as a closed system. The method describes the steps of selecting of one or more analytical tests to be performed on a sample; designing a continuous-flow fluid control network operable to perform the select analytical tests accounting for, among other things, the requisite fluid control structures operably interconnected by fluid control pathways; dividing the fluid control network into function groupings that are favorable to manufacture as a number of discrete articles of manufacture that possess sufficient cooperative modularity to be reassembled and reconstruct the original fluid control network. The selection of fluid control structures to be included within a functional division may vary depending on the circumstances of each test but it is realized that creating functional division of fluid control structures having a similar function may be favorable from a manufacturing and operational standpoint. For example, a functional division possessing only analytical chambers may be favorable as a distinct article of manufacture if said chambers are made to hold an analytical reagent that must be kept sterile. In this example, a single module could be rendered operable in a sterile environment, sealed and transported to a separate facility where it could be joined with additional modules having other elements needed to perform the analytical test. However, it is realized that different combinations of fluid control structures may be collocated within a single module as is favorable for specific circumstances, such as the inclusion of a waste reservoir in the previously mentioned module embodiment.
Another aspect of the present invention provides for a number of possible modules that may also be rendered operable to perform one or more steps of an analytical test by the inclusion of requisite analytical material needed to perform said tests. The following selection of possible embodiments is provided to illustrate a variety of aspects of a number of possible module embodiments manifested in a variety of operational contexts. The inclusion or exclusion of possible embodiments is not intended to be limiting in any way but rather provided so as to communicate the broader context of various aspects of select module embodiments. One aspect of these modules may be the inclusion of one or more fluid control structures that has been functionally reduced and individualized from a common fluid control network enabled to perform one or more analytical tasks. The use of the term “functionally reduced” is intended to communicate the consolidation of one or more fluid control structures, their corresponding fluid control pathways, and any other requisite equipment or materials into consolidated functional division of a select fluid control network. Similarly the term “individualized” is intended to communicate that an operable functional division is physically separated from the fluid control network and disposed in an undivided operable state within the context of an individual module. For example, such a fluid control structure may be a type of reservoir enabled to store, dispense, and/or retain an analytical reagent, a sample, or the waste solutions spent during the course of an analytical test. Another example may be a mixing chamber and/or an analytical chamber made to mix various materials in a controlled fashion or serve as a site that enables the collection of information pertaining to the test being performed. Another aspect of a module may possess a functional structure, embodied as a substantially solid structure, a compartment, or a slot made to house module subassemblies that may embody other fluid control structures, electrical storage devices, sensors, or simply serve to conserve the overall dimension and/or mode-of operation of the device. Other examples may include multi-use structures that consolidate two or more functions into a single structure such as a dual mixing/sample reservoir. Many types and configurations of fluid control structures are realized and the inclusion of such structures depends on the circumstances of the test being performed. Each module may also include equipment that enables different types of analytical tasks, such as a flow aperture enabled to perform flow cytometry, electrodes to establish an electrical current enabling electrophoretic separation of electrically charged materials, or ports that enable the addition or subtraction of a gas or liquid from various modules enabling a pressure gradient to be established within and between modules. Other aspects of modules may include mechanical means that may be used to direct a specific assembly pattern between two or more modules that may also function to enable the operation of a module assemblage. Other aspects of these modules may possess one or more elements of cooperative mechanical attachment disposed about the module in coordination with a one or more select cooperating modules. For example, an element of a cooperative mechanical attachment may be the tooth of a tooth and groove clip; wherein, the tooth is positioned on one module and the groove on a cooperating module and the positioning of both components is selective for each module. Another example may be a slide/slide guide assembly; wherein a slide is present on one module and the slide-guide on a cooperating module and the geometric configuration of the assembly, such as a box-slide, barrel-slide, or triangle-slide, is selective for a cooperating module. In certain embodiments of these modules one or more fluid control pathways are disposed to open to one or more sides of the module. These opening may be inlets and/or outlets depending on the type of modular embodiment. Another aspect of these fluid control pathways is that the physical disposition of these inlets or outlets must coordinate and cooperate with fluid control pathways of cooperating modules. Likewise, certain embodiments of these modules must possess the ability to be sealed in order to contain materials within the fluid control structures resident within the module. An aspect of this seal is that it must be reversible in order to allow fluid communication between modules. There are many ways to achieve this. For example, a first module could be made to possess a piercing device operatively recessed within a fluid control pathway thereby allowing an adhesive barrier placed over its opening and a second cooperating module could then be made to possess a protrusion having an operable diameter and extending from the second module that could also be sealed by an adhesive barrier. When the two modules are assembled in a preoperational configuration the two pathway would be operably opposed but not interconnected and when actuated to perform an analytical task the protrusion from the second module could be made to pierce the adhesive barrier of the first module while adhesive barrier of the second module would be pierced by the piercing device recessed within the fluid control pathway of the first module. Alternatively, a first module could be made to possess a self-healing stopper and a second module an exposed piercing device. In this configuration the two modules could be actuated in a manner that inserts and removes the piercing device one or more times depending on the operational parameters of the test being performed. Again, these are just a few possible means to establish fluid communication between one or more sealed modules and provide context for an operational aspect that may be necessarily required for the operation of certain embodiments of the present invention.
The present invention also provides for the use of individually prepackaged reagents in an analytical cartridge. In this aspect of the present invention select volumes of analytical reagents are embodied as individual articles of manufacture, referred to as “wet cells”. Wet cells differ from blister packaging and preloaded reagents in that they are physically separable from the device, not integrated into the fluid control network and, have an internal volume that is defined by their packaging not the fill volume of a fixed reservoir in which they would otherwise be placed. They are self-contained individual articles of manufacture that may be made by means to interconnect into reagent clusters. Such means may include snaps, threaded connectors, adhesives, or simply grouped together. There are many advantages and utilities of employing individually prepackaged reagents. Select volumes of reagents can be manufactured in bulk and incorporated into an analytical device at later times and locations and since they are individually packaged they eliminate complex fluid containment strategies needed to prevent diffusion in resting fluids and allow reagents to be co-localized within different modules of various modular assemblages while providing for a simplified reagent release mechanism. They reduce waste, can be readily interchanged if they malfunction or reach the term of their life-expectancy, and can be specially packaged to extend the shelf-life of select reagents; such as, light impenetrable materials to encapsulate photosensitive reagents. Additional aspects of these wet cells provide that single-use or multi-use volumes of analytical material may be contained within a wet cell as the circumstances of a test may dictate.
Another aspect of the present invention provides for programmable reagent delivery system physically embodied as a serialized reagent cluster. An aspect of this serialized reagent cluster translates the operational protocol of an analytical test into a prescribed physical arrangement of wet cells that contain a dispensable material needed to perform an analytical test. Said wet cells are arranged in linear series corresponding to the first, second, third, etc., reagent employed by an analytical test. This serial arrangement provides for the linear insertion of a cannula sequentially into each cell of said series in a temporally controlled manner allowing the contents of each cell to be dispensed through said cannula. Other aspects of this serialized reagent cluster provide for exploiting a mechanism-of-operation provided for by other aspects of the present invention; such as the generation of a compressive force provided for by the movement of two modules relative to each other as previously described, modules that may be made to possess slots to house other modular sub-assemblies, or the use of such a system in a syringe-like analytical system having a dual function plunger system which will be discussed later on.
Another aspect of the present invention pertains to a compression form. Depending on the mechanism-of-operation for actuating the present system, certain embodiments may require the use of a compression form. A compression form is a structure made to possess openings enabled to receive and operably orient a serialized reagent cluster relative to a cannula in the formation of a reagent assemblage. The function of a compression form is to provide a space in which the cells of a reagent cluster may be compressed by the application of a compressive force to an end of the reagent cluster operable to compress each cell in said series. Certain embodiments of this compression form may be manufactured from a rigid material that resist deformation of the walls of said opening when acted on by the compression of a serialized reagent cluster by the compressive force. Other embodiments of the compression form may be manufactured from a material possessing qualities of operable compression and resilience that is also operable to resist the deformation of one or more serialized reagent clusters as both the compression form and serialized reagent cluster are compressed by a compressive force. Such a compression form may also possess operable absorptive qualities to absorb spillage of dispensable materials within the apparatus. Also, certain embodiments of this reagent assemblage may directly possess and position a cannula while in other embodiments it may be more favorable to locate the cannula elsewhere about the device. Another aspect of a serialized reagent cluster provides for the ability to communicate multiple fluids along a single fluid communication pathway which dramatically simplifies the fluid control network of devices enabled by the present invention, which in turn frees up more space for more tests.
Another aspect of the present invention provides for a method for programming the operational protocol of one or more analytical tests through the use of serialized reagent cluster possessing both wet cells and dry cells. Dry cells, which lack a dispensable content, function to provide for incubation cycles by creating a physical separation between wet cells; the greater the separation, provided by the internal volume of the dry cell, the longer the incubation period. By allowing for incubation cycles between treatment cycles, dry cells allow multiple serialized reagent clusters to be temporally synchronized enabling multiple analytical tests to be performed in parallel. This could be achieved by actuating reagent clusters individually or collectively and in a manner that is incremental or continuous. The use of this methodology and apparatus allows one or more analytical tests to be configured in a way that is largely independent of the physical configuration of a fluid control network. This provides a highly degree of adaptability to performing different types of tests involving equivalent operational protocols, or highly diverse operational protocols that differ in the types, volumes, and timing of administration of various analytical reagents.
Another aspect of the present invention provides for a number of possible modular assemblages that may be also be rendered operable to perform one or more analytical tests within the context of a single device by the inclusion of requisite analytical material needed to perform said tests. The following selections of possible embodiments have been provided to illustrate the present invention in a variety of context. The inclusion or exclusion of possible embodiments is not intended to be limiting in any way but rather serve to communicate the broader context of the present invention. A number of possible modular assemblages are realized and enabled to perform one or more analytical tests as a self-contained system in either a liquid, semi-solid, suspended-solid, or combination thereof; said systems may be a modular assemblage of two or more modules possessing a closed continuous-flow systems operable to perform one or more analytical tests, syringe based systems, electrophoresis systems, cell culture systems, and others.
Many applications for the present invention are realized and encompass technical fields that employ fluid based analytics or analytics in semi-solid or suspended-solids environments. The embodiments provided herein are intended to illustrate the general utility of the present invention in a few select contexts and is not intended as an exhaustive list of each possible module configuration, cartridge embodiment, or all possible utilities of the present invention. The number and type of functional elements described herein are not intended to be limiting as it may be preferable to include different numbers and types of functional structures as specific analytical procedures dictate and not all functional structures, variations, or possible configurations are described herein.
Note that the administration of each successive reagent provides the requisite positive pressure to displace spent reagent(s) 105 out of the mixing chamber and through port 94 and into a waste module (not shown) but a number of alternatives are also apparent for collecting waste material. For example, the internal structure of the reactor module, separate from the mixing chambers and other fluid control pathways, could be dedicated to storing spent solutions. Likewise, multiple waste modules could be positioned about the perimeter of the reactor module to enable alternate configurations of discharge outlets for different fluid control networks. As previously stated, this example is illustrative only. Any number of reactions, reagent configurations, and fluid control architecture could be employed to perform different analytical procedures as the circumstances dictate. Likewise, the present illustration depicts the pressing of a cannula onto a cell but a similar result could be achieved by pressing the cells onto a cannula as is illustrated in
The present illustrations are representative only and provide only a few possible contexts in which the present invention could be employed are not intended to limit the scope of all possible applications for the present invention in anyway.
This application is a continuation of U.S. application Ser. No. 16/653,486, filed on Oct. 15, 2019 which is a continuation of U.S. application Ser. No. 14/777,134, filed on Sep. 15, 2015, which a National Stage Entry of PCT/US14/16574 filed on Feb. 14, 2014, which claims the benefit of U.S. Provisional Application No. 61/802,408, filed on Mar. 16, 2013.
Number | Date | Country | |
---|---|---|---|
61802408 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16653486 | Oct 2019 | US |
Child | 18395585 | US | |
Parent | 14777134 | Sep 2015 | US |
Child | 16653486 | US |