Self-contained time division duplex (TDD) subframe structure

Information

  • Patent Grant
  • 11997656
  • Patent Number
    11,997,656
  • Date Filed
    Thursday, May 13, 2021
    3 years ago
  • Date Issued
    Tuesday, May 28, 2024
    7 months ago
Abstract
Aspects of the present disclosure provide a subframe structure for time division duplex (TDD) carriers that can be entirely self-contained. That is, information transmitted on a TDD carrier may be grouped into subframes, where each subframe provides communication in both directions (e.g., uplink and downlink) in a suitable fashion to enable such communication without needing any further information in another subframe. For example, a single subframe may include scheduling information, data information corresponding to the scheduling information, and acknowledgment information corresponding to the data information.
Description
TECHNICAL FIELD

Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to a self-contained subframe structure for wireless communication utilizing a time division duplex (TDD) carrier.


BACKGROUND

Wireless communication networks are widely deployed to provide various communication services such as telephony, video, data, messaging, broadcasts, and so on. Such networks, which are usually multiple access networks, support communications for multiple users by sharing the available network resources.


The spectrum allocated to such wireless communication networks can include licensed and/or unlicensed spectrum. Licensed spectrum is generally restricted in its use for wireless communication except for licensed use as regulated by a governmental body or other authority within a given region. Unlicensed spectrum is generally free to use, within limits, without the purchase or use of such a license. As the use of wireless communication systems continues to increase, the demand for reallocation of additional spectrum has also increased in many different use cases, including but not limited to telephones, smart phones, PCs, smart meters, remote sensors, smart alarms, mesh nodes, etc.


In many cases, this spectrum is being (or is expected to be) allocated in such a way that paired carriers, utilized in many existing frequency division duplex (FDD) systems, are either not available, or not available in matched bandwidth configurations. Accordingly, time division duplex (TDD) carriers are expected to be utilized in many future deployments for wireless communication systems.


BRIEF SUMMARY OF SOME EXAMPLES

The following presents a simplified summary of one or more aspects of the present disclosure, in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated features of the disclosure, and is intended neither to identify key or critical elements of all aspects of the disclosure nor to delineate the scope of any or all aspects of the disclosure. Its sole purpose is to present some concepts of one or more aspects of the disclosure in a simplified form as a prelude to the more detailed description that is presented later.


Various aspects of the present disclosure provide subframe structures for time division duplex (TDD) carriers that can be entirely self-contained. That is, information transmitted on a TDD carrier may be grouped into subframes, where each subframe provides communication in both directions (e.g., uplink from a subordinate entity to a scheduling entity, and downlink from the scheduling entity to the subordinate entity) in a suitable fashion to enable communication of a set of packets between the scheduling entity and the subordinate entity. For example, a single subframe may include scheduling information, data information corresponding to the scheduling information, and acknowledgment information corresponding to the data information.


In one aspect, a method of wireless communication for a scheduling entity to communicate with one or more subordinate entities utilizing a time division duplex (TDD) carrier via a plurality of subframes is provided. The method includes utilizing a subframe structure for at least a set of a plurality of subframes, where each of the plurality of subframes in the set has a same duration and the subframe structure includes a control portion, a data portion, and an acknowledgement portion. The method further includes transmitting scheduling information in the control portion of a subframe of the plurality of subframes, transmitting data information corresponding to the scheduling information in the data portion of the subframe that is associated with a set of subordinate entities, and receiving acknowledgement information corresponding to the data information in the acknowledgement portion of the subframe, where the control portion, the data portion, and the acknowledgement portion are contained in the same subframe.


Another aspect of the disclosure provides a scheduling entity configured to manage wireless communication with one or more subordinate entities. The scheduling entity includes a processor, a wireless transceiver communicatively coupled to the processor, and a memory communicatively coupled to the processor. The processor is configured to utilize a subframe structure for at least a set of a plurality of subframes within a time division duplex (TDD) carrier, where each of the plurality of subframes in the set has a same duration and the subframe structure includes a control portion, a data portion, and an acknowledgement portion. The processor is further configured to transmit scheduling information in the control portion of a subframe of the plurality of subframes via the wireless transceiver, transmit data information corresponding to the scheduling information in the data portion of the subframe that is associated with a set of subordinate entities via the wireless transceiver, and receive acknowledgement information corresponding to the data information in the acknowledgement portion of the subframe via the wireless transceiver, where the control portion, the data portion, and the acknowledgement portion are contained in the same subframe.


Another aspect of the disclosure provides a method of wireless communication for a scheduling entity to communicate with one or more subordinate entities utilizing a time division duplex (TDD) carrier via a plurality of subframes. The method includes utilizing a subframe structure for at least a set of a plurality of subframes, where each of the plurality of subframes in the set has a same duration and the subframe structure includes a control portion, a data portion, and an acknowledgement portion. The method further includes transmitting scheduling information in the control portion of a subframe of the plurality of subframes, receiving data information corresponding to the scheduling information in the data portion of the subframe that is associated with a set of subordinate entities, and transmitting acknowledgement information corresponding to the data information in the acknowledgement portion of the subframe, where the control portion, the data portion, and the acknowledgement portion are contained in the same subframe. Another aspect of the disclosure provides a scheduling entity configured to manage wireless communication with one or more subordinate entities. The scheduling entity includes a processor, a wireless transceiver communicatively coupled to the processor, and a memory communicatively coupled to the processor. The processor is configured to utilize a subframe structure for at least a set of a plurality of subframes within a time division duplex (TDD) carrier, where each of the plurality of subframes in the set having a same duration and the subframe structure includes a control portion, a data portion, and an acknowledgement portion. The processor is further configured to transmit scheduling information in the control portion of a subframe of the plurality of subframes via the wireless transceiver, receive data information corresponding to the scheduling information in the data portion of the subframe that is associated with a set of subordinate entities via the wireless transceiver, and transmit acknowledgement information corresponding to the data information in the acknowledgement portion of the subframe via the wireless transceiver, where the control portion, the data portion, and the acknowledgement portion are contained in the same subframe.


These and other aspects of the invention will become more fully understood upon a review of the detailed description, which follows. Other aspects, features, and embodiments of the present invention will become apparent to those of ordinary skill in the art, upon reviewing the following description of specific, exemplary embodiments of the present invention in conjunction with the accompanying figures. While features of the present invention may be discussed relative to certain embodiments and figures below, all embodiments of the present invention can include one or more of the advantageous features discussed herein. In other words, while one or more embodiments may be discussed as having certain advantageous features, one or more of such features may also be used in accordance with the various embodiments of the invention discussed herein. In similar fashion, while exemplary embodiments may be discussed below as device, system, or method embodiments it should be understood that such exemplary embodiments can be implemented in various devices, systems, and methods.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagram illustrating an example of a network architecture.



FIG. 2 is a block diagram conceptually illustrating an example of a scheduling entity communicating with one or more subordinate entities.



FIG. 3 is a block diagram illustrating an example of a hardware implementation for a scheduling entity employing a processing system.



FIG. 4 is a block diagram illustrating an example of a hardware implementation for a subordinate entity employing a processing system.



FIG. 5 is a diagram illustrating an example of a time division duplex (TDD) self-contained subframe structure that may be used in some networks.



FIG. 6 is a diagram illustrating contiguous TDD subframes, each having a TDD self-contained subframe structure that may be used in some networks.



FIG. 7 is a diagram illustrating an example of a TDD self-contained subframe structure that may be used in some networks.



FIG. 8 is a diagram illustrating an example of a TDD self-contained subframe structure that may be used in some networks.



FIG. 9 is a diagram illustrating an example of a sequence of TDD subframes, each having a TDD self-contained subframe structure that may be used in some networks.



FIG. 10 is a flow chart of a method of wireless communication.



FIG. 11 is a flow chart of another method of wireless communication.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.


The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. In order to illustrate some of the entities or devices described throughout the present disclosure, FIG. 1 is a diagram illustrating a generalized example of a network 100. In this example, the network 100 is divided into a number of cellular regions 102/110. In the context of a multiple access network, channel resources may generally be scheduled, and each entity may be synchronous. That is, each node utilizing the network may coordinate its usage of the resources such that transmissions are only made during the allocated portion of the frame, and the time of each allocated portion is synchronized among the different nodes. One node in each cellular region 102/110 acts as a scheduling entity.


Each scheduling entity 104/108 may be a base station or access point, or a user equipment (UE) 106 in a device-to-device (D2D) and/or mesh network. The scheduling entity 104/108 manages the resources on the carrier and assigns resources to other users of the channel, including subordinate entities, such as one or more UEs 106 in the cellular network 100. The scheduling entities 104 are responsible for all radio related functions including radio bearer control, admission control, mobility control, scheduling, security, and connectivity to a centralized controller and/or gateway. There is no centralized controller in this example of a network 100, but a centralized controller may be used in alternative configurations.


One or more lower power class scheduling entities 108 may have a cellular region 110 that overlaps with one or more other cellular regions (cells) 102. The lower power class scheduling entity 108 may be a femto cell (e.g., home scheduling entity), pico cell, micro cell, remote radio head, or in some instances, another UE 106. The macro scheduling entities 104 are each assigned to a respective cell 102 and are configured to provide an access point to a core network for all the UEs 106 in the cells 102.


The modulation and multiple access scheme employed by the network 100 may vary depending on the particular telecommunications standard being deployed. In some radio access networks, such as those defined in LTE standards, orthogonal frequency division multiplexing (OFDM) is used on the downlink (DL) and single carrier frequency division multiple access (SC-FDMA) is used on the uplink (UL) to support both frequency division duplexing (FDD) and TDD. As those skilled in the art will readily appreciate from the detailed description to follow, the various concepts presented herein are well suited for various applications including telecommunication standards employing other modulation and multiple access techniques. By way of example, these concepts may be employed in 5G, LTE, or Evolution-Data Optimized (EV-DO). EV-DO is an air interface standard promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and employs CDMA to provide broadband Internet access to mobile stations. These concepts may also be extended to Universal Terrestrial Radio Access (UTRA) employing Wideband-CDMA (W-CDMA) and other variants of CDMA, such as TD-SCDMA; Global System for Mobile Communications (GSM) employing TDMA; Evolved UTRA (E-UTRA), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, and Flash-OFDM employing OFDMA. UTRA, E-UTRA, UMTS, LTE and GSM are described in documents from the 3GPP organization. CDMA2000 is described in documents from the 3GPP2 organization. The actual wireless communication standard and the multiple access technology employed will depend on the specific application and the overall design constraints imposed on the system.


The scheduling entities 104 may have multiple antennas supporting MIMO technology. The use of MIMO technology enables the scheduling entities 104 to exploit the spatial domain to support spatial multiplexing, beamforming, and transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. The data steams may be transmitted to a single UE 106 to increase the data rate or to multiple UEs 106 to increase the overall system capacity. This is achieved by spatially precoding each data stream (i.e., applying a scaling of an amplitude and a phase) and then transmitting each spatially precoded stream through multiple transmit antennas on the downlink (DL). The spatially precoded data streams arrive at the UE(s) 106 with different spatial signatures, which enables each of the UE(s) 106 to recover the one or more data streams destined for that UE 106. On the uplink (UL), each UE 106 transmits a spatially precoded data stream, which enables the scheduling entity 104 to identify the source of each spatially precoded data stream.


Spatial multiplexing is generally used when channel conditions are good. When channel conditions are less favorable, beamforming may be used to focus the transmission energy in one or more directions. This may be achieved by spatially precoding the data for transmission through multiple antennas. To achieve good coverage at the edges of the cell, a single stream beamforming transmission may be used in combination with transmit diversity.


Certain aspects of an access network described herein may relate to a system supporting OFDM on the DL. OFDM is a spread-spectrum technique that modulates data over a number of subcarriers within an OFDM symbol. The subcarriers are spaced apart at precise frequencies. The spacing provides orthogonality that enables a receiver to recover the data from the subcarriers. In the time domain, a guard interval (e.g., cyclic prefix) may be added to each OFDM symbol to combat inter-OFDM-symbol interference. The UL may use SC-FDMA in the form of a Discrete Fourier Transform (DFT)-spread OFDM signal to compensate for high peak-to-average power ratio (PAPR).


Referring now to FIG. 2, a block diagram illustrates an exemplary scheduling entity 202 in wireless communication with a plurality of subordinate entities 204. The scheduling entity 202 transmits downlink data channel(s) 206 and downlink control channel(s) 208, while the subordinate entities 204 transmit uplink data channel(s) 210 and uplink control channel(s) 212. Of course, the channels illustrated in FIG. 1 are not necessarily all of the channels that may be utilized between a scheduling entity 202 and subordinate entities 204, and those of ordinary skill in the art will recognize that other channels may be utilized in addition to those illustrated, such as other data, control, and feedback channels.


In accordance with aspects of the present disclosure, the term downlink (DL) may refer to a point-to-multipoint transmission originating at the scheduling entity 202. In addition, the term uplink (UL) may refer to a point-to-point transmission originating at a subordinate entity 204.


Broadly, the scheduling entity 202 is a node or device responsible for scheduling traffic in a wireless communication network, including the downlink transmissions and, in some examples, uplink data 210 from one or more subordinate entities 204 to the scheduling entity 202. A scheduling entity 102 may be, or may reside within, a base station, a network node, a user equipment (UE), an access terminal, or any suitable node or peer in a wireless communication network.


Broadly, the subordinate entity 204 is a node or device that receives scheduling control information, including but not limited to scheduling grants, synchronization or timing information, or other control information from another entity in the wireless communication network such as the scheduling entity 202. A subordinate entity may be, or may reside within, a base station, a network node, a UE, an access terminal, or any suitable node or peer in a wireless communication network.


As illustrated in FIG. 2, the scheduling entity 202 may transmit downlink data 206 to one or more subordinate entities 204. In addition, the subordinate entities 204 may transmit uplink data 210 to the scheduling entity 202. In accordance with aspects of the disclosure, the uplink data 210 and/or downlink data 206 may be transmitted in transmission time intervals (TTIs). As used herein, the term TTI refers to the period in which a block of data, corresponding to the smallest collection of symbols to be processed at the Media Access Control (MAC) layer and above, is transferred by the physical layer onto the radio interface. In accordance with aspects of the disclosure, a TTI is equal to the duration of a subframe. Thus, as further used herein, the term subframe refers to an encapsulated set of information sent within a single TTI that is capable of being independently decoded. In various aspects, multiple subframes are grouped together to form a single frame. For example, in LTE, the TTI (subframe duration) is set to 1 ms, whereas the frame duration is set to 10 ms, corresponding to 10 subframes. However, within the scope of the present disclosure, a subframe may have a duration of 250 μs, 1 ms, or any suitable duration. Similarly, any suitable number of subframes may occupy a frame. Frames are generally utilized by upper Open Systems Interconnection (OSI) layers for synchronization and other purposes.


In an aspect, the scheduling entity 202 may multiplex downlink data for a set of subordinate entities (i.e., two or more subordinate entities) within a single subframe. For example, the scheduling entity 202 may multiplex downlink data to the set of subordinate entities using time division multiplexing, frequency division multiplexing (e.g., OFDM), code division multiplexing, and/or any suitable multiplexing scheme known to those of ordinary skill in the art. Likewise, any suitable multiple access scheme may be utilized to combine uplink data from multiple subordinate entities 204 within a single subframe.


The scheduling entity 202 may further broadcast downlink control channel(s) 208 to one or more subordinate entities 204. The downlink control channel(s) 208 may include in some examples a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH) and/or any other control channels or pilots, such as the Channel State Information-Reference Signal (CSI-RS) pilot. In still a further example, the downlink control channel(s) 208 may include acknowledgement information (e.g., acknowledged (ACK)/not acknowledged (NACK) packets) indicating whether the uplink data 210 in one or more subframes was received correctly at the scheduling entity 202. For example, a data packet may include verification bits, such as a checksum and/or a cyclic redundancy check (CRC). Accordingly, a device receiving the data packet may receive and decode a data packet and verify the integrity of the received and decoded packet in accordance with the verification bits. When the verification succeeds, a positive acknowledgment (ACK) may be transmitted; whereas when the verification fails, a negative acknowledgment (NACK) may be transmitted.


Furthermore, each of the subordinate entities 204 may transmit uplink control channel(s) 212 to the scheduling entity 202. The uplink control channel(s) 212 may include in some examples a physical uplink control channel (PUCCH), random access channel (RACH), scheduling request (SR), sounding reference signal (SRS), channel quality indicator (CQI), channel state feedback information, buffer status information, or any other suitable control information or signaling. In still a further example, the uplink control channel(s) 212 may include acknowledgement information (e.g., acknowledged (ACK)/not acknowledged (NACK) packets) indicating whether the downlink data 206 in one or more subframes was received correctly at the subordinate entity 204.



FIG. 3 is a conceptual diagram illustrating an example of a hardware implementation for a scheduling entity 202 employing a processing system 314. In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 314 that includes one or more processors 304.


In various aspects of the disclosure, the scheduling entity 202 may be any suitable radio transceiver apparatus, and in some examples, may be embodied by a base station (BS), a base transceiver station (BTS), a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), an access point (AP), a Node B, an eNode B (eNB), mesh node, relay, peer, or some other suitable terminology. Within the present document, a base station may be referred to as a scheduling entity, indicating that the base station provides scheduling information to one or more subordinate entities.


In other examples, the scheduling entity 202 may be embodied by a wireless user equipment (UE). Examples of a UE include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a notebook, a netbook, a smartbook, a personal digital assistant (PDA), a satellite radio, a global positioning system (GPS) device, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, an entertainment device, a vehicle component, a wearable computing device (e.g., a smart watch, a health or fitness tracker, etc.), an appliance, a sensor, a vending machine, or any other similar functioning device. The UE may also be referred to by those skilled in the art as a mobile station (MS), a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal (AT), a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. Within the present document, a UE may be referred to either as a scheduling entity, or a subordinate entity. That is, in various aspects of the present disclosure, a wireless UE may operate as a scheduling entity providing scheduling information to one or more subordinate entities, or may operate as a subordinate entity, operating in accordance with scheduling information provided by a scheduling entity.


Examples of processors 304 include microprocessors, microcontrollers, digital signal processors (DSPs), field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. That is, the processor 304, as utilized in the scheduling entity 202, may be used to implement any one or more of the processes described below.


In this example, the processing system 314 may be implemented with a bus architecture, represented generally by the bus 302. The bus 302 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 314 and the overall design constraints. The bus 302 links together various circuits including one or more processors (represented generally by the processor 304), a memory 305, and computer-readable media (represented generally by the computer-readable medium 306). The bus 302 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further. A bus interface 308 provides an interface between the bus 302 and a transceiver 310. The transceiver 310 provides a means for communicating with various other apparatus over a transmission medium. Depending upon the nature of the apparatus, a user interface 312 (e.g., keypad, display, touch screen, speaker, microphone, joystick) may also be provided.


The processor 304 is responsible for managing the bus 302 and general processing, including the execution of software stored on the computer-readable medium 306. The software, when executed by the processor 304, causes the processing system 314 to perform the various functions described below for any particular apparatus. The computer-readable medium 306 may also be used for storing data that is manipulated by the processor 304 when executing software.


In some aspects of the disclosure, the processor 304 may include resource assignment and subframe control circuitry 341, configured to generate, schedule, and modify a resource assignment or grant of time-frequency resources. For example, the resource assignment and subframe control circuitry 341 may generate one or more subframes, each including time-frequency resources assigned to carry data and/or control information to and/or from multiple subordinate entities. The resource assignment and subframe control circuitry 341 may operate in coordination with resource assignment and subframe control software 351.


The processor 304 may further include downlink (DL) data and control channel generation and transmission circuitry 342, configured to generate and transmit downlink data and control channels. The DL data and control channel generation and transmission circuitry 342 may operate in coordination with the resource assignment and subframe control circuitry 341 to schedule the DL data and/or control information and to place the DL data and/or control information onto a time division duplex (TDD) carrier within one or more subframes generated by the resource assignment and subframe control circuitry 341 in accordance with the resources assigned to the DL data and/or control information. The DL data and control channel generation and transmission circuitry 342 may further operate in coordination with DL data and control channel generation and transmission software 352.


The processor 304 may further include uplink (UL) data and control channel reception and processing circuitry 343, configured to receive and process uplink control channels and uplink data channels from one or more subordinate entities. In some examples, the UL data and control channel reception and processing circuitry 343 may be configured to receive scheduling requests from one or more subordinate entities, the scheduling requests being configured to request a grant of time-frequency resources for uplink user data transmissions. In other examples, the UL data and control channel reception and processing circuitry 343 may be configured to receive and process acknowledgement information (e.g., acknowledged/not acknowledged packets) from one or more subordinate entities. The UL data and control channel reception and processing circuitry 343 may operate in coordination with the resource assignment and subframe control circuitry 341 to schedule UL data transmissions, DL data transmissions and/or DL data retransmissions in accordance with the received UL control channel information. The UL data and control channel reception and processing circuitry 343 may further operate in coordination with UL data and control channel reception and processing software 353.


The processor 304 may further include subframe configuration circuitry 344, configured for providing a subframe structure for use by the resource assignment and subframe control circuitry 341 in generating one or more subframes for a TDD carrier. In accordance with aspects of the disclosure, the subframe configuration circuitry 344 may be configured to provide a self-contained TDD subframe structure, in which control, data and acknowledgement information are self-contained within a single TDD subframe. That is, the control/scheduling information provides control/scheduling for all of the data packets within the subframe and the acknowledgement information includes acknowledgement/not acknowledgement (ACK/NACK) signals for all of the data packets within the subframe. Therefore, the self-contained subframe structure may contain transmissions in both the uplink and the downlink directions.


In some examples, the self-contained TDD subframe structure includes DL control (scheduling) information, DL data information corresponding to the scheduling information and UL acknowledgement information corresponding to the data information. In other examples, the self-contained subframe structure includes DL control (scheduling) information, UL data information corresponding to the scheduling information and DL acknowledgement information corresponding to the data information. In an aspect, the subframe structure may be fixed in duration to enable operation in a synchronous network, in which the start of each subframe is aligned across the network. However, in various aspects of the disclosure, the subframe structure duration may be configurable and determined during system deployment and/or updated through system messages. The subframe configuration circuitry 344 may operate in coordination with subframe configuration software 354.


In an exemplary operation, the subframe configuration circuitry 344 may provide a subframe structure for a current subframe by first determining the duration of the current subframe and then determining whether the current subframe should include primarily UL data information or primarily DL data information. When the subframe configuration circuitry 344 determines that the current subframe should include primarily DL data information, the subframe configuration circuitry 344 provides a self-contained subframe structure that includes a DL control (scheduling) portion, a DL data portion and an UL acknowledgement portion. When the subframe configuration circuitry 344 determines that the current subframe should include primarily UL data information, the subframe configuration circuitry 344 provides a self-contained subframe structure that includes a DL control (scheduling) portion, an UL data portion and a DL acknowledgement portion. The subframe configuration circuitry 344 may further provide the subframe structure for the current subframe by determining the switch point times between UL and DL transmissions within the current subframe. In an aspect, the subframe structure for the current subframe may include deterministic times within the current subframe to switch from UL transmissions to DL transmissions. For example, when the current subframe includes a DL data portion, the switch point to begin including UL acknowledgement information from the subordinate entities may be predetermined within the subframe.


Based on the subframe structure for the current subframe, the DL data and control channel generation and transmission circuitry 342 may generate the current subframe by preparing control and/or data information in memory 305 and scheduling the control and/or data information via the resource assignment and subframe control circuitry 341 for transmission according to the subframe structure provided by the subframe configuration circuitry 344. The DL data and control channel generation and transmission circuitry 342 may further coordinate with the UL data and control reception and processing circuitry 343 to generate the current subframe, as described below.


In an aspect, when the subframe structure includes a DL data portion, the DL data and control channel generation and transmission circuitry 342 may include DL control (scheduling) information in the control portion and DL data information corresponding to the DL control information in the data portion of the subframe. For example, the DL data and control channel generation and transmission circuitry 342 may include DL control (scheduling) information by preparing the control (scheduling) information in memory 305 and loading the control (scheduling) information from memory 305 into the DL control portion of the subframe and may further include DL data information by preparing the DL data information in memory 305 and loading DL data information from memory 305 into the DL data portion of the subframe. The control (scheduling) information may include control (scheduling) information for new DL data packets and retransmitted DL data packets. As an example, the DL data and control channel generation and transmission circuitry 342 may further carry hybrid automatic repeat request (HARQ) configuration information within the control (scheduling) information for retransmitted DL data packets by preparing the HARQ configuration information in memory 305 and loading the HARQ configuration information from memory 305 into the DL control portion of the current subframe. The UL data and control channel reception and processing circuitry 343 may then include acknowledgement information in the acknowledgement portion of the current subframe by receiving and processing ACK/NACK packets sent from one or more subordinate entities in the current subframe.


In an aspect in which the subframe structure includes an UL data portion, the DL data and control channel generation and transmission circuitry 342 may include DL control (scheduling) information in the control portion of the current subframe by preparing the DL control (scheduling) information in memory 305 and loading the control (scheduling) information from memory 305 into the DL control portion. The UL data and control channel reception and processing circuitry 343 may then include UL data information in the data portion of the current subframe by receiving and processing the UL data information sent from one or more subordinate entities. The DL data and control channel generation and transmission circuitry 342 may then include acknowledgement information corresponding to the received UL data information by preparing the acknowledgement information (ACK/NACK packets) in memory 305 and loading the ACK/NACK packets from memory 305 into the acknowledgement portion of the current subframe.


The processor 304 may further include modulation and coding configuration circuitry 347, configured for determining a modulation and coding scheme (MCS) to utilize for downlink transmissions and/or a MCS for a subordinate entity to utilize for uplink transmissions. The modulation and coding configuration circuitry 347 may operate in coordination with modulation and coding configuration software 357.


One or more processors 304 in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a computer-readable medium 306. The computer-readable medium 306 may be a non-transitory computer-readable medium. A non-transitory computer-readable medium includes, by way of example, a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., a compact disc (CD) or a digital versatile disc (DVD)), a smart card, a flash memory device (e.g., a card, a stick, or a key drive), a random access memory (RAM), a read only memory (ROM), a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), a register, a removable disk, and any other suitable medium for storing software and/or instructions that may be accessed and read by a computer. The computer-readable medium may also include, by way of example, a carrier wave, a transmission line, and any other suitable medium for transmitting software and/or instructions that may be accessed and read by a computer. The computer-readable medium 306 may reside in the processing system 314, external to the processing system 314, or distributed across multiple entities including the processing system 314. The computer-readable medium 306 may be embodied in a computer program product. By way of example, a computer program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system.



FIG. 4 is a conceptual diagram illustrating an example of a hardware implementation for an exemplary subordinate entity 204 employing a processing system 414. In accordance with various aspects of the disclosure, an element, or any portion of an element, or any combination of elements may be implemented with a processing system 414 that includes one or more processors 404.


The processing system 414 may be substantially the same as the processing system 314 illustrated in FIG. 3, including a bus interface 408, a bus 402, memory 405, a processor 404, and a computer-readable medium 406. Furthermore, the subordinate entity 204 may include a user interface 412 and a transceiver 410 substantially similar to those described above in FIG. 3. The processor 404, as utilized in a subordinate entity 204, may be used to implement any one or more of the processes described below.


In some aspects of the disclosure, the processor 404 may include uplink (UL) data and control channel generation and transmission circuitry 442, configured to generate and transmit uplink data on an UL data channel, and to generate and transmit uplink control/feedback/acknowledgement information on an UL control channel. The UL data and control channel generation and transmission circuitry 442 may operate in coordination with UL data and control channel generation and transmission software 452. The processor 404 may further include downlink (DL) data and control channel reception and processing circuitry 444, configured for receiving and processing downlink data on a data channel, and to receive and process control information on one or more downlink control channels. In some examples, received downlink data and/or control information may be temporarily stored in a data buffer within memory 405. The DL data and control channel generation and transmission circuitry 444 may operate in coordination with DL data and control channel generation and transmission software 454.


The processor 404 may further include subframe configuration determination circuitry 446, configured for determining a subframe structure and subframe duration for one or more subframes. For example, the subframe structure for a current subfame may be determined based on structure information received from the scheduling entity in the DL control portion of a previous subframe. The subframe configuration determination circuitry 446 may operate in coordination with the subframe configuration determination software 456.


In an exemplary operation, the subframe configuration determination circuitry may provide a subframe structure for a current subframe by determining the subframe structure identified by the scheduling entity (e.g., based on subframe structure information received in the DL control portion of a previous subframe). Based on the subframe structure for the current subframe, as determined by the subframe configuration determination circuitry 446, the UL data and control channel generation and transmission circuitry 442 may prepare control and/or data information in memory 405 for transmission according to the subframe structure. In an aspect, when the subframe structure includes a DL data portion, the DL data and control channel reception and processing circuitry 444 may receive and process DL control information included in the control portion of the current subframe from the scheduling entity and DL data information included in the data portion of the current subfame from the scheduling entity. The UL data and control channel generation and transmission circuitry 442 may then include acknowledgement information corresponding to the received UL data information by preparing the acknowledgement information (ACK/NACK packets) in memory 405 and loading the ACK/NACK packets from memory 405 into the acknowledgement portion of the current subframe.


In an aspect in which the subframe structure includes an UL data portion, the DL data and control channel reception and processing circuitry 444 may receive and process DL control information included in the control portion of the subframe. The UL data and control channel generation and transmission circuitry 442 may then include UL control and/or data information in the data portion of the current subframe by preparing the UL control and/or data information in memory 405 and loading the UL control and/or data information from memory 405 into the data portion of the current subframe. The DL data and control channel reception and processing circuitry 444 may then receive and process acknowledgement information (ACK/NACK packets) corresponding to the transmitted UL data packets in the acknowledgement portion of the current subframe.



FIG. 5 illustrates an exemplary structure of a self-contained TDD subframe 500. The self-contained subframe 500 may have a fixed duration (t), but may also be configurable and determined during network deployment and/or may be updated through system messages. In one example, the duration of the self-contained subframe 500 may be 500 μs. Of course, any suitable subframe duration may be utilized within the scope of the present disclosure.


The self-contained subframe structure shown in FIG. 5 is a transmitter-scheduled subframe, referred to herein as a downlink TTI subframe or DL-centric subframe 500. The DL-centric subframe 500 may be used to carry control and data information to one or more subordinate entities, which may be UEs for example, and to also receive acknowledgement information from the subordinate entity or entities within the same subframe. Thus, each DL-centric subframe includes both DL transmissions and UL transmissions and is divided with respect to time (t) into DL transmission and UL transmission portions.


In the example shown in FIG. 5, the DL transmission portions include a control portion 502 and a data portion 504, and the UL transmission portions include an acknowledgement (ACK/NACK) portion 508. Therefore, within the subframe structure of FIG. 5, the scheduling entity first has an opportunity to transmit control/scheduling information in the control portion 502, and then an opportunity to transmit data in the DL data portion 504. Following a guard period (GP) portion 506, the scheduling entity has an opportunity to receive acknowledged (ACK)/not acknowledged (NACK) signals (ACK/NACK packets) from subordinate entities using the carrier. This frame structure is downlink-centric, as more resources are allocated for transmissions in the downlink direction (e.g., transmissions from the scheduling entity) than for transmissions in the uplink direction (e.g., transmissions from the subordinate entities).


In one example, the control information portion 502 may be used to transmit a physical downlink control channel (PDCCH) indicating time-frequency assignments of data packets intended for one or more subordinate entities, and the DL data portion 504 may be used to transmit a data payload including the data packets intended for the one or more subordinate entities within the assigned time-frequency slots. Thus, each subordinate entity that will be receiving data in the data portion 504 of the subframe 500 may be individually addressed in the control portion 502 of the subframe 500, so that the subordinate entities can receive and process the correct downlink data packets. Thus, all of the data packets transmitted within the subframe 500 may be scheduled according to the scheduling information in the control information portion 502 of the same subframe 500. Following the GP portion 506, the scheduling entity may receive an ACK signal (or a NACK signal) during the ACK/NACK portion 508 from each subordinate entity that received data packets during the data portion 504 to indicate whether the data packets were successfully received. Thus, all of the data packets transmitted within the subframe 500 may be acknowledged/not acknowledged within the same subframe 500.


In other examples, the control portion 502 may be used to transmit other downlink control channels and/or other downlink pilots, such as the channel state information-reference signal (CSI-RS). These additional downlink channels and/or pilots, along with any other downlink control information, may be transmitted together with the PDCCH within the control portion 502. Broadly, any suitable transmission in the DL direction may be made complementary to the control information described above within the control portion 502. In addition, the ACK/NACK portion 508 may also be used for transmission of other uplink control channels and information, such as the physical uplink control channel (PUCCH), random access channel (RACH), scheduling request (SR), sounding reference signal (SRS), channel quality indicator (CQI), channel state feedback information and buffer status. Broadly, any suitable transmission in the UL direction may be made complementary to the ACK/NACK and other information described above within the ACK/NACK portion 508.


In an aspect, the data portion 504 may be used to multiplex DL data transmissions to a set of subordinate entities (i.e., two or more subordinate entities) within the subframe 500. For example, the scheduling entity may multiplex downlink data to the set of subordinate entities using time division multiplexing (TDM), frequency division multiplexing (FDM) (i.e., OFDM), code division multiplexing (CDM), and/or any suitable multiplexing scheme known to those of ordinary skill in the art. Thus, the DL data portion 504 may include data for multiple users and up to a high order of multi-user MIMO. In addition, the control portion 502 and ACK/NACK portion 508 may also be used to multiplex control information to or from a set of subordinate entities in a TDM, FDM, CDM, and/or other suitable manner.


The GP portion 506 may be scheduled to accommodate variability in UL and DL timing. For example, latencies due to RF antenna direction switching (e.g., from DL to UL) and RF settling (e.g., settling of phase lock loops, filters and power amplifiers), along with transmission path latencies, may cause the subordinate entity to transmit early on the UL to match DL timing. Such early transmission may interfere with symbols received from the scheduling entity. Accordingly, the GP portion 506 may allow an amount of time after the DL data portion 504 to prevent interference, where the GP portion 506 may provide an appropriate amount of time for the scheduling entity to switch its RF antenna direction, for the over-the-air (OTA) transmission time, and time for ACK processing by the subordinate entity. The GP portion 506 may further provide an appropriate amount of time for the subordinate entity to switch its RF antenna direction (e.g., from DL to UL), to processes the data payload, and for the over-the-air (OTA) transmission time.


The duration of the GP portion 506 may be configurable based on, for example, the cell size and/or processing time requirements. For example, the GP portion 506 may have a duration of one symbol period (e.g., 31.25 μs). However, in accordance with aspects of the disclosure, the switch point from DL to UL transmissions may be deterministic throughout the network. Thus, although the beginning point of the GP portion 506 may be variable and configurable, the ending point of the GP portion 506 corresponding to the switch point from DL transmissions to UL transmissions may be fixed by the network to manage interference between DL and UL transmissions. In an aspect, the switch point may be updated by the network in a semi-static manner and indicated in the PDCCH. In addition, the GP duration and/or beginning point of the GP portion 506 may also be indicated in the PDCCH.


In networks utilizing unlicensed spectrum, the switch point may be maintained at a deterministic location, common to different cells. In scenarios in which the amount of data to be transmitted is less than that allocated to the data portion 504, to avoid losing access to the TDD carrier, the data portion 504 of the subframe 500 can be filled by either extending the transmission to occupy only a portion of the frequency band or filling in the transmission with pilots or other filler symbols.



FIG. 6 illustrates two contiguous DL-centric subframes 601 and 603. Each subframe 601 and 603 has the same subframe structure as that shown in FIG. 5. For example, subframe 601 includes a DL control portion 602 followed by a DL data portion 604, a guard period (GP) 606 and an UL ACK/NACK portion 608. Likewise, subframe 603 includes a DL control portion 610, DL data portion 612, GP 614 and UL ACK/NACK portion 616.


In an example, control information may be transmitted by the scheduling entity in the control portion 602 of the first DL-centric subframe 601, data information corresponding to the control information may be transmitted by the scheduling entity in the data portion 604 of the first DL-centric subframe 601 and acknowledgement information corresponding to the data information may be received by the scheduling entity from subordinate entities in the ACK/NACK portion 608 of the first DL-centric subframe 601. According to an aspect of the present disclosure, all of the data packets in the data portion 604 may be acknowledged or not within the ACK/NACK portion 608, that is, prior to the next scheduling instance. Here, the next scheduling instance refers to the scheduling of further data packets within the data portion 612 of the subsequent subframe 603, which are to be scheduled in the control portion 610 of the subframe 603.


Based on the ACK/NACK information received in the ACK/NACK portion 608 of the first DL-centric subframe 601, the scheduling entity may generate control information for the control portion 610 of the next (second) DL-centric subframe 603. For example, if the ACK/NACK information includes a NACK signal, at least part of the coded bits of the data information transmitted in the data portion 604 of the first DL-centric subframe 601 may be retransmitted (e.g., in an incremental redundancy HARQ algorithm, described further below) in the data portion 612 of the second DL-centric subframe 603. Thus, in accordance with aspects of the disclosure, all of the data packets transmitted in the first DL-centric subframe 601 are acknowledged/not acknowledged prior to the next (second) DL-centric subframe 603 to enable the scheduling entity to generate control information for the second DL-centric subframe 603 based on the ACK/NACK information in the first DL-centric subframe 601.


In an exemplary aspect of the disclosure, a hybrid automatic repeat request (HARQ) retransmission scheme is used to retransmit data incorrectly received. Thus, the control information (PDCCH) in the control portion 610 of the second DL-centric subframe 603 may further carry HARQ-related configuration information, such as HARQ identifiers, redundancy version, etc., to provide support for data retransmissions occurring in the data portion 612 of the second DL-centric subframe 603. For example, the control information may be configured to indicate whether or not a data packet included in the data portion is a HARQ retransmission.


The self-contained subframe structure shown in FIG. 6 supports single HARQ interlace processing at the physical layer to enable high data rates in extreme bandwidth cases with a reasonable HARQ buffer cost. By reducing or minimizing the ACK and retransmission latency at the physical layer, the self-contained subframe structure further reduces or minimizes the overall end-to-end latency.



FIG. 7 illustrates another exemplary structure of a self-contained TDD subframe 700. The self-contained subframe structure shown in FIG. 7 is a receiver-scheduled subframe, referred to herein as an uplink TTI subframe or UL-centric subframe 700. The UL-centric subframe 700 may be used to receive downlink control information from the scheduling entity, transmit uplink data to a scheduling entity, and receive a downlink ACK/NACK signal for the transmitted data from the scheduling entity. Thus, each UL-centric subframe 700 also includes both DL transmissions and UL transmissions and is divided with respect to time (t) into DL transmission and UL transmission portions.


In the example shown in FIG. 7, the DL transmission portions include a control portion 702 and an acknowledgement portion 708, and the UL transmission portions include a data portion 706. Therefore, within the UL-centric subframe structure shown in FIG. 7, the subordinate entity first has an opportunity to receive control information in the control portion 702. Following a GP portion 704, the subordinate entity has an opportunity to transmit data in the UL data portion 706 and to receive acknowledgement information (e.g., an ACK/NACK signal) in the ACK/NACK portion 708. This frame structure is uplink-centric, as more resources are allocated for transmissions in the uplink direction (e.g., transmissions from the subordinate entity) than in the downlink direction (e.g., transmissions from the scheduling entity).


In one example, the control information portion 702 may be used to transmit a physical downlink control channel (PDCCH) indicating time-frequency assignments of data packets to be transmitted by one or more subordinate entities and the data portion 706 may be used to by the subordinate entities to transmit their data packets to the scheduling entity within the assigned time-frequency slots. Each subordinate entity that transmitted data within the data portion 706 may then receive an ACK signal (or a NACK signal) during the ACK/NACK portion 708 from the scheduling entity to indicate whether the data packets were successfully received at the scheduling entity. Thus, all of the data packets transmitted within the subframe 700 may be acknowledged/not acknowledged within the same subframe 700.


In other examples, the control portion 702 and/or ACK/NACK portion 708 may be used to transmit other downlink control channels and information and/or data from other layers. In addition, the data portion 706 may also be used to transmit uplink control channels and information. For example, the control portion 702 of a subframe 700 may carry a data transmission (e.g., a small payload of data) for a subordinate entity, such as an application layer (or layer other than the physical layer) ACK from a previous subframe. The subordinate entity may then acknowledge the data transmission in the data portion 706 of the same subframe 700.


In an aspect, the UL data portion 706 may be used to carry data transmissions from a set of subordinate entities (i.e., two or more subordinate entities) within the subframe 500 using one or more TDMA, FDMA, CDMA, or any other suitable multiple access scheme. Thus, the UL data portion 706 may include packets from multiple users and up to a high order of multi-user MIMO. In addition, the control portion 702 and ACK/NACK portion 708 may also be used to carry control information to a set of subordinate entities in a TDMA, FDMA, CDMA, or other suitable multiple access manner.



FIG. 8 illustrates another exemplary structure of a self-contained TDD subframe 800. In the example shown in FIG. 8, an UL-centric subframe 800 may include two GP portions 804 and 808. Each GP portion 804 and 808 separates UL transmissions from DL transmissions to provide an appropriate amount of time for the scheduling and subordinate entities to switch their RF antenna directions. Therefore, within the UL-centric subframe structure shown in FIG. 8, the subordinate entity first has an opportunity to receive control information in the control portion 802. Following a first GP portion 804, the subordinate entity has an opportunity to transmit data in the UL data portion 806. Following a second GP portion 808, the subordinate entity subsequently has an opportunity to receive an ACK/NACK signal in the ACK/NACK portion 810 from the scheduling entity using the TDD carrier.


The duration of each GP portion 804 and 808 may be configurable based on, for example, the cell size and/or processing time requirements. In an aspect, the combined duration of the GP portions 804 and 808 is substantially equivalent to the duration of the single GP portion 704, shown in FIG. 7. In another aspect, the duration of GP portion 804 may be equivalent to or different from the duration of GP portion 808. In addition, in accordance with aspects of the disclosure, the switch points from DL to UL and from UL to DL transmissions may be deterministic throughout the network. Thus, although the beginning point of each GP portion 804 and 808 may be variable and configurable, the ending point of each GP portion 804 and 808 corresponding to the switch point between DL/UL transmissions may be fixed by the network to manage interference between DL and UL transmissions.



FIG. 9 illustrates an example of a consecutive sequence 900 of TDD self-contained subframes 902, 904, 906, 908 and 910, each having a TDD self-contained subframe structure. The first three subframes 902, 904 and 906 are DL-centric subframes, each having, for example, the subframe structure shown in FIG. 5. Following the third DL-centric subframe 906 is an UL-centric subframe 908, which may have, for example, the subframe structure shown in FIG. 7 or FIG. 8. An additional DL-centric subframe 910 follows the UL-centric subframe. The sequence 900 contains more DL-centric subframes than UL-centric subframes to provide sufficient resources to obtain high data rates for downlink data transmission applications. In other examples, UL-centric and DL-centric subframes may alternate or a greater number of UL-centric subframes may be provided in a particular sequence of subframes.


By utilizing a TDD self-contained subframe structure, such as those shown in FIGS. 5-8, resources for the transmission of feedback, such as an ACK/NACK, can be made available within the same subframe for all data information transmitted within that subframe. In this way, a device utilizing this subframe structure need not wait for, or depend on, packets in a subsequent subframe. That is, subframes may accordingly be considered as discrete units.


Because the subframes can be considered independent or discrete, additional flexibility in the management of the air interface resources can be provided. For example, at any given time, at the end of any given subframe, the channel can easily be modified to pause or end communication utilizing the TDD carrier, and interpose other communication on the same spectrum resources, without causing substantial issues, e.g., in terms of having data packets waiting for ACK/NACK packets corresponding to data packets transmitted in previous subframes. In one example, a gap between subframe transmissions may be created to allow multiplexing of different types of traffic on the spectrum, including D2D, mesh, or a non-backward compatible technology.


Of course, these examples of self-contained subframe structures are merely provided to illustrate certain concepts of the invention. Those of ordinary skill in the art will comprehend that these are merely exemplary in nature, and other examples may fall within the scope of the disclosure.



FIG. 10 is a flow chart 1000 of a method of wireless communication. The method may be performed by a scheduling entity 202 as described above and illustrated in FIG. 2, by a processor or processing system, or by any suitable means for carrying out the described functions.


At block 1002, the scheduling entity may provide a self-contained subframe structure for a TDD carrier, including a control portion, a data portion and an acknowledgement portion. For example, with reference to FIGS. 5-8, the self-contained subframe structure may be a DL-centric subframe or an UL-centric subframe, in which the control information, data information corresponding to the control information and acknowledgement information corresponded to the data information are included within a single TDD subframe.


At block 1004, the scheduling entity generates a subframe having the self-contained subframe structure and includes control information in the control portion of the subframe. For a DL-centric subframe, the control information may include a PDCCH indicating the time-frequency resource assignments for data transmissions from the scheduling entity to a set of subordinate entities. For an UL-centric subframe, the control information may include a PDCCH indicating the time-frequency resource assignments for data transmissions from the set of subordinate entities to the scheduling entity. In addition, other downlink control information may also be included within the control portion.


At block 1006, data information corresponding to the control information is included in the data portion of the subframe. For example, in a DL-centric subframe, the data information may include data packets transmitted to the set of subordinate entities multiplexed onto a downlink data channel. In an UL-centric subframe, the data information may include data packets transmitted from the set of subordinate entities combined onto an uplink data channel utilizing a multiple access scheme.


At block 1008, acknowledgement information corresponding to the data information is included in the acknowledgement portion of the subframe. For example, in a DL-centric subframe, an ACK/NACK message from each subordinate entity that received data in the data portion of the subframe may be included in the acknowledgement portion of the subframe to indicate whether the subordinate entities correctly received the downlink data. In an UL-centric subframe, the acknowledgement information may include respective ACK/NACK messages to each of the subordinate entities that transmitted data in the data portion of the subframe to indicate whether the scheduling entity correctly received the uplink data.



FIG. 11 is a flow chart 1100 of a method of wireless communication. The method may be performed by a subordinate entity 204 as described above and illustrated in FIG. 2, by a processor or processing system, or by any suitable means for carrying out the described functions.


At block 1102, the subordinate entity may provide a self-contained subframe structure for a current subframe, including a control portion, a data portion and an acknowledgement portion. For example, with reference to FIGS. 5-8, the self-contained subframe structure may be a DL-centric subframe or an UL-centric subframe, in which the control information, data information corresponding to the control information and acknowledgement information corresponded to the data information are included within a single TDD subframe.


At block 1104, the subordinate entity receives control information in the control portion of the subframe. For a DL-centric subframe, the control information may include a PDCCH indicating the time-frequency resource assignments for data transmissions from the scheduling entity to the subordinate entity. For an UL-centric subframe, the control information may include a PDCCH indicating the time-frequency resource assignments for data transmissions from the subordinate entity to the scheduling entity. In addition, other downlink control information may also be included within the control portion.


At block 1106, data information corresponding to the control information is included in the data portion of the subframe. For example, in a DL-centric subframe, the data information may include data packets transmitted to the subordinate entity on a downlink data channel. In an UL-centric subframe, the data information may include data packets transmitted from the subordinate entity on an uplink data channel.


At block 1108, acknowledgement information corresponding to the data information is included in the acknowledgement portion of the subframe. For example, in a DL-centric subframe, an ACK/NACK message from the subordinate entity may be included in the acknowledgement portion of the subframe to indicate whether the subordinate entity correctly received the downlink data. In an UL-centric subframe, the acknowledgement information may include an ACK/NACK message to the subordinate entity o indicate whether the scheduling entity correctly received the uplink data.


As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to any suitable telecommunication system, network architecture, and communication standard. By way of example, various aspects may be applied to UMTS systems such as W-CDMA, TD-SCDMA, and TD-CDMA. Various aspects may also be applied to systems employing Long Term Evolution (LTE) (in FDD, TDD, or both modes), LTE-Advanced (LTE-A) (in FDD, TDD, or both modes), CDMA2000, Evolution-Data Optimized (EV-DO), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Ultra-Wideband (UWB), Bluetooth, and/or other suitable systems, including those described by yet-to-be defined wide area network standards. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.


Within the present disclosure, the word “exemplary” is used to mean “serving as an example, instance, or illustration.” Any implementation or aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects of the disclosure. Likewise, the term “aspects” does not require that all aspects of the disclosure include the discussed feature, advantage or mode of operation. The term “coupled” is used herein to refer to the direct or indirect coupling between two objects. For example, if object A physically touches object B, and object B touches object C, then objects A and C may still be considered coupled to one another—even if they do not directly physically touch each other. For instance, a first die may be coupled to a second die in a package even though the first die is never directly physically in contact with the second die. The terms “circuit” and “circuitry” are used broadly, and intended to include both hardware implementations of electrical devices and conductors that, when connected and configured, enable the performance of the functions described in the present disclosure, without limitation as to the type of electronic circuits, as well as software implementations of information and instructions that, when executed by a processor, enable the performance of the functions described in the present disclosure.


One or more of the components, steps, features and/or functions illustrated in FIGS. 1-11 may be rearranged and/or combined into a single component, step, feature or function or embodied in several components, steps, or functions. Additional elements, components, steps, and/or functions may also be added without departing from novel features disclosed herein. The apparatus, devices, and/or components illustrated in FIGS. 1-11 may be configured to perform one or more of the methods, features, or steps described herein. The novel algorithms described herein may also be efficiently implemented in software and/or embedded in hardware.


It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. A method of wireless communication in a network for a scheduling entity to communicate with a subordinate entity utilizing a plurality of subframes, the method comprising: transmitting scheduling information in a control portion of a subframe of the plurality of subframes, each of the subframes having a common subframe duration less than or equal to 1 ms and corresponding to respective transmission time intervals (TTIs), each of the TTIs being equal to the subframe duration, such that the subframe corresponds to a single TTI;communicating data information corresponding to the scheduling information in a data portion of the subframe; andcommunicating acknowledgement information corresponding to the data information in an acknowledgement portion of the subframe,wherein the control portion, the data portion, and the acknowledgement portion are contained in the subframe, the subframe being defined via a subframe structure with the control portion and the acknowledgement portion being spaced apart, and the data portion being communicated between the control portion and the acknowledgement portion.
  • 2. The method of claim 1, further comprising communicating a guard period between the data portion of the subframe and the acknowledgement portion of the subframe.
  • 3. The method of claim 2, wherein the guard period has a configurable guard period duration.
  • 4. The method of claim 3, wherein the control portion includes a physical downlink control channel (PDCCH), and wherein the configurable guard period duration and/or a beginning point of the guard period is indicated in the PDCCH.
  • 5. The method of claim 2, wherein the guard period facilitates a switch from one of downlink communications or uplink communications.
  • 6. The method of claim 2, wherein a beginning point of the guard period is configurable and an end point of the guard period corresponds to a switch point from one of downlink communications or uplink communications.
  • 7. The method of claim 6, wherein the end point is fixed by the network.
  • 8. The method of claim 6, wherein the control portion includes a physical downlink control channel (PDCCH).
  • 9. The method claim 8, further comprising transmitting the PDCCH comprising a semi-static update message for updating the switch point.
  • 10. The method of claim 2, further comprising including an additional guard period between the data portion of the subframe and the acknowledgement portion of the subframe.
  • 11. The method of claim 10, wherein each of the guard period and the additional guard period has a respective configurable guard period duration, the method further comprising: beginning the data portion at a first predetermined time in the subframe; and beginning the acknowledgement portion at a second predetermined time in the subframe.
  • 12. The method of claim 1, further comprising transmitting a guard period indication message for configuring at least one of a duration of a guard period between the data portion of the subframe and the acknowledgement portion of the subframe, or a beginning point of the guard period within the subframe.
  • 13. The method of claim 12, wherein an ending point of the guard period within the subframe is fixed across the network.
  • 14. The method of claim 1, wherein the subframe duration is a configurable subframe duration.
  • 15. The method of claim 14, wherein the configurable subframe duration is fixed across the network.
  • 16. The method of claim 15, wherein the acknowledgement portion comprises a beginning point at a predetermined time in the subframe.
  • 17. The method of claim 1, wherein the scheduling entity is a base station and the subordinate entity is a user equipment, the base station being configured to communicate with the user equipment using a plurality of the subframes on each of one or more communication links.
  • 18. The method of claim 1, wherein the scheduling entity is configured to communicate with the subordinate entity via a communication link carrying the plurality of subframes comprising downlink and uplink transmission portions.
  • 19. The method of claim 1, wherein the scheduling entity is configured to communicate with the subordinate entity control information defining communication configuration including a plurality of the subframes.
  • 20. A method of wireless communication in a network for a subordinate entity to communicate with a scheduling entity utilizing a plurality of subframes, the method comprising: receiving scheduling information in a control portion of a subframe of the plurality of subframes, each of the subframes having a common subframe duration less than or equal to 1 ms and corresponding to respective transmission time intervals (TTIs), each of the TTIs being equal to the subframe duration;communicating data information corresponding to the scheduling information in a data portion of the subframe; andcommunicating acknowledgement information corresponding to the data information in an acknowledgment portion of the subframewherein the control portion, the data portion, and the acknowledgment portion are contained in the subframe, the subframe being defined via a subframe structure with the control portion and the acknowledgment portion being spaced apart and the data portion being communicated between the control portion and the acknowledgment portion.
  • 21. A scheduling entity configured for communication with a subordinate entity utilizing a plurality of subframes, the scheduling entity comprising: a processor;a memory communicatively coupled to the processor; anda transceiver communicatively coupled to the processor,wherein the processor is configured to: transmit scheduling information, via the transceiver, in a control portion of a subframe of the plurality of subframes, each of the subframes having a common subframe duration less than or equal to 1 ms and corresponding to respective transmission time intervals (TTIs), each of the TTIs being equal to the subframe duration;communicate, via the transceiver, data information corresponding to the scheduling information in a data portion of the subframe; andcommunicate, via the transceiver, acknowledgement information corresponding to the data information in an acknowledgement portion of the subframe,wherein the control portion, the data portion, and the acknowledgement portion are contained in the subframe, the subframe defined via a subframe structure with the data portion comprising a beginning point subsequent to an end point of the control portion, and the acknowledgement portion comprising a beginning point subsequent to an end point of the data portion.
  • 22. The scheduling entity of claim 21, wherein the processor and the memory are further configured to transmit, via the transceiver, a guard period indication message for configuring at least one of a duration of a guard period between the data portion of the subframe and the acknowledgement portion of the subframe, or a beginning point of the guard period within the subframe.
  • 23. The scheduling entity of claim 22, wherein an ending point of the guard period within the subframe is fixed across the wireless network.
  • 24. The scheduling entity of claim 21, further comprising transmitting a subframe duration indication message via the transceiver, for configuring the subframe duration.
  • 25. The scheduling entity of claim 21, wherein the subframe duration is fixed across the wireless network.
  • 26. A subordinate entity configured for communication with a scheduling entity utilizing a plurality of subframes, the subordinate entity comprising: a processor;a memory communicatively coupled to the processor; anda transceiver communicatively coupled to the processor,wherein the processor and the memory are configured to: receive scheduling information, via the transceiver, in a control portion of a subframe of the plurality of subframes, each of the subframes having a common subframe duration less than or equal to 1 ms and corresponding to respective transmission time intervals (TTIs), each of the TTIs being equal to the subframe duration;communicate, via the transceiver, data information corresponding to the scheduling information in a data portion of the subframe; andcommunicate, via the transceiver, acknowledgement information corresponding to the data information in an acknowledgement portion of the subframe,wherein the control portion, the data portion, and the acknowledgement portion are contained in the subframe, the subframe defined via a subframe structure with the data portion comprising a beginning point subsequent to an end point of the control portion, and the acknowledgement portion comprising a beginning point subsequent to an end point of the data portion.
PRIORITY CLAIM

The present Application for Patent is a Continuation of Non-Provisional application Ser. No. 16/432,844 filed in the U.S. Patent and Trademark Office on Jun. 5, 2019, the entire content of which is incorporated herein by reference as if fully set forth below in its entirety and for all applicable purposes. Non-Provisional application Ser. No. 16/432,844 is a Continuation Application of Non-Provisional application Ser. No. 14/940,546 filed in the U.S. Patent and Trademark Office on Nov. 13, 2015, the entire content of which is incorporated herein by reference as if fully set forth below in its entirety and for all applicable purposes. Non-Provisional application Ser. No. 14/940,546 claims priority to Provisional Application No. 62/133,386 filed in the U.S. Patent and Trademark Office on Mar. 15, 2015, the entire content of which is incorporated herein by reference as if fully set forth below in its entirety and for all applicable purposes.

US Referenced Citations (230)
Number Name Date Kind
RE39375 Hamalainen et al. Nov 2006 E
7280467 Smee et al. Oct 2007 B2
7515579 Cheng et al. Apr 2009 B2
8213345 Suo et al. Jul 2012 B2
8363597 Abraham et al. Jan 2013 B2
8396013 Khandekar et al. Mar 2013 B2
8472465 Suo et al. Jun 2013 B2
8531997 Ahn et al. Sep 2013 B2
8599702 Kim et al. Dec 2013 B2
8614977 Wu et al. Dec 2013 B2
8700023 Nan et al. Apr 2014 B2
8724636 Chen et al. May 2014 B2
8756477 Challa et al. Jun 2014 B2
8787344 Malladi et al. Jul 2014 B2
8804618 Hu et al. Aug 2014 B2
8848620 Fan et al. Sep 2014 B2
8855062 Khandekar et al. Oct 2014 B2
8861408 Damnjanovic et al. Oct 2014 B2
8923223 Chen et al. Dec 2014 B2
8948064 Shahar Feb 2015 B2
9001780 Chen et al. Apr 2015 B2
9083517 Chen et al. Jul 2015 B2
9100155 Luo et al. Aug 2015 B2
9113491 Montojo et al. Aug 2015 B2
9154266 Yang et al. Oct 2015 B2
9369877 Liu et al. Jun 2016 B2
9398575 Clevorn Jul 2016 B2
9584290 Prakash et al. Feb 2017 B2
9609636 Yang et al. Mar 2017 B2
9642124 Li et al. May 2017 B2
9775151 Jung et al. Sep 2017 B2
9814058 Jiang et al. Nov 2017 B2
9930687 Mizusawa et al. Mar 2018 B2
9936519 Mukkavilli et al. Apr 2018 B2
9955460 Tavildar et al. Apr 2018 B2
9974093 Lin et al. May 2018 B2
9992790 Jiang et al. Jun 2018 B2
10003986 Liu et al. Jun 2018 B2
10020971 Hwang et al. Jul 2018 B2
10075970 Jiang et al. Sep 2018 B2
10123219 Bhushan et al. Nov 2018 B2
10219292 Damnjanovic et al. Feb 2019 B2
10342012 Mukkavilli et al. Jul 2019 B2
10390361 Mukkavilli et al. Aug 2019 B2
10411871 Liu et al. Sep 2019 B2
10440726 Jiang et al. Oct 2019 B2
10499393 Mukkavilli et al. Dec 2019 B2
10512098 Jiang et al. Dec 2019 B2
10624156 Xiong et al. Apr 2020 B2
11109351 Lee et al. Aug 2021 B2
20010028629 Uneyama et al. Oct 2001 A1
20020097695 Herrmann Jul 2002 A1
20030108013 Hwang et al. Jun 2003 A1
20050197680 Delmain et al. Sep 2005 A1
20060062192 Payne, III Mar 2006 A1
20070211656 Kwak et al. Sep 2007 A1
20080070586 Kermoal et al. Mar 2008 A1
20080075042 Shih Mar 2008 A1
20080080476 Cho et al. Apr 2008 A1
20080220791 Cho et al. Sep 2008 A1
20090040999 Yuk Feb 2009 A1
20090103482 Imamura et al. Apr 2009 A1
20090129259 Malladi et al. May 2009 A1
20090137230 Miyoshi et al. May 2009 A1
20090141690 Fan et al. Jun 2009 A1
20090161591 Ahmadi et al. Jun 2009 A1
20090161649 Ponnathota et al. Jun 2009 A1
20090181689 Lee et al. Jul 2009 A1
20090201838 Zhang et al. Aug 2009 A1
20090213769 Shen et al. Aug 2009 A1
20090245194 Damnjanovic et al. Oct 2009 A1
20090276676 Lee et al. Nov 2009 A1
20090323666 Malladi et al. Dec 2009 A1
20100080137 Vedantham et al. Apr 2010 A1
20100103892 Abrahamsson Apr 2010 A1
20100118730 Tanaka et al. May 2010 A1
20100211845 Lee et al. Aug 2010 A1
20100265851 Shahar Oct 2010 A1
20100275086 Bergquist et al. Oct 2010 A1
20100309867 Palanki et al. Dec 2010 A1
20100322114 Li et al. Dec 2010 A1
20110007730 Han et al. Jan 2011 A1
20110167326 Kuri et al. Jul 2011 A1
20110211503 Che et al. Sep 2011 A1
20110274063 Li Nov 2011 A1
20110310777 Jiang et al. Dec 2011 A1
20110310778 Seo Dec 2011 A1
20110310784 Park Dec 2011 A1
20110310802 Song et al. Dec 2011 A1
20110310830 Wu et al. Dec 2011 A1
20120057547 Lohr et al. Mar 2012 A1
20120135773 Shen et al. May 2012 A1
20120147773 Kim et al. Jun 2012 A1
20120230232 Ji et al. Sep 2012 A1
20120250592 Chun et al. Oct 2012 A1
20120257554 Kim Oct 2012 A1
20120275355 Park et al. Nov 2012 A1
20120287882 Kim et al. Nov 2012 A1
20120294204 Chen et al. Nov 2012 A1
20120300738 Palanki et al. Nov 2012 A1
20130028205 Damnjanovic et al. Jan 2013 A1
20130039193 Yin et al. Feb 2013 A1
20130039231 Wang Feb 2013 A1
20130083736 Yin et al. Apr 2013 A1
20130083740 Eriksson et al. Apr 2013 A1
20130121186 Vajapeyam et al. May 2013 A1
20130128781 Li et al. May 2013 A1
20130163536 Anderson et al. Jun 2013 A1
20130194980 Yin et al. Aug 2013 A1
20130242822 Yang et al. Sep 2013 A1
20130242904 Sartori et al. Sep 2013 A1
20130286902 Chen et al. Oct 2013 A1
20130301486 Kishiyama Nov 2013 A1
20130315113 Seo et al. Nov 2013 A1
20130343239 Damnjanovic et al. Dec 2013 A1
20140023004 Kumar et al. Jan 2014 A1
20140036740 Lee et al. Feb 2014 A1
20140044061 Yue et al. Feb 2014 A1
20140050192 Kim et al. Feb 2014 A1
20140071921 Wang et al. Mar 2014 A1
20140071954 Au et al. Mar 2014 A1
20140086078 Malladi et al. Mar 2014 A1
20140106688 Negus et al. Apr 2014 A1
20140120969 Sang et al. May 2014 A1
20140126499 Li et al. May 2014 A1
20140133369 Cheng et al. May 2014 A1
20140146798 Damnjanovic et al. May 2014 A1
20140153450 Jang et al. Jun 2014 A1
20140153453 Park et al. Jun 2014 A1
20140169238 Cai et al. Jun 2014 A1
20140185539 Seo et al. Jul 2014 A1
20140204783 Lin et al. Jul 2014 A1
20140204807 Li et al. Jul 2014 A1
20140226552 Niu et al. Aug 2014 A1
20140233469 Seo et al. Aug 2014 A1
20140241225 Novak et al. Aug 2014 A1
20140269541 Khude et al. Sep 2014 A1
20140286255 Nam et al. Sep 2014 A1
20140301252 Choi et al. Oct 2014 A1
20140307595 Chen et al. Oct 2014 A1
20140307597 Kim et al. Oct 2014 A1
20140321382 Guan Oct 2014 A1
20140341091 Ji et al. Nov 2014 A1
20140342745 Bhushan et al. Nov 2014 A1
20150003304 Wu et al. Jan 2015 A1
20150036561 Wang et al. Feb 2015 A1
20150043392 Susitaival et al. Feb 2015 A1
20150043394 Lin et al. Feb 2015 A1
20150043395 Dai et al. Feb 2015 A1
20150085713 He et al. Mar 2015 A1
20150085834 Liu et al. Mar 2015 A1
20150092566 Balachandran et al. Apr 2015 A1
20150092703 Xu et al. Apr 2015 A1
20150103702 Lahetkangas et al. Apr 2015 A1
20150109972 Khoryaev et al. Apr 2015 A1
20150139139 Park et al. May 2015 A1
20150146588 Park May 2015 A1
20150156762 Hwang et al. Jun 2015 A1
20150180619 Majjigi et al. Jun 2015 A1
20150180622 Yoo et al. Jun 2015 A1
20150180636 Malladi et al. Jun 2015 A1
20150181580 Aiba et al. Jun 2015 A1
20150181612 Gan et al. Jun 2015 A1
20150188650 Au et al. Jul 2015 A1
20150237619 Yang et al. Aug 2015 A1
20150249980 You et al. Sep 2015 A1
20150264662 Sahlin et al. Sep 2015 A1
20150271837 Larsson et al. Sep 2015 A1
20150312889 Lee et al. Oct 2015 A1
20150326291 Wong et al. Nov 2015 A1
20150327196 Blankenship Nov 2015 A1
20150333898 Ji et al. Nov 2015 A1
20150349929 Bhorkar et al. Dec 2015 A1
20150358918 Gao et al. Dec 2015 A1
20160028512 Papasakellariou Jan 2016 A1
20160112181 Tabet et al. Apr 2016 A1
20160119840 Loehr et al. Apr 2016 A1
20160142292 Au et al. May 2016 A1
20160182213 Golitschek Edler Von Elbwart et al. Jun 2016 A1
20160192396 Ng Jun 2016 A1
20160205683 Quan et al. Jul 2016 A1
20160205690 Berggren et al. Jul 2016 A1
20160212734 He et al. Jul 2016 A1
20160219518 Zhao et al. Jul 2016 A1
20160219569 Kuo et al. Jul 2016 A1
20160227425 Kim et al. Aug 2016 A1
20160233904 Wu et al. Aug 2016 A1
20160234834 Aboul-Magd et al. Aug 2016 A1
20160249329 Au et al. Aug 2016 A1
20160270060 Kusashima et al. Sep 2016 A1
20160294531 Loehr et al. Oct 2016 A1
20160315741 Tsai et al. Oct 2016 A1
20160323852 Golitschek Edler Von Elbwart et al. Nov 2016 A1
20160323854 Gao et al. Nov 2016 A1
20160330010 Qin et al. Nov 2016 A1
20160330737 Takeda et al. Nov 2016 A1
20160366704 Lee et al. Dec 2016 A1
20160374082 Nguyen et al. Dec 2016 A1
20170013565 Pelletier et al. Jan 2017 A1
20170013610 Lee et al. Jan 2017 A1
20170013673 Uchino et al. Jan 2017 A1
20170019905 Ko et al. Jan 2017 A1
20170019930 Lee et al. Jan 2017 A1
20170085344 Yang Mar 2017 A1
20170111106 Lee et al. Apr 2017 A1
20170118743 Kim et al. Apr 2017 A1
20170150367 Han et al. May 2017 A1
20170150424 Lee et al. May 2017 A1
20170215188 Kim et al. Jul 2017 A1
20170215201 Kim et al. Jul 2017 A1
20170257878 Kazmi et al. Sep 2017 A1
20170290008 Tooher et al. Oct 2017 A1
20170303144 Guo et al. Oct 2017 A1
20170318564 Lee et al. Nov 2017 A1
20170367058 Pelletier et al. Dec 2017 A1
20170367084 Cheng et al. Dec 2017 A1
20180006743 Zhu et al. Jan 2018 A1
20180035430 Futaki Feb 2018 A1
20180041312 Li et al. Feb 2018 A1
20180048431 Wang et al. Feb 2018 A1
20180198570 Astely et al. Jul 2018 A1
20180294943 Hwang et al. Oct 2018 A1
20190007956 Jiang et al. Jan 2019 A1
20190098622 Lee et al. Mar 2019 A1
20190222364 Shimoda et al. Jul 2019 A1
20190289602 Mukkavilli et al. Sep 2019 A1
20190335481 Jiang et al. Oct 2019 A1
20190373629 Mukkavilli et al. Dec 2019 A1
20200084784 Jiang et al. Mar 2020 A1
20200367266 Jiang et al. Nov 2020 A1
Foreign Referenced Citations (99)
Number Date Country
1685639 Oct 2005 CN
101060389 Oct 2007 CN
101132262 Feb 2008 CN
101156322 Apr 2008 CN
101179751 May 2008 CN
101567773 Oct 2009 CN
101836493 Sep 2010 CN
101939939 Jan 2011 CN
102014514 Apr 2011 CN
102150468 Aug 2011 CN
102271016 Dec 2011 CN
102273095 Dec 2011 CN
102404841 Apr 2012 CN
102437901 May 2012 CN
102611525 Jul 2012 CN
102687451 Sep 2012 CN
102763363 Oct 2012 CN
101389120 Dec 2012 CN
102835087 Dec 2012 CN
103190192 Jul 2013 CN
103404063 Nov 2013 CN
103563273 Feb 2014 CN
103716143 Apr 2014 CN
103825671 May 2014 CN
103840931 Jun 2014 CN
103858498 Jun 2014 CN
103973397 Aug 2014 CN
103973417 Aug 2014 CN
104170294 Nov 2014 CN
104218956 Dec 2014 CN
104348582 Feb 2015 CN
104348589 Feb 2015 CN
104348602 Feb 2015 CN
107534899 Jan 2018 CN
2836044 Feb 2015 EP
2947792 Nov 2015 EP
3291599 Mar 2018 EP
2011503975 Jan 2011 JP
2012175258 Sep 2012 JP
2013517639 May 2013 JP
2013544473 Dec 2013 JP
2014500685 Jan 2014 JP
2014516231 Jul 2014 JP
2014222923 Nov 2014 JP
20090090994 Aug 2009 KR
20100138852 Dec 2010 KR
20120052971 May 2012 KR
20140012658 Feb 2014 KR
20140073534 Jun 2014 KR
20140077606 Jun 2014 KR
20140096433 Aug 2014 KR
20150013458 Feb 2015 KR
20150013561 Feb 2015 KR
20150052002 May 2015 KR
I456936 Oct 2014 TW
201446052 Dec 2014 TW
201507415 Feb 2015 TW
I477175 Mar 2015 TW
2004064295 Jul 2004 WO
WO-2008028006 Mar 2008 WO
WO-2008042541 Apr 2008 WO
WO-2009022391 Feb 2009 WO
2009104922 Aug 2009 WO
WO-2009100069 Aug 2009 WO
WO-2009124079 Oct 2009 WO
WO-2010118371 Oct 2010 WO
2010138925 Dec 2010 WO
WO-2011011636 Jan 2011 WO
2011019223 Feb 2011 WO
2011052961 May 2011 WO
WO-2011071944 Jun 2011 WO
WO-2011140109 Nov 2011 WO
WO-2011163265 Dec 2011 WO
WO-2012024141 Feb 2012 WO
2012064935 May 2012 WO
WO-2012068141 May 2012 WO
WO-2012102739 Aug 2012 WO
WO-2012168092 Dec 2012 WO
WO-2013015587 Jan 2013 WO
WO-2013025502 Feb 2013 WO
2013103270 Jul 2013 WO
WO-2013110228 Aug 2013 WO
WO-2013112320 Aug 2013 WO
2013157894 Oct 2013 WO
WO-2013175181 Nov 2013 WO
WO-2013176597 Nov 2013 WO
WO-2014003104 Jan 2014 WO
2014056430 Apr 2014 WO
WO-2014067140 May 2014 WO
WO-2014112802 Jul 2014 WO
WO-2014179964 Nov 2014 WO
WO-2015048361 Apr 2015 WO
WO-2016148876 Sep 2016 WO
WO-2016148877 Sep 2016 WO
WO-2016148878 Sep 2016 WO
WO-2016149292 Sep 2016 WO
WO-2016175015 Nov 2016 WO
WO-2016187060 Nov 2016 WO
2017123276 Jul 2017 WO
Non-Patent Literature Citations (70)
Entry
3GPP 36.211, “3rd Generation Partnership Project, Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Physical Channels and Modulation (Release 8)”, 3GPP Standard, V8.5.0, Dec. 1, 2008 (Dec. 1, 2008), pp. 1-82, XP050377537.
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 12)”, 3GPP Standard; 3GPP TS 36.211, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. V12.4.0, Jan. 3, 2015 (Jan. 3, 2015), pp. 1-124, XP050927386, [retrieved on Jan. 3, 2015] chapter 1 “scope” chapter 4 “Frame structure”.
Catt: “ACK/NACKs Transmission in UpPTS”, Agenda Item: 6.1.7, R1-080175, 3GPP TSG RAN WG1 meeting #51bis, Sevilla, Spain, Jan. 14-18, 2008, 7 pages.
“Chapter 12: Retransmission Protocols” In: Erik Dahlman: “4G LTE/LTE-Advanced for Mobile Broadband”, Nov. 30, 2013 (Nov. 30, 2013), Academic Press, XP002758475, pp. 299-319, Sections 12.1, 12.1.3.2.
Chen S., “A Novel TD-LTE Frame Structure for Heavy Uplink Traffic in Smart Grid”, 2014 IEEE Innovative Smart Grid Technologies—Asia (ISGT ASIA), May 23, 2014, pp. 158-163.
CNIPA Office Action dated Sep. 25, 2019 for Chinese Counterpart Application No. 201680015457.7 (for Self-contained time division duplex (TDD) subframe structure for wireless communications).
Eeva L., et al., “Achieving Low Latency and Energy Consumption by 5G Tdd Mode Optimization,” 2014 IEEE International Conference on Communications Workshops (ICC), IEEE, Jun. 10, 2014 (Jun. 10, 2014), pp. 1-6, XP032630839, DOI: 10.1109/ICCW.2014.6881163 [retrieved on Aug. 20, 2014].
Ericsson et al., “CSI Feedback Signaling Feedback”, R1-103840, 3GPP TSG-RAN WG1 61bis, Dresden, Germany, Jun. 28-Jul. 2, 2010, Jun. 22, 2010, 4 Pages.
Ericsson: “Usage of DwPTS”, 3GPP TSG-RAN WG1 #51bis, Agenda Item: 6.1.7,R1-080347, Sevilla, Spain, Jan. 14-18, 2008, 3 pages.
ETRI: “Discussion on HARQ Operation for LAA”, [Online] Feb. 8, 2015 (Feb. 8, 2015), 3GPP Draft, 3GPP TSG RAN WG1 Meeting #80, R1-150633-Discussion on HARQ Operation For LAA, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, , vol. RAN WG1, No. Athens, Greece, Feb. 9, 2015-Feb. 13, 2015, XP050933836, pp. 1-12, Retrieved from the Internet: URL:http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/, [retrieved on Feb. 8, 2015] the whole document, Section 3.3, p. 1-p. 4.
Huawei., et al., “Discussion on New Frame Structure for Latency Reduction in TDD”, 3GPP TSG RAN WG1 Meeting #84, R1-160754, St. Julian's, Malta, Feb. 15-19, 2016, Feb. 6, 2016, 9 Pages.
JPO Appeal Decision for JP Application No. 2017-559010 (Appeal No. 2018-13500) dated Aug. 26, 2019 (original Japanese language document provided by Japanese Patent Office; English-language translation provided by JP counsel).
Lahetkangas E., et al., “On the TDD Subframe Structure for Beyond 4G Radio Access Network”, 2013 Future Network & Mobile Summit, Article No. 6633569, Jul. 3, 2013 (Jul. 3, 2013), pp. 1-10, 20130705, XP055335904, Title; Section 3; Figures 3, 6-7.
Levanen T., et al., “Dense Small-Cell Networks: Rethinking the Radio Interface Beyond LTE-Advanced”, 1st International Conference on 5G for Ubiquitous Connectivity, Nov. 26, 2014, ICST, pp. 163-169, XP032735039, DOI: 10.4108/ICST.5GU.2014.258115 [retrieved on Feb. 11, 2015], Figure 3 p. 163 p. 166-p. 167.
Levanen T., et al., “Low Latency Radio Interface for 5G Flexible TDD Local Area Communications”, 2014 IEEE International Conference on Communications Workshops (ICC), IEEE, Jun. 10, 2014 (Jun. 10, 2014), pp. 7-13, XP032630785, DOI: 10.1109/ICCW.2014.6881164 [retrieved on Aug. 20, 2014] the Whole Document, p. 9-p. 11.
Levanen T., et al., “Radio Interface Design for Ultra-Low Latency Millimeter-Wave Communications in 5G Era”, IEEE GLOBECOM Workshops, Dec. 8-12, 2014, pp. 1420-1426.
Levanen T.A., et al., “Radio Interface Evolution Towards 5G and Enhanced Local Area Communications”, IEEE Access, vol. 2, Sep. 17, 2014 (Sep. 17, 2014), pp. 1005-1029, XP011559830, DOI: 10.1109/ACCESS.2014.2355415, https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=6891105, Section V; figures 2,4; tables 8,12, Section VI.A; figure 5.
Lu Y., et al., “Uplink Control for Low Latency HARQ in TDD Carrier Aggregation”, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring 2012), Yokohama, Japan, IEEE Piscataway, NJ, May 6-9, 2012 (May 6, 2012), 5 pages, XP032202607, DOI: 10.1109/VETECS.2012.6240190, ISBN: 978-1-4673-0989-9, abstract Section I, p. 1, Section II.
Mediatek Inc: “Discussions on UL HARQ for Rel-13 MTC UE”, 3GPP Draft, R1-150675 Discussions on UL HARQ for Rel-13 MTC UE, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Athens, Greece, Feb. 9, 2015-Feb. 13, 2015 Feb. 8, 2015 (Feb. 8, 2015), pp. 1-5, XP050933875, Retrieved from the Internet: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on Feb. 8, 2015] Section 2.
NEC Group: “UL&DL Timing Coupling Issue for TDD elMTA System”, Agenda Item: 7.2.3.3,R1-133341, 3GPP TSG RAN WG1 Meeting #74, Barcelona, Spain, Aug. 19-23, 2013, 4 pages.
Nokia: “On HARQ/Scheduling Timing and Self-Contained Operation”, 3GPP TSG-RAN WG1 #86 Bis, R1-1609742, Lisbon, Portugal, Oct. 10-14, 2016, 6 Pages.
Pedersen K., et al., “A Flexible Frame Structure for 5G Wide Area”, 2015 IEEE 82nd Vehicular Technology Conference (VTV 2015—FALL), Sep. 6, 2015, pp. 1-5, XP032856972, DOI: 10.1109/VTCFALL.2015.7390791 [retrieved on Jan. 25, 2016], 5 pages.
Popovski P., et al., “Deliverable D2.3 Components of a new air interface-building blocks and performance,” Mobile and wireless communications Enablers for the Twenty-twenty Information Society, ICT-317669-METIS/D2.3, 2014, pp. 117.
Popovski P., et al., “Deliverable D2.4 Proposed solutions for new radio access,” Mobile and wireless communications Enablers for the Twenty-twenty Information Society, IICT-317669-M ETIS/D2.4, 2015, pp. 190.
Qualcomm Incorporated: “Summary of Email Discussion on Frame Structure”, 3GPP TSG-RAN WG1 #85, 3GPP Draft; R1-165456_Frame_Structure_Discussion, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles; F-06921 Sophia-Antipolis Cedex; France, vol. RAN WG1, No. Nanjing, China; May 23, 2016-May 27, 2016, May 24, 2016 (May 24, 2016), pp. 1-28, XP051104210, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/Meetings_3GPP_SYNC/RAN1/Docs/ [retrieved on May 24, 2016].
Qualcomm, Number of HARQ Interlaces Defined UE Category for Self-contained TDD Subframe, Jun. 8, 2014, 8 pages.
Qualcomm Technologies Inc: “The 5G Unified Air Interface Scalable to an Extreme Variation of Requirements”, Nov. 2015, 46 pages.
Smee J.E., “5G Design Across Services”, May 12, 2015 (May 12, 2015), XP055299081, 23 Pages, Retrieved from the Internet: URL: https://johannesbergsummit.com/wp-content/uploads/sites/6/2014/11/Tuesday_3_John-Smee.pdf [retrieved on Aug. 31, 2016].
Soret B., et al., “Fundamental Tradeoffs among Reliability, Latency and Throughput in Cellular Networks,” IEEE Proceedings of GLOBECOM, Dec. 2014, pp. 1391-1396.
Texas Instruments: “TDD System Evaluation of Multi-Bit ACK/NAK and ACK/NAK Bundling”, Agenda Item: 6.3, R1-083128, 3GPP TSG RAN WG1 #54, Jeju, South Korea, Aug. 18-22, 2008, 4 pages.
Tiedemann E., et al., “5G: The Next Generation (Big Wave) of Wireless,” Jul. 22, 2015 (Jul. 22, 2015), XP055280307, Retrieved from the Internet URL: https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/rd/tech/5g/NTTDOCOMO_5G_TBS_lecture6.pdf.
ZTE: “Issues About Data Transmission in TDD-eIMTA”, 3GPP Draft, R1-132108 Issues About Data Transmission In TDD-eIMTA, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG1, No. Fukuoka, Japan, May 20, 2013-May 24, 2013 May 11, 2013 (May 11, 2013), pp. 1-4, XP050697886, Retrieved from the Internet: URL: http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_73/Docs/ [retrieved on May 11, 2013] the whole document.
European Search Report—EP18189408—Search Authority—The Hague—dated Apr. 8, 2019.
European Search Report—EP18195740—Search Authority—The Hague—dated Dec. 13, 2018.
European Search Report—EP19193188—Search Authority—The Hague—dated Oct. 28, 2019.
European Search Report—EP20153120—Search Authority—The Hague—dated May 4, 2020.
European Search Report—EP20205939—Search Authority—The Hauge—dated Feb. 16, 2021.
European Search Report—EP20205946—Search Authority—The Hague—dated Feb. 22, 2021.
International Preliminary Report on Patentability—PCT/US2016/019935, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 28, 2017.
International Preliminary Report on Patentability—PCT/US2016/019941, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 28, 2017.
International Preliminary Report on Patentability—PCT/US2016/019942, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 28, 2017.
“International Preliminary Report on Patentability—PCT/US2016/022511, The International Bureau of WIPO—Geneva, Switzerland, dated Sep. 19, 2012”.
International Preliminary Report on Patentability—PCT/US2016/039408, The International Bureau of WIPO—Geneva, Switzerland, dated Mar. 23, 2018.
International Preliminary Report on Patentability—PCT/US2016/032526, International Search Authority—European Patent Office, dated Nov. 30, 2017.
International Search Report and Written Opinion—PCT/US2016/019935—ISA/EPO—dated Jun. 30, 2016.
International Search Report and Written Opinion—PCT/US2016/019942—ISA/EPO—dated May 20, 2016.
International Search Report and Written Opinion—PCT/US2016/022511—ISA/EPO—dated Jun. 23, 2016.
International Search Report and Written Opinion—PCT/US2016/032526—ISA/EPO—dated Nov. 7, 2016.
International Search Report and Written Opinion—PCT/US2016/039408—ISA/EPO—dated Sep. 7, 2016.
International Search Report and Written Opinion—PCT/US2016/019941—ISA/EPO—dated Jul. 7, 2016.
Partial European Search Report—EP18189408—Search Authority—The Hague—dated Nov. 30, 2018.
Partial International Search Report—PCT/US2016/032526—ISA/EPO—dated Sep. 14, 2016.
Taiwan Search Report—TW105105905—TIPO—dated Mar. 28, 2019.
Taiwan Search Report—TW105105682—TIPO—dated Aug. 15, 2019.
Taiwan Search Report—TW105105683—TIPO—dated Sep. 6, 2018.
Taiwan Search Report—TW105120024—TIPO—dated Aug. 27, 2018.
Taiwan Search Report—TW107134769—TIPO—dated Mar. 16, 2020.
Taiwan Search Report—TW107136857—TIPO—dated Aug. 21, 2019.
Taiwan Search Report—TW108116714—TIPO—dated Aug. 6, 2020.
Taiwan Search Report—TW108133973—TIPO—dated Nov. 16, 2020.
Co-pending U.S. Appl. No. 15/857,543, filed Dec. 28, 2017.
Co-pending U.S. Appl. No. 15/857,571, filed Dec. 28, 2017.
Qilong H., “Design and Implementation of Baseband Transport Protocol in TDD System”, Chinese Master's Theses Full-text Database Information Science and Technology, May 27, 2013, 75 pages.
Qualcomm Incorporated: “Draft TP for D2D for TS 36.300”, 3GPP TSG-RAN WG1 #78, R1-142966, Aug. 18-22, 2014, Dresden, Germany, 19 Pages.
Ritt: “Introduction of Optimized FS2 for TDD”, R1-080660, 3GPP TSG-RAN WG1 Meeting #52, Sorrento, Italy, Feb. 11-15, 2008, 19 Pages.
Ying B., et al., “TD-LTE eNB Performance Test Solution Based on HARQ”, Foreign Electronic Measurement Technology, vol. 29, No. 9, Sep. 22, 2010, pp. 1-3.
ETSI MCC: “Report of RAN2 RAN2 #87bis”, R2-144750, 3GPP TSG-RAN Working Group 2 meeting #88, San Francisco, USA, Nov. 16-21, 2014, 124 Pages.
European Search Report—EP21169533—Search Authority—The Hague—dated Aug. 17, 2021.
Jiafan W., “TD-SCDMA Base Station Lub Interface Design and Implementation of Protocol Software”, China Excellent Master Degree Thesis Full-text database, Nov. 30, 2009, 95 pages.
China Notice on Grant of Patent Right for Invention issued in Application No. 202011095728.9, mailing date of Jan. 19, 2024, 8 pages. Applicant provides CNIPA Notice to Grant and translation provided by CN counsel.
Related Publications (1)
Number Date Country
20210274498 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62133386 Mar 2015 US
Continuations (2)
Number Date Country
Parent 16432844 Jun 2019 US
Child 17320030 US
Parent 14940546 Nov 2015 US
Child 16432844 US