Self-cooling ultrasound ablation catheter

Information

  • Patent Grant
  • 10549127
  • Patent Number
    10,549,127
  • Date Filed
    Friday, September 20, 2013
    10 years ago
  • Date Issued
    Tuesday, February 4, 2020
    4 years ago
Abstract
Systems for nerve and tissue modulation are disclosed. An example system may include an intravascular nerve modulation system including an elongated shaft having a proximal end region and a distal end region. The system may further include a bar element extending distally from the distal end region of the elongated shaft and one or more ablation transducers affixed to the bar element.
Description
TECHNICAL FIELD

The present disclosure relates generally to methods and apparatuses for nerve modulation techniques such as ablation of nerve tissue or other modulation techniques through the walls of blood vessels.


BACKGROUND

Certain treatments may require the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.


Many nerves (and nervous tissue such as brain tissue), including renal nerves, run along the walls of or in close proximity to blood vessels and thus can be accessed intravascularly through the walls of the blood vessels. In some instances, it may be desirable to ablate perivascular nerves using ultrasonic energy. In other instances, the perivascular nerves may be ablated by other means including application of thermal, radiofrequency, laser, microwave, and other related energy sources to the target region. Ultrasound transducers may dissipate some energy as heat into the blood and surrounding tissue as well as causing the ultrasound transducers to become hot. This may result in blood damage, clotting, and/or protein fouling of the transducer among other undesirable side effects. In some instances, overheating of the ultrasound transducer may result in the failure of the transducers. It may be desirable to provide for alternative systems and methods for intravascular nerve modulation with increased cooling of the transducers.


SUMMARY

This disclosure is directed to several alternative designs, materials and methods of manufacturing medical device structures and assemblies for performing nerve ablation.


Accordingly, one illustrative embodiment is a system for intravascular nerve modulation system that may include an elongated shaft having a proximal end region and a distal end region. A bar element configured to vibrate at a low frequency may extend distally from the distal end region of the elongated shaft. A proximal end of the bar element may be attached to the distal end of the elongated shaft such that the distal end of the bar element is free to vibrate. When subjected to a first frequency, the bar element may vibrate. One or more ablation transducers configured to operate at a second frequency may be affixed to the bar element. Another illustrative embodiment is an intravascular nerve modulation system that may include a catheter shaft having a proximal end region, a distal end region, and a lumen extending therebetween. The system may further include an elongated shaft disposed within the lumen of the catheter shaft and having a proximal end region and a distal end region. A driver may be connected to the proximal end region of the elongated shaft. One or more ablation transducers may be secured to a distal end region of the elongated shaft.


Another illustrative embodiment is an intravascular nerve modulation system that may include a catheter shaft having a proximal end region, a distal end region, and a lumen extending therebetween. The modulation system may further include a bar element and a tension member positioned adjacent to the distal end region of the catheter shaft. One or more ablation transducers may be secured to a distal end region of the bar element. The bar element may be connected to a control unit.


The above summary of an example embodiment is not intended to describe each disclosed embodiment or every implementation of the present disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a schematic view illustrating a renal nerve modulation system in situ.



FIG. 2 illustrates a portion of an example intravascular nerve modulation system.



FIG. 3 illustrates a portion of another example intravascular nerve modulation system.



FIG. 4 illustrates a portion of another example intravascular nerve modulation system.



FIG. 5 illustrates a portion of another example intravascular nerve modulation system.



FIG. 6 illustrates a portion of another example intravascular nerve modulation system.





While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.


DETAILED DESCRIPTION

For the following defined terms, these definitions shall be applied, unless a different definition is given in the claims or elsewhere in this specification.


All numeric values are herein assumed to be modified by the term “about,” whether or not explicitly indicated. The term “about” generally refers to a range of numbers that one of skill in the art would consider equivalent to the recited value (i.e., having the same function or result). In many instances, the terms “about” may be indicative as including numbers that are rounded to the nearest significant figure.


The recitation of numerical ranges by endpoints includes all numbers within that range (e.g. 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


Although some suitable dimensions ranges and/or values pertaining to various components, features and/or specifications are disclosed, one of the skill in the art, incited by the present disclosure, would understand desired dimensions, ranges and/or values may deviate from those expressly disclosed.


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


For purposes of this disclosure, “proximal” refers to the end closer to the device operator during use, and “distal” refers to the end further from the device operator during use.


The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The detailed description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure. The illustrative embodiments depicted are intended only as exemplary. Selected features of any illustrative embodiment may be incorporated into an additional embodiment unless clearly stated to the contrary.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with one embodiment, it should be understood that such feature, structure, or characteristic may also be used connection with other embodiments whether or not explicitly described unless cleared stated to the contrary.


Certain treatments require the temporary or permanent interruption or modification of select nerve function. One example treatment is renal nerve ablation, which is sometimes used to treat conditions related to congestive heart failure or hypertension. The kidneys produce a sympathetic response to congestive heart failure, which, among other effects, increases the undesired retention of water and/or sodium. Ablating some of the nerves running to the kidneys may reduce or eliminate this sympathetic function, which may provide a corresponding reduction in the associated undesired symptoms.


While the devices and methods described herein are discussed relative to renal nerve modulation, it is contemplated that the devices and methods may be used in other locations and/or applications where nerve modulation and/or other tissue modulation including heating, activation, blocking, disrupting, or ablation are desired, such as, but not limited to: blood vessels, urinary vessels, or in other tissues via trocar and cannula access. For example, the devices and methods described herein can be applied to hyperplastic tissue ablation, tumor ablation, benign prostatic hyperplasia therapy, nerve excitation or blocking or ablation, modulation of muscle activity, hyperthermia or other warming of tissues, etc. In some instances, it may be desirable to ablate perivascular renal nerves with ultrasound ablation.


Ultrasound energy may be used to generate heat at a target location. The high frequency sound waves produced by an ultrasonic transducer may be directed at a target region and absorbed at the target region. As the energy emitted is absorbed, the temperature of the target region may rise. In order to perform renal nerve ablation, target nerves must be heated sufficiently to make them nonfunctional, while thermal injury to the artery wall is undesirable. Heating of the artery wall may also increase pain during the procedure, which is also undesirable. When a portion of tissue is ablated, tissue properties change and increased attenuation of the ultrasound energy can make ablation past this ablated tissue difficult. Ultrasound ablation catheters may also generate significant heat in the ultrasound transducers may cause clots to form on the transducers, damage to the blood, or damage to the transducers among other undesirable side effects. As the ablation transducers heat, the energy conversion efficiency of those devices is lowered, thus generating more heat. Thus, normal operations of ablation transducers may be characterized by increasingly lower efficiency during operation. The efficiency of the ablation transducers may be enhanced using a cooling mechanism. One possible cooling mechanism is increasing the flow of blood past the transducers, providing passive cooling to the ablation transducers. In some instances, this may be accomplished by moving the ablation transducers back and forth in the blood thus increasing heat transfer to the blood and mixing of the blood. This may facilitate cooling of the transducers and/or reduce build-up of clots or other proteins.



FIG. 1 is a schematic view of an illustrative renal nerve modulation system 10 in situ. System 10 may include an element 12 for providing power to a transducer disposed adjacent to, about, and/or within a central elongated shaft 14 and, optionally, within a sheath 16, the details of which can be better seen in subsequent figures. A proximal end of element 12 may be connected to a control and power element 18, which supplies the necessary electrical energy to activate the one or more transducers at or near a distal end of the element 12. The control and power element 18 may include monitoring elements to monitor parameters such as power, temperature, voltage, pulse duration and/or frequency and other suitable parameters as well as suitable controls for performing the desired procedure. In some instances, the power element 18 may control an ultrasound ablation transducer. The ablation transducer may be configured to operate at a frequency of about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz. In addition, it is contemplated that frequencies outside this range may also be used, as desired. While the term “ultrasound” is used herein, this is not meant to limit the range of vibration frequencies contemplated. For example, it is contemplated that the perivascular nerves may be ablated by other means including application of thermal, radiofrequency, laser, microwave, and other related energy sources to the target region.



FIG. 2 is an illustrative embodiment of a distal end of a renal nerve modulation system 100 disposed within a body lumen 106 having a vessel wall 108. The vessel wall 108 may be surrounded by local body tissue. The local body tissue may comprise adventitia and connective tissues, nerves, fat, fluid, etc. in addition to the muscular vessel wall 108. The system 100 may include an elongate shaft 102 having a distal end region 104. The elongate shaft 102 may extend proximally from the distal end region 104 to a proximal end configured to remain outside of a patient's body. The proximal end of the elongate shaft 102 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the elongate shaft 102 may be modified to form a modulation system 100 for use in various vessel diameters and various locations within the vascular tree. The elongate shaft 102 may further include one or more lumens extending therethrough. For example, the elongate shaft 102 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may be configured in any way known in the art. For example, the guidewire lumen may extend the entire length of the elongate shaft 102 such as in an over-the-wire catheter or may extend only along a distal portion of the elongate shaft 102 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 100 may further include temperature sensors/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath, centering basket, and/or other components to facilitate the use and advancement of the system 100 within the vasculature.


The system 100 may include an array of ultrasound ablation transducers 110 positioned adjacent the distal end region 104 of the elongate shaft. However, the transducer array 110 may be placed at any longitudinal location along the elongate shaft 102 desired. It is contemplated that the array may include any number of transducers 110 desired. It is further contemplated that more than one row of transducers 110 may be disposed on the elongate shaft 102. In some instances, the ablation transducers 110 may include a number of transducers (two, three, four, or more) spaced about the circumference of the elongate shaft 102. This may allow for ablation of multiple circumferential locations about the body lumen simultaneously. In other embodiments, the transducers 110 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducers 110 may comprise a plurality of longitudinally spaced transducers.


The ablation transducers 110 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. While not explicitly shown, the ablation transducers 110 may have a first radiating surface, a second radiating surface, and a perimeter surface extending around the outer edge of the ablation transducer 110. In some instances, the transducers 110 may include a layer of gold, or other conductive layer, disposed on the first and/or second side over the PZT crystal for connecting electrical leads to the transducers 110. In some embodiments, the ablation transducers 110 may be structured to radiate acoustic energy from a single radiating surface. In such an instance, one radiating surface may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducers 110 may be structured to radiate acoustic energy from two radiating surfaces. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducers 110 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired. While the ablation transducers 110 are described as ultrasonic transducers, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, or other acoustic, optical, electrical current, direct contact heating, or other heating.


It is contemplated that the radiating surface (surface which radiates acoustic energy) of the transducers 110 may take any shape desired, such as, but not limited to, square, rectangular, polygonal, circular, oblong, etc. The acoustic energy from the radiating surface of the transducers 110 may be transmitted in a spatial pressure distribution related to the shape of the transducers 110. With exposures of appropriate power and duration, lesions formed during ablation may take a shape similar to the contours of the pressure distribution. As used herein, a “lesion” may be a change in tissue structure or function due to injury (e.g. tissue damage caused by the ultrasound). Thus, the shape and dimensions of the transducers 110 may be selected based on the desired treatment and the shape best suited for that treatment. It is contemplated that the transducers 110 may also be sized according to the desired treatment region. For example, in renal applications, the transducers 110 may be sized to be compatible with a 6 French guide catheter, although this is not required.


In some embodiments, the transducers 110 may be formed of a separate structure and attached to the elongate shaft 102. For example, the transducers 110 may be bonded or otherwise attached to the elongate shaft 102. In some instances, the transducers 110 may include a ring or other retaining or holding mechanism (not explicitly shown) disposed around the perimeter of the transducers 110 to facilitate attachment of the transducers 110. The transducers 110 may further include a post, or other like mechanism, affixed to the ring such that the post may be attached to the elongate shaft 102 or other member. In some instances, the rings may be attached to the transducers 110 with a flexible adhesive, such as, but not limited to, silicone. However, it is contemplated that the rings may be attached to the transducers 110 in any manner desired. While not explicitly shown, in some instances, the elongate shaft 102 may be formed with grooves or recesses in an outer surface thereof. The recesses may be sized and shaped to receive the transducers 110. For example, the ablation transducers 110 may be disposed within the recess such that a first surface contacts the outer surface of the elongate shaft 102 and a second surface is directed towards a desired treatment region. However, it is contemplated that the transducers 110 may be affixed to the elongate shaft in any manner desired.


In some embodiments, the transducers 110 may be affixed to an outer surface of the elongate shaft 102 such that the surfaces of the transducers 110 are exposed to blood flow through the vessel. As the power is relayed to the ablation transducers 110, the power that does not go into generating acoustic power generates heat. As the ablation transducers 110 heat, they become less efficient, thus generating more heat. Passive cooling provided by the flow of blood may help improve the efficiency of the transducers 110. However, in some instances, additional cooling may be provided by introducing a cooling fluid or other cooling mechanism to the modulation system 100.


While not explicitly shown, the ablation transducers 110 may be connected to a control unit (such as control unit 18 in FIG. 1) by electrical conductor(s). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongate shaft 102. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongate shaft 102. The electrical conductor(s) may provide electricity to the transducers 110 which may then be converted into acoustic energy. The acoustic energy may be directed from the transducers 110 in a direction generally perpendicular to the radiating surfaces of the transducers 110, as illustrated at lines 112. As discussed above, acoustic energy radiates from the transducers 110 in a pattern related to the shape of the transducers 110 and lesions formed during ablation take shape similar to contours of the pressure distribution.


It is contemplated that the modulation system 100 may be configured to operate in an ablation mode and a low frequency mode. In the low frequency mode, the system 100 may be operated at a first, lower frequency with a higher amplitude. It is contemplated that the low frequency may range from about 10 KHz to 200 KHz. It is further contemplated that the first frequency may include various other frequency ranges, as desired, based upon the physical affects produced. This may allow the distal end region 104 of the elongate shaft 102 to shake, vibrate, or otherwise move back and forth as shown by arrows 114 in FIG. 3. The directional arrows 114 are merely exemplary and are not intended to limit the movement of the elongate shaft 102 to any specific direction. It is contemplated that while the vibrations may cause the elongate shaft 102 to move in a direction generally orthogonal to the longitudinal axis of the elongate shaft 102, this is not required. The movement may provide additional convective cooling to the transducers 110. Additionally, the low frequency mode may also allow blood to accelerate, thus increasing convection for improved heat transfer to cool the transducers 110. A cooler transducer 110 may cause less direct thermal injury to the artery wall and to the blood, with less clotting and debris build-up on the transducer 110 and less debris embolization. In the ablation mode, the system 100 may be operated at a second, higher frequency, with low displacement amplitude. The second frequency may range from about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz beyond. In the ablation mode, acoustic energy 112 may be directed from the transducers 110 to form lesions in the desired target region. In general, the second frequency may be higher than the first frequency. The reverse configuration may also be utilized.


Once the modulation system 100 has been advanced to the treatment region, energy may be supplied to the ablation transducers 110. In some instances, the transducers 110 may function as both the high frequency and low frequency transducers and may be alternately activated in a high frequency ablation mode and a low frequency “shaking” mode. In other embodiments, separate transducers may be supplied that are tuned to different frequencies. For example, while not explicitly shown, a first set of transducers may be tuned to be excitable at a high frequency to perform tissue modulation and/or ablation and a second set of transducers may be tuned to be excitable at a low frequency to perform intermittent shaking. It is contemplated that the high frequency transducers and the low frequency transducers may be operated in an alternating manner or simultaneously, as desired. It is further contemplated that the transducers 110 may be placed at various angles to improve the effectiveness of convective cooling. Additionally, the elongate shaft 102 may include structure or features, such as vanes, to improve the effectiveness of convective cooling.


The modulation system 100 may be advanced through the vasculature in any manner known in the art. For example, system 100 may include a guidewire lumen to allow the system 100 to be advanced over a previously located guidewire. In some embodiments, the modulation system 100 may be advanced, or partially advanced, within a guide sheath such as the sheath 16 shown in FIG. 1. Once the ablation transducers 110 of the modulation system 100 have been placed adjacent to the desired treatment area, positioning mechanisms may be deployed, if so provided. While not explicitly shown, the ablation transducers 110 may be connected to a single control unit or to separate control units (such as control unit 18 in FIG. 1) by electrical conductors. As discussed above, the ablation transducers 110 may be connected to one or more control units, which may drive and/or monitor the system 100 with one or more parameters such as, but not limited to, frequency for performing the desired ablation procedure. In some embodiments, the control unit may include an oscillator. More specifically, the oscillator may have a predetermined range of frequencies such as the first frequency and the second frequency (as previously discussed). Exemplary oscillators may include a mechanical oscillator, acoustic oscillator, or other suitable oscillators known to those skilled in the art. Those skilled in the art, however, will appreciate that any other suitable control unit and/or energy source may also be contemplated.


Once the modulation system 100 has been advanced to the treatment region, energy may be supplied to the ablation transducers 110. As discussed above, the energy may be supplied to both the ablation transducers 110 and the shaking transducers, if so provided, simultaneously or in an alternating fashion as desired or the transducers 110 may be alternately activated at a high frequency and a low frequency. The amount of energy delivered to the ablation transducers 110 may be determined by the desired treatment as well as the feedback provided by monitoring systems.


In some instances, the elongate shaft 102 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel 106. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel 106, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a distal micro-motor or by spinning a drive shaft from the proximal end. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the ablation transducers to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongate shaft 102 is rotated at a given longitudinal location may be determined by the number and size of the ablation transducers 110 on the elongate shaft 102. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongate shaft 102 has been longitudinally repositioned, energy may once again be delivered to the ablation transducers 110. If necessary, the elongate shaft 102 may be rotated to perform ablation around the circumference of the vessel 106 at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 100 may include transducer arrays 110 at various positions along the length of the modulation system 100 such that a larger region may be treated without longitudinal displacement of the elongate shaft 102.



FIG. 4 is a schematic view of a distal end of an illustrative intravascular nerve modulation system 200. While not explicitly shown, the nerve modulation system 200 may be configured to be advanced within a body lumen having a vessel wall. The vessel wall may be surrounded by local body tissue. The local body tissue may comprise adventitia and connective tissues, nerves, fat, fluid, etc. in addition to the muscular vessel wall. A portion of the surrounding tissue may be the desired treatment region. As shown, the system 200 may include an elongated shaft 202 having a distal end region 210. The elongated shaft 202 may extend proximally from the distal end region 210 to a proximal end region (not shown) configured to remain outside of a patient's body. The proximal end of the elongated shaft 202 may include a hub attached thereto for connecting other diagnostic and/or treatment devices for providing a port for facilitating other interventions.


The elongated shaft 202 may have a long, thin, flexible tubular configuration. A person skilled in the art will appreciate that other suitable configurations such as, but not limited to, rectangular, oval, irregular, or the like may also be contemplated. In addition, the elongated shaft 202 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the elongated shaft 202 may be specially sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery.


It is contemplated that the stiffness of the elongated shaft 202 may be modified to form modulation system 200 for use in various vessel diameters. To this end, the material used for manufacturing the elongated shaft 202 may include any suitable biocompatible material such as, but are not limited to, polymers, metals, alloys, either in combination or alone. The material employed may have enough stiffness for use in various lumen diameters, and sufficient flexibility to maneuver through tortuous and/or stenotic lumens, avoiding any undesirable tissue injuries.


The elongated shaft 202 may further include one or more lumens (not explicitly shown) extending therethrough. For example, the elongated shaft 202 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may have a variety of configurations and/or arrangements. For example, the guidewire lumen may extend the entire length of the elongated shaft 202 such as in an over-the-wire catheter or may extend only along a distal portion of the elongated shaft 202 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some optional configurations. While not explicitly shown, the modulation system 200 may further include temperature sensor/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath, and/or other components to facilitate the use and advancement of the system 200 within the vasculature. It is further contemplated that the modulation system 200 may include one or more centering baskets, expandable framework, and/or expandable balloons to center or otherwise position the modulation system 200 within the body lumen.


The system 200 may further include a bar element 204 having a proximal end region 212 and a distal end region 214. In some embodiments, the bar element 204 may include a long, thin bar-shaped transducer disposed adjacent the distal end region 210 of the elongate shaft 202. It may be contemplated that other suitable shapes such as, but limited to rectangular, square, cylindrical, oval, irregular, and so forth may be used, as desired. In some instances, the bar element 204 may be attached to the distal end region of the elongated shaft 202 such that the proximal end region 212 is physically constrained. The distal end region 214 of the bar element may be unconstrained.


In some embodiments, the bar element 204 may be may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials, such as, but not limited to barium titanate, may also be used. In some instances, the bar element 204 may include a layer of gold, or other conductive layer, disposed on a first and/or second side surface over the PZT crystal for connecting electrical leads to the bar element 204. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the bar element 204 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


In some embodiments, the proximal end region 212 of the bar element 204 may connected to the distal end region 210 of the elongated shaft 202 via a connecting member 206. Exemplary connecting members 206 may include structures such as, but not limited to, male-female connections, friction-fit, threading, luer-connections, clamping mechanisms, and so forth. In one embodiment, the connecting member 206 may include a clamp (not explicitly shown), which may be fixedly secured to the distal end region 210 of the elongated shaft at a proximal end and coupled to the proximal end region 212 of the bar element 204 at a distal end thereof. In some embodiments, the bar element 204 may include a ring or other retaining or holding mechanism (not explicitly shown) disposed around the perimeter of the bar element 204 to facilitate attachment of the bar element 204. The bar element 204 may further include a post, or similar mechanism, affixed to the ring such that the post may be attached to the elongated shaft 202 or other member. Those skilled in the art will appreciate that various other suitable connection mechanisms may be used couple the bar element 204 to the distal end region 210 of the elongated shaft 202. Alternatively, the bar element 204 may be formed of a separate structure and may be directly attached to the distal end region 210 of the elongated shaft 202. While the proximal end region 212 of the bar element 204 may be attached to the distal end region 210, the distal end region 214 of the bar element 204 may remain free, or unconstrained, forming a cantilever extending distally from the end region 210.


The system 200 may further include one or more ablation transducers 208 mounted on the bar element 204. While the Figure illustrates four ablation transducers 208, it is contemplated that the modulation system 200 may include any number of ablation transducers desired, such as, but not limited to, one, two, three, or more. In some instances, the ablation transducers 208 may include a number of transducers (two, three, four, or more) spaced about the circumference of the bar element 204. This may allow for ablation of multiple circumferential locations about the body lumen simultaneously. In other embodiments, the ablation transducers 208 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducers 208 may comprise a plurality of longitudinally spaced transducers.


While the ablation transducers 208 are described as ultrasonic transducers, it is contemplated that other methods and devices for raising the temperature of the nerves may be used, such as, but not limited to: radiofrequency, microwave, or other acoustic, optical, electrical current, direct contact heating, or other heating. The same may also be true of bar element 204. The ablation transducers 208 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. While not explicitly shown, the ablation transducers 208 may have a first radiating surface, a second radiating surface, and a perimeter surface extending around the outer edge of the ablation transducers 208. In some instances, the ablation transducers 208 may include a layer of gold, or other conductive layer, disposed on the first and/or second side over the PZT crystal for connecting electrical leads to the ablation transducers 208. In some embodiments, the ablation transducers 208 may be structured to radiate acoustic energy from a single radiating surface. In such an instance, one radiating surface may include a backing layer to direct the acoustic energy in a single direction. In other embodiments, the ablation transducers 208 may be structured to radiate acoustic energy from two radiating surfaces. In some instances, one or more tie layers may be used to bond the gold to the PZT. For example, a layer of chrome may be disposed between the PZT and the gold to improve adhesion. In other instances, the transducers 208 may include a layer of chrome over the PZT followed by a layer of nickel, and finally a layer of gold. These are just examples. It is contemplated that the layers may be deposited on the PZT using sputter coating, although other deposition techniques may be used as desired.


It is contemplated that the radiating surface (surface which radiates acoustic energy) of the ablation transducers 208 may take any shape desired, such as, but not limited to, square, rectangular, polygonal, circular, oblong, etc. The acoustic energy from the radiating surface of the ablation transducers 208 may be transmitted in a spatial pressure distribution related to the shape of the ablation transducers 208. With exposures of appropriate power and duration, lesions formed during ablation may take a shape similar to the contours of the pressure distribution. As used herein, a “lesion” may be a change in tissue structure or function due to injury (e.g. tissue damage caused by the ultrasound). Thus, the shape and dimensions of the ablation transducers 208 may be selected based on the desired treatment and the shape best suited for that treatment. It is contemplated that the ablation transducers 208 may also be sized according to the desired treatment region. For example, in renal applications, the ablation transducers 208 may be sized to be compatible with a 6 French guide catheter, although this is not required.


In some embodiments, the ablation transducers 208 may be formed of a separate structure and attached to the bar element 204. For example, the ablation transducers 208 may be bonded or otherwise attached to the bar element 204. In some instances, the ablation transducers 208 may include a ring or other retaining or holding mechanism (not explicitly shown) disposed around the perimeter of the ablation transducers 208 to facilitate attachment of the ablation transducers 208. The ablation transducers 208 may further include a post, or other like mechanism, affixed to the ring such that the post may be attached to the bar element 204 or other member. In some instances, the rings may be attached to the ablation transducers 208 with a flexible adhesive, such as, but not limited to, silicone. However, it is contemplated that the rings may be attached to the ablation transducers 208 in any manner desired. While not explicitly shown, in some instances, the bar element 204 may be formed with grooves or recesses in an outer surface thereof. The recesses may be sized and shaped to receive the ablation transducers 208. For example, the ablation transducers 208 may be disposed within the recess such that a first radiating surface contacts the outer surface of the bar element 204 and a second radiating surface is directed towards a desired treatment region. However, it is contemplated that the ablation transducers 208 may be affixed to the bar element 204 in any manner desired. It is further contemplated that in some instances, the ablation transducers 208 may be affixed adjacent the distal end region 210 of the elongate shaft 202, or along any longitudinal length thereof, as desired.


The ablation transducers 208 may be connected to a control unit (such as control unit 18 in FIG. 1) by electrical conductor(s). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongate shaft 202. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongate shaft 202. The electrical conductor(s) may provide electricity to the ablation transducers 208, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducers 208 in a direction generally perpendicular to the radiating surfaces of the ablation transducers 208. As discussed above, acoustic energy radiates from the ablation transducers 208 in a pattern related to the shape of the transducers 208 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The bar element 204 may also be connected to a control unit (such as control unit 18 in FIG. 1) by electrical conductor(s). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongate shaft 202. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongate shaft 202. The electrical conductor(s) may provide electricity to the bar element 204 which may then be converted into vibrational energy. The control unit may be configured to supply energy at a low frequency and at a higher amplitude relative to the frequency and amplitudes used for ablation to cause movement of the bar element 204. The vibrational energy may cause the bar element 204 to move back and forth in a direction 216 generally orthogonal to a longitudinal axis of the system 200. However, the bar element 204 may vibrate in any other suitable directions known to those skilled in the art. The cantilever system created by constraining the proximal end 212 of the bar element 204 may allow the distal end 214 of the bar element 204 to move more than the proximal end. The movement of the bar element 204 may move the ablation transducers 208 back and forth within blood flow in the vessel which may increase heat transfer from the transducers 208 to the blood, and thus cooling the ablation transducers 208. The movement of the bar element 204 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins (e.g., along transducers 208).


The modulation system 200 may be configured to operate at a first frequency for causing physical movement of the bar element 204 and a second frequency for performing tissue modulation using the ablation transducers 208. Here, the first frequency may include a low frequency that may provide physical movement to the bar element 204, thus providing cooling to the ablation transducers 208, as discussed above. It is contemplated that the first frequency may range from about 10 KHz to 200 KHz. It is further contemplated that the first frequency may include various other frequency ranges, as desired, based upon the physical affects produced. The second frequency may include a high frequency, which may ablate the target tissue. The second frequency may range from about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz beyond. In general, the second frequency may be higher than the first frequency. The reverse configuration may also be utilized.


In addition, while ablation transducers 208 are shown in FIG. 4 mounted on bar element 204, other arrangements are contemplated. For example, ablation transducers 208 may be attached to the outer surface of shaft 202 (e.g., adjacent to distal end region 210). In some of these embodiments, the outer surface of shaft 202 may include a vibrating surface or member (e.g., that may be configured to vibrate). In other embodiments, one or more of transducers 208 may be configured to vibrate when subjected to a first frequency (e.g., to help dissipate and/or reduce fouling of transducers 208) and one or more other transducers 208 may be configured to ablate tissue when subjected to a second frequency. In still other embodiments, one or more of transducers 208 may include a first portion that is configured to vibrate when subjected to a first frequency (e.g., to help dissipate and/or reduce fouling of transducers 208) and a second portion that is configured to ablate tissue when subjected to a second frequency. In still other embodiments, transducers 208 may be configured to vibrate when subjected a first frequency and to ablate when subjected to a second frequency. These are just examples.


As discussed above, the bar element 204 and the ablation transducers 208 may be connected to one or more control units, which may provide and/or monitor the system 200 with one or more parameters such as, but not limited to, frequency for performing the desired ablation procedure. In some embodiments, the control unit may include an oscillator. More specifically, the oscillator may have a predetermined range of frequencies such as the first frequency and the second frequency (as previously discussed). Exemplary oscillators may include a mechanical oscillator, acoustic oscillator, or other suitable oscillators known to those skilled in the art. Those skilled in the art, however, will appreciate that any other suitable control unit and/or energy source may also be contemplated.


The modulation system 200 may be advanced through the vasculature in any manner known in the art. For example, system 200 may include a guidewire lumen to allow the system 200 to be advanced over a previously located guidewire. In some embodiments, the modulation system 200 may be advanced, or partially advanced, within a guide sheath such as the sheath 16 shown in FIG. 1. Once the ablation transducers 208 of the modulation system 200 have been placed adjacent to the desired treatment area, positioning mechanisms may be deployed, such as centering baskets, if so provided. While not explicitly shown, the ablation transducers 208 and the bar element 204 may be connected to a single control unit or to separate control units (such as control unit 18 in FIG. 1) by electrical conductors.


Once the modulation system 200 has been advanced to the treatment region, energy may be supplied to the ablation transducers 208 and the bar element 204. In some instances, energy may first be supplied to the ablation transducers 208. As the energy is radiated from the ablation transducers 208, the ablation transducers 208 may begin to heat. The modulation system 200 may use temperature sensors, or the monitoring means, to monitor the temperature or efficiency of the ablation transducers 208. Once the ablation transducers 208 have reached a predetermined criteria, energy may then be supplied to the bar element 204. As discussed above, the energy supplied to the bar element 204 may result in physical movement of the bar element, and thus the ablation transducers 208. As the bar element 204 moves, increased convection may transfer heat away from the ablation transducers 208. It is contemplated that energy may be supplied to the ablation transducers 208 and the bar element 204 in an alternating fashion such that one is activated while the other is inactive. In other embodiments, the ablation transducers 208 and the bar element 204 may be activated simultaneously. The amount of energy delivered to the ablation transducers 208 may be determined by the desired treatment as well as the feedback provided by the system 200.


In some instances, the elongated shaft 202 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a micro-motor or by spinning a drive shaft. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the ablation transducers 208 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongated shaft 202 is rotated at a given longitudinal location may be determined by the number and size of the ablation transducers 208 on the bar element 204. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongated shaft 202 has been longitudinally repositioned, energy may once again be delivered to the ablation transducers 208 and the bar element 204. If necessary, the elongated shaft 202 may be rotated to perform ablation around the circumference of the vessel at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 200 may include ablation transducers at various positions along the length of the modulation system 200 such that a larger region may be treated without longitudinal displacement of the elongated shaft 202.



FIG. 5 is a schematic view of a distal end of another illustrative intravascular nerve modulation system 300 that may be similar in form and function to other systems disclosed herein. As shown, the modulation system 300 may include a catheter shaft 304 having a distal end region 306. The catheter shaft 304 may extend proximally to a point configured to remain outside of a patient's body. The proximal end of the catheter shaft 304 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the catheter shaft 304 may be modified to form a modulation system 300 for use in various vessel diameters and various locations within the vascular tree. The catheter shaft 304 may include a lumen 308 extending between the proximal end region (not shown) and the distal end region 306


In addition, the catheter shaft 304 may have a cross-sectional configuration adapted to be received in a desired vessel, such as a renal artery. For instance, the catheter shaft 304 may specially be sized and configured to accommodate passage through the intravascular path, which leads from a percutaneous access site in, for example, the femoral, brachial, or radial artery, to a targeted treatment site, for example, within a renal artery. An exemplary embodiment may depict the catheter shaft 304 to take on a long, thin, flexible tube-shaped structure having a tubular cross-section; however, other contemplated cross-sections may include rectangular, irregular, or other suitable structures known to those skilled in the art.


The catheter shaft 304 may further include one or more lumens (not explicitly shown) in addition to lumen 308 extending therethrough. For example, the catheter shaft 304 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may be configured in any suitable way such as those ways commonly used for medical device. For example, the guidewire lumen may extend the entire length of the catheter shaft 304 such as in an over-the-wire catheter or may extend only along a distal portion of the catheter shaft 304 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 300 may further include temperature sensor/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath, and/or other components to facilitate the use and advancement of the system 300 within the vasculature.


The system 300 may further include an elongated shaft 302 having a proximal end region 312 and a distal end region 314. In one embodiment, the elongated shaft 302 may be disposed within the lumen 308 of the catheter shaft 304. For example, in some instances, the elongated shaft 302 and the catheter shaft 304 may be advanced through the vasculature together and the catheter shaft 304 retracted proximally to expose the elongated shaft 302 once the system 300 has been placed adjacent the desired treatment region. Alternatively, the elongated shaft 302 may be distally advanced out from the distal end of the catheter shaft 304. In other embodiments, the catheter shaft 304 may function as a guide catheter and may be advanced to the desired treatment region before the elongated shaft 302. In some embodiments, the elongated shaft 302 may have a tubular configuration. However, other suitable configuration such as rectangular, oval, irregular, or the like may also be contemplated. For example, the elongated shaft 302 may be a thin bar, wire, or other structure. The material employed to manufacture the elongated shaft 302 may include a suitable biocompatible material such as, but not limited to, polymers, metals, alloys, or other suitable flexible materials known to those skilled in the art. In some embodiments, the material employed to manufacture the elongated shaft 302 may a piezoelectric material such as lead zirconate titanate (PZT) may be contemplated. In addition, other ceramic or piezoelectric materials known to those skilled in the art, such as barium titanate may also be used.


The modulation system 300 may further include one or more ablation transducers 316 disposed adjacent the distal end region 314 of the elongated shaft 302. The ablation transducers 316 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. It is contemplated that the transducers 316 may have similar form and function to the transducers 208 discussed above. In some embodiments, there may be any number of ablation transducers 316 (one, two, three, four, or more) spaced about the circumference of the elongated shaft 302. This may allow for ablation of multiple radial locations about the body lumen simultaneously. In other embodiments, the ablation transducers 316 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducers 316 may comprise a plurality of longitudinally spaced transducers.


The ablation transducers 316 may be connected to a control unit (such as control unit 18 in FIG. 1) by electrical conductor(s). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the elongated shaft 302. In other embodiments, the electrical conductor(s) may extend along an outside surface of the elongated shaft 302. The electrical conductor(s) may provide electricity to the ablation transducers 316, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducers 316 in a direction generally perpendicular to the radiating surfaces of the transducers 316. As discussed above, acoustic energy radiates from the ablation transducers 316 in a pattern related to the shape of the transducers 316 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The elongated shaft 302 may also be connected to a control unit and/or driver 310. The driver 310 may be adapted to provide and/or monitor the system 300 with one or more parameters such as, but not limited to, frequency for performing the desired ablation procedure. In some embodiments, the driver 310 may include an oscillator, which may provide mechanical movement to the elongated shaft or may propagate ultrasonic waves down the length of the elongated shaft 302. Exemplary oscillators may include a mechanical oscillator, acoustic oscillator, or other suitable oscillators known to those skilled in the art. In addition, those skilled in the art will appreciate that any other suitable drivers and/or energy sources may also be contemplated. While not explicitly shown, the driver 310 may be coupled to the elongated shaft 302 via an electrical connection or a mechanical connection. In certain instances, the connecting element may include an electrical conductor (not explicitly shown), adapted to supply power to the ablation transducers 316. This power may thus facilitate ablation of surrounding tissue within a vasculature.


In some embodiments, such as when a piezoelectric material is used for the elongated shaft 302, electricity may be provided to the elongated shaft 302, which may then be converted into vibrational energy as discussed above. The driver 310 may be configured to supply energy at a low frequency and at a higher amplitude relative to the frequency and amplitudes used for ablation to cause movement of the elongated shaft 302. The vibrational energy may cause the elongated shaft 302 to move back and forth in a direction 318 generally orthogonal to a longitudinal axis of the system 300. However, the elongated shaft 302 may vibrate in any other suitable directions known to those skilled in the art. The movement of the elongated shaft 302 may move the ablation transducers 316 back and forth within blood flow in the vessel, which may increase heat transfer from the transducers 316 to the blood, and thus cooling the ablation transducers 316. The movement of the elongated shaft 302 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins.


The system 300 may be configured to operate at a first frequency for causing physical movement of the elongated shaft 302 and a second frequency for performing tissue modulation. Here, the first frequency may include a low frequency that may provide physical movement to the elongated shaft 302, thus providing cooling to the ablation transducers 316, as discussed above. It is contemplated that the first frequency may range from about 10 KHz to 200 KHz. It is further contemplated that the first frequency may include various other frequency ranges, as desired, based upon the physical affects produced. The second frequency may include a high frequency, which may ablate the target tissue. The second frequency may range from about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz beyond. In general, the second frequency may be higher than the first frequency. The reverse configuration may also be utilized.


In other embodiments, such as when a piezoelectric material is not used for the elongated shaft 302, mechanical vibrations may be supplied over the length of the elongated shaft 302. For example, in some instances, the driver 310 may supply a mechanical or ultrasonic energy to the proximal end 312 of the elongated shaft 302. The mechanical or ultrasonic energy may cause the elongated shaft 302 to flex and/or vibrate along the entire length thereof. The vibrational energy may cause the elongated shaft 302 to move back and forth in a direction 318 generally orthogonal to a longitudinal axis of the system 300. However, the elongated shaft 302 may vibrate in any other suitable directions known to those skilled in the art. The movement of the elongated shaft 302 may move the ablation transducers 316 back and forth within blood flow in the vessel, which may increase heat transfer from the transducers 316 to the blood, and thus cooling the ablation transducers 316. The movement of the elongated shaft 302 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins (e.g., along transducers 316).


The modulation system 300 may be advanced through the vasculature in any manner known in the art. For example, system 300 may include a guidewire lumen to allow the system 300 to be advanced over a previously located guidewire. In some embodiments, the modulation system 300 may be advanced, or partially advanced, within a guide sheath such as the catheter shaft 304. Once the ablation transducers 316 of the modulation system 300 have been placed adjacent to the desired treatment area, positioning mechanisms may be deployed, such as centering baskets, if so provided. While not explicitly shown, the ablation transducers 316 may be connected to a single control unit (such as control unit 18 in FIG. 1) by electrical conductors. As discussed above, the elongated shaft 302 may be connected to the driver 310 either electrically or mechanically. In some instances, the driver 310 may be configured to control the ablation transducers 316 as well. In other instances, the ablation transducers 316 and the elongated shaft 302 may be controlled by separate control units.


Once the modulation system 300 has been advanced to the treatment region, energy may be supplied to the ablation transducers 316. In some instances, energy may first be supplied to the ablation transducers 316. As the energy is radiated from the ablation transducers 316, the ablation transducers 316 may begin to heat. The modulation system 300 may use temperature sensors, or the monitoring means, to monitor the temperature or efficiency of the ablation transducers 316. Once the ablation transducers 316 have reached a predetermined criterion, vibrational energy may then be supplied to the elongated shaft 302 resulting in physical movement of the elongated shaft 302. As discussed above, the energy supplied to the elongated shaft may be electrical or mechanical. As the elongated shaft 302 moves, increased convection may transfer heat away from the ablation transducers 316. It is contemplated that energy may be supplied to the ablation transducers 316 and the elongated shaft 302 in an alternating fashion such that one is activated while the other is inactive. In other embodiments, the ablation transducers 316 and the elongated shaft 302 may be activated simultaneously. The amount of energy delivered to the ablation transducers 316 may be determined by the desired treatment as well as the feedback provided by the system 300.


In some instances, the elongate shaft 302 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a micro-motor or by spinning a drive shaft. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the ablation transducers 316 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the elongated shaft 302 is rotated at a given longitudinal location may be determined by the number and size of the ablation transducers 316 on the elongated shaft 302. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the elongated shaft 302 has been longitudinally repositioned, energy may once again be delivered to the ablation transducers 316 and the elongated shaft 302. If necessary, the elongated shaft 302 may be rotated to perform ablation around the circumference of the vessel at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 300 may include ablation transducers at various positions along the length of the modulation system 300 such that a larger region may be treated without longitudinal displacement of the elongated shaft 302.



FIG. 6 illustrates a distal end of another illustrative intravascular nerve modulation system 400 that may be similar in function to other systems disclosed herein. As shown, the modulation system 400 may include a catheter shaft 402 having a distal end region 406. The catheter shaft 402 may extend proximally to a point configured to remain outside of a patient's body. The proximal end of the catheter shaft 402 may include a hub attached thereto for connecting other treatment devices or providing a port for facilitating other treatments. It is contemplated that the stiffness of the catheter shaft 402 may be modified to form a modulation system 400 for use in various vessel diameters and various locations within the vascular tree. In addition, the catheter shaft 402 may include a lumen 404 extending between the proximal end region (not shown) and the distal end region 406. The catheter shaft 402 may further include one or more lumens (not explicitly shown) in addition to lumen 404 extending therethrough. For example, the catheter shaft 402 may include a guidewire lumen and/or one or more auxiliary lumens. The lumens may be configured in any suitable way such as those ways commonly used for medical device. For example, the guidewire lumen may extend the entire length of the catheter shaft 402 such as in an over-the-wire catheter or may extend only along a distal portion of the catheter shaft 404 such as in a single operator exchange (SOE) catheter. These examples are not intended to be limiting, but rather examples of some possible configurations. While not explicitly shown, the modulation system 400 may further include temperature sensor/wire, an infusion lumen, radiopaque marker bands, fixed guidewire tip, a guidewire lumen, external sheath, and/or other components to facilitate the use and advancement of the system 400 within the vasculature.


The modulation system may further include a bar element 408 extending distally from the distal end region 406 of the catheter shaft 402. In some embodiments, the bar element 408 may include a long, thin bar-shaped element. It may be contemplated that other suitable shapes such as, but limited to rectangular, square, cylindrical, oval, irregular, and so forth may be used, as desired. The bar element 408 may have a proximal end (not explicitly shown) bonded, clamped or otherwise secured to the distal end region 406 of the catheter shaft 402. The bar element 408 may be formed of a piezoelectric material, such as, but not limited to, lead zirconate titanate (PZT) or barium titanate. It is contemplated that other ceramic or piezoelectric materials known to those skilled in the art may also be used. In some embodiments, the bar element 408 may include any suitable flexible biocompatible material such as, but are not limited to, polymers, metals, alloys, either in combination or alone.


The modulation system 400 may further include a tension member 412, such a tension ribbon or tension wire, disposed adjacent to the bar element 408. The tension member 412 may include a distal end 414 and a proximal end (not explicitly shown). In some instances, the proximal end of the tension member 412 may extend proximally to a location exterior to the patient's body. The distal end 414 of the tension member 412 may be bonded, clamped, or otherwise secured to the distal end 410 of the bar element.


The system 400 may include one or more ablation transducers 416 mounted on the distal end region bar element 408. The ablation transducers 416 may be formed from any suitable material such as, but not limited to, lead zirconate titanate (PZT). It is contemplated that other ceramic or piezoelectric materials may also be used. The transducers 416 may have similar form and function to the transducers 208 discussed above. In some embodiments, there may be any number of ablation transducers 416 (one, two, three, four, or more) spaced about the circumference of the bar element 408. This may allow for ablation of multiple radial locations about the body lumen simultaneously. In other embodiments, the ablation transducers 416 may comprise a focused or phased array of transducers. The array may be configured to be directed at a focus region such that multiple transducers are radiating energy at a common target region. It is further contemplated that the ablation transducers 416 may comprise a plurality of longitudinally spaced transducers.


The ablation transducers 416 may be connected to a control unit 418 by an electrical conductor(s). In some embodiments, the electrical conductor(s) may be disposed within a lumen of the catheter shaft 402. In other embodiments, the electrical conductor(s) may extend along an outside surface of the catheter shaft 402. The electrical conductor(s) may provide electricity to the ablation transducers 416, which may then be converted into acoustic energy. The acoustic energy may be directed from the ablation transducers 416 in a direction generally perpendicular to the radiating surfaces of the transducers 416. As discussed above, acoustic energy radiates from the ablation transducers 416 in a pattern related to the shape of the transducers 416 and lesions formed during ablation take shape similar to contours of the pressure distribution.


The bar element 408 may also be connected to a control unit 418 by electrical and/or mechanical means 424. In some embodiments, the connection 424 may be disposed within a lumen of the catheter shaft 402. In other embodiments, the connection 424 may extend along an outside surface of the catheter shaft 402. In some instances, the connection 424 may provide electricity to the bar element 408 which may then be converted into vibrational energy. In other embodiments, the control unit 418 may include an oscillator, which may provide mechanical movement, ultrasonic or other vibration, which may be transmitted along the length of the connection 424 to the bar element 408. Exemplary oscillators may include a mechanical oscillator, acoustic oscillator, or other suitable oscillators known to those skilled in the art. In addition, those skilled in the art will appreciate that any other suitable drivers and/or energy sources may also be contemplated. In certain instances, the control unit 418 may include an electrical conductor (not explicitly shown), adapted to supply power to the ablation transducers 416. This power may thus facilitate ablation of surrounding tissue within a vasculature.


In some cases, a driver creates vibration energy, which vibrates the bar element 408 through connection 424 and tension member 412. The vibrational energy may cause the bar element 408 to move back and forth in a direction 422 generally parallel to a longitudinal axis of the system 400. However, the bar element 408 may vibrate in any other suitable directions known to those skilled in the art. Longitudinal vibration of the distal end 410 of the bar element 408 in direction 422 combined with fixation of the proximal end of the bar element 408 at the distal end region 406 of catheter shaft 402 may cause the bar element 408 to flex and/or buckle and vibrate in a direction 426 generally orthogonal to a longitudinal axis of the system 400. This may cause the bar element 408 to flex and/or buckle in a direction 426 generally orthogonal to a longitudinal axis of the system 400. For example, a central region of the bar element 408 may bend back and forth to form concave and convex configurations. The movement of the bar element 408 may move the ablation transducers 416 back and forth within blood flow in the vessel which may increase heat transfer from the transducers 416 to the blood, and thus cooling the ablation transducers 416. The movement of the bar element 408 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins (e.g., along transducers 416).


In some embodiments, the bar element 410 may be caused to flex and/or buckle in a direction 426 generally orthogonal to a longitudinal axis of the system 400 through actuation of the tension member 412. As discussed above, the tension member 412 may extend proximally through the lumen 404 of the catheter shaft to a location exterior to a patient's body. This may allow a user to manually actuate the tension member 412 in a piston-like push-pull manner to cause the bar element 410 to flex. As the tension member 412 is pulled proximally, the distal end 414 of the tension member 412 which is attached to the distal end of the bar element 410 may be moved proximally. This may cause the distal end of the bar element to move proximally as well. As the proximal end of the bar element 410 is fixedly secured, the bar element 410 is not longitudinally displaced with the tension member 412. As such, a central region of the bar element 408 may bend to form concave and/or convex configuration. As the tension member 412 is advanced distally, the bar element 408 may relax and return to a generally straight configuration. The movement of the bar element 408 may move the ablation transducers 416 back and forth within blood flow in the vessel which may increase heat transfer from the transducers 416 to the blood, and thus cooling the ablation transducers 416. The movement of the bar element 408 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins (e.g., along transducers 416). It is further contemplated that the proximal end of the tension member 412 may be attached to a driver, such as driver 418, to automatically drive the push-pull actuation of the tension member 412.


The system 400 may be configured to operate at a first frequency for causing physical movement of the bar element 408 and a second frequency for performing tissue modulation. Here, the first frequency may include a low frequency that may provide physical movement to the bar element 408, thus providing cooling to the ablation transducers 416, as discussed above. It is contemplated that the first frequency may range from about 10 KHz to 200 KHz. It is further contemplated that the first frequency may include various other frequency ranges, as desired, based upon the physical affects produced. The second frequency may include a high frequency, which may ablate the target tissue. The second frequency may range from about 9-10 megahertz (MHz). It is contemplated that any desired frequency may be used, for example, from 1-20 MHz beyond. In general, the second frequency may be higher than the first frequency. The reverse configuration may also be utilized.


In other embodiments, such as when a piezoelectric material is not used for the bar element 408, mechanical vibrations may be supplied to the bar element 408. For example, in some instances, the control unit 418 may supply a mechanical or ultrasonic energy to the bar element 408. The mechanical or ultrasonic energy may cause the bar element 408 to flex and/or vibrate along the entire length thereof. The vibrational energy may cause the bar element 408 to move back and forth in a direction 422 generally parallel to a longitudinal axis of the system 400. However, the bar element 408 may vibrate in any other suitable directions known to those skilled in the art. As the bar element 408 is longitudinally secured at both its proximal end and distal end 410, longitudinal vibration of the bar element 408 is prevented. This may cause the bar element 408 to flex and/or buckle in a direction 426 generally orthogonal to a longitudinal axis of the system 400. For example, a central region of the bar element 408 may bend back and forth to form concave and convex configurations. The movement of the bar element 408 may move the ablation transducers 416 back and forth within blood flow in the vessel which may increase heat transfer from the transducers 416 to the blood, and thus cooling the ablation transducers 416. The movement of the bar element 408 may also increase mixing of the blood, as well as reducing build-up of clots and/or other proteins.


The modulation system 400 may be advanced through the vasculature in any manner known in the art. For example, system 400 may include a guidewire lumen to allow the system 400 to be advanced over a previously located guidewire. In some embodiments, the modulation system 400 may be advanced, or partially advanced, within a guide sheath, such as the sheath 16 shown in FIG. 1. Once the ablation transducers 416 of the modulation system 400 have been placed adjacent to the desired treatment area, positioning mechanisms may be deployed, such as centering baskets, if so provided. While not explicitly shown, the ablation transducers 416 may be connected to a control unit 418 by electrical conductors. As discussed above, the bar element 408 may be connected to the control unit 418 either electrically or mechanically. In some instances, the control unit 418 may be configured to control the ablation transducers 416 as well the bar element 408. In other instances, the ablation transducers 416 and the bar element 408 may be controlled by separate control units.


Once the modulation system 400 has been advanced to the treatment region, energy may be supplied to the ablation transducers 416. In some instances, energy may first be supplied to the ablation transducers 416. As the energy is radiated from the ablation transducers 416, the ablation transducers 416 may begin to heat. The modulation system 400 may use temperature sensors, or the monitoring means, to monitor the temperature or efficiency of the ablation transducers 416. Once the ablation transducers 416 have reached a predetermined criteria, energy may then be supplied to the bar element 408 resulting in physical movement of the bar element 408. As discussed above, the energy supplied to the elongated shaft may be electrical or mechanical. As the bar element 408 moves, increased convection may transfer heat away from the ablation transducers 416. It is contemplated that energy may be supplied to the ablation transducers 416 and the bar element 408 in an alternating fashion such that one is activated while the other is inactive. In other embodiments, the ablation transducers 416 and the bar element 408 may be activated simultaneously. The amount of energy delivered to the ablation transducers 416 may be determined by the desired treatment as well as the feedback provided by the system 400.


In some instances, the catheter shaft 402 may be rotated and additional ablation can be performed at multiple locations around the circumference of the vessel. In some instances, a slow automated “rotisserie” rotation can be used to work around the circumference of the vessel, or a faster spinning can be used to simultaneously ablate around the entire circumference. The spinning can be accomplished with a micro-motor or by spinning a drive shaft. In some embodiments, ultrasound sensor information can be used to selectively turn on and off the ablation transducers 416 to warm any cool spots or accommodate for veins, or other tissue variations. The number of times the catheter shaft 402 is rotated at a given longitudinal location may be determined by the number and size of the ablation transducers 416 on the bar element 408. Once a particular location has been ablated, it may be desirable to perform further ablation procedures at different longitudinal locations. Once the catheter shaft 402 has been longitudinally repositioned, energy may once again be delivered to the ablation transducers 416 and the bar element 408. If necessary, the catheter shaft 402 may be rotated to perform ablation around the circumference of the vessel at each longitudinal location. This process may be repeated at any number of longitudinal locations desired. It is contemplated that in some embodiments, the system 400 may include ablation transducers at various positions along the length of the modulation system 400 such that a larger region may be treated without longitudinal displacement of the catheter shaft 402.


Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. A tissue modulation system, comprising: an elongated shaft having a proximal end region and a distal end region;a control unit positioned adjacent the proximal end region of the elongated shaft;a bar element connected to the control unit and extending distally from the distal end region of the elongated shaft;a tension member extending adjacent to the bar element, the tension member configured to extend proximally to a location exterior to a patient's body during intravascular nerve modulation; andone or more ablation transducers affixed to the bar element and electrically connected to the control unit;wherein the control unit is configured to intermittently activate the bar element and the one or more ablation transducers in an alternating fashion;and wherein the control unit is configured to vibrate the bar element at a first frequency in a range of 10 kHz to 200 kHz.
  • 2. The tissue modulation system of claim 1, wherein the one or more ablation transducers are configured to operate at a second frequency different from the first frequency.
  • 3. The tissue modulation system of claim 1, wherein a proximal end of the bar element is attached to a distal end of the elongated shaft.
  • 4. The tissue modulation system of claim 1, wherein the one or more ablation transducers are configured to radiate acoustic energy from at least one side surface.
  • 5. The tissue modulation system of claim 1, wherein the one or more ablation transducers affixed to the bar element are positioned on a side of the bar element opposite the tension member.
  • 6. The tissue modulation system of claim 1, wherein the control unit is configured to vibrate the bar element in a direction generally parallel to a longitudinal axis of the catheter shaft.
  • 7. The tissue modulation system of claim 6, wherein vibration of the bar element causes the bar element to buckle in a direction generally orthogonal to the longitudinal axis of the catheter shaft.
  • 8. A tissue modulation system, comprising: a catheter shaft having a proximal end region, a distal end region, and a lumen extending therebetween;a control unit positioned adjacent the proximal end region of the catheter shaft;a bar element having a proximal end region and a distal end region, the bar element disposed adjacent to the distal end region of the catheter shaft;a tension member extending adjacent to the bar element, the tension member configured to extend proximally to a location exterior to a patient's body during tissue modulation; andone or more ablation transducers secured to the distal end region of the bar element and electrically connected to the control unit;wherein the bar element is connected to the control unit;wherein the control unit is configured to vibrate the bar element in a direction generally parallel to a longitudinal axis of the catheter shaft;wherein the control unit is configured to intermittently activate the bar element and the one or more ablation transducers in an alternating fashion; andwherein the control unit is configured to vibrate the bar element at a first frequency in a range of 10 kHz to 200 kHz.
  • 9. The tissue modulation system of claim 8, wherein the control unit is a mechanical oscillator or an ultrasonic oscillator.
  • 10. The tissue modulation system of claim 8, wherein the tension member is fixedly secured to a distal end of the bar element.
  • 11. The tissue modulation system of claim 8, wherein proximal and distal actuation of the tension member causes the bar element to flex and relax.
  • 12. The tissue modulation system of claim 11, wherein the bar element is configured to be flexed in a direction generally orthogonal to a longitudinal axis of the catheter shaft.
  • 13. The tissue modulation system of claim 10, wherein the tension member limits longitudinal vibration of the bar element causing a central portion of the bar element to buckle.
  • 14. The tissue modulation system of claim 8, wherein the one or more ablation transducers secured to the distal end region of the bar element are positioned on a side of the bar element opposite the tension member.
  • 15. The tissue modulation system of claim 8, wherein vibration of the bar element causes the bar element to buckle in a direction generally orthogonal to the longitudinal axis of the catheter shaft.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. § 119 to U.S. Provisional Ser. No. 61/704,205, filed Sep. 21, 2012, the entirety of which is incorporated herein by reference.

US Referenced Citations (1481)
Number Name Date Kind
164184 Kiddee Jun 1875 A
1167014 O'Brien Jan 1916 A
2505358 Gusberg Apr 1950 A
2701559 Cooper Feb 1955 A
3108593 Glassman Oct 1963 A
3108594 Glassman Oct 1963 A
3540431 Mobin Nov 1970 A
3952747 Kimmell Apr 1976 A
3996938 Clark, III Dec 1976 A
4046150 Schwartz et al. Sep 1977 A
4290427 Chin Sep 1981 A
4402686 Medel Sep 1983 A
4483341 Witteles et al. Nov 1984 A
4574804 Kurwa Mar 1986 A
4587975 Salo et al. May 1986 A
4649936 Ungar et al. Mar 1987 A
4682596 Bales et al. Jul 1987 A
4709698 Johnston et al. Dec 1987 A
4765331 Petruzzi et al. Aug 1988 A
4770653 Shturman Sep 1988 A
4784132 Fox et al. Nov 1988 A
4784162 Ricks et al. Nov 1988 A
4785806 Deckelbaum et al. Nov 1988 A
4788975 Shturman et al. Dec 1988 A
4790310 Ginsburg et al. Dec 1988 A
4799479 Spears Jan 1989 A
4823791 D'Amelio et al. Apr 1989 A
4830003 Wolff et al. May 1989 A
4849484 Heard Jul 1989 A
4862886 Clarke et al. Sep 1989 A
4887605 Angelsen et al. Dec 1989 A
4920979 Bullara et al. May 1990 A
4938766 Jarvik Jul 1990 A
4955377 Lennox et al. Sep 1990 A
4976711 Parins et al. Dec 1990 A
5034010 Kittrell et al. Jul 1991 A
5052402 Bencini et al. Oct 1991 A
5053033 Clarke et al. Oct 1991 A
5071424 Reger et al. Dec 1991 A
5074871 Groshong et al. Dec 1991 A
5098429 Sterzer et al. Mar 1992 A
5098431 Rydell Mar 1992 A
5109859 Jenkins May 1992 A
5125928 Parins et al. Jun 1992 A
5129396 Rosen et al. Jul 1992 A
5139496 Hed Aug 1992 A
5143836 Hartman et al. Sep 1992 A
5156610 Reger et al. Oct 1992 A
5158564 Schnepp-Pesch Oct 1992 A
5170802 Mehra Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5178625 Groshong et al. Jan 1993 A
5190540 Lee Mar 1993 A
5211651 Reger et al. May 1993 A
5234407 Teirstein Aug 1993 A
5242441 Avitall Sep 1993 A
5251634 Weinberg et al. Oct 1993 A
5255679 Imran Oct 1993 A
5263493 Avitall Nov 1993 A
5267954 Nita et al. Dec 1993 A
5277201 Stern et al. Jan 1994 A
5282484 Reger et al. Feb 1994 A
5286254 Shapland et al. Feb 1994 A
5295484 Marcus Mar 1994 A
5297564 Love et al. Mar 1994 A
5300068 Rosar et al. Apr 1994 A
5301683 Durkan Apr 1994 A
5304115 Pflueger et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304171 Gregory et al. Apr 1994 A
5304173 Kittrell et al. Apr 1994 A
5306250 March et al. Apr 1994 A
5312328 Nita et al. May 1994 A
5314466 Stern et al. May 1994 A
5322064 Lundquist Jun 1994 A
5324255 Passafaro et al. Jun 1994 A
5326341 Lew et al. Jul 1994 A
5326342 Pflueger et al. Jul 1994 A
5330518 Neilson et al. Jul 1994 A
5333614 Feiring Aug 1994 A
5342292 Nita et al. Aug 1994 A
5344395 Whalen et al. Sep 1994 A
5364392 Warner et al. Nov 1994 A
5365172 Hrovat et al. Nov 1994 A
5368557 Nita et al. Nov 1994 A
5368558 Nita et al. Nov 1994 A
5380274 Nita et al. Jan 1995 A
5380319 Saito et al. Jan 1995 A
5382228 Nita et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5397301 Pflueger et al. Mar 1995 A
5397339 Desai Mar 1995 A
5401272 Perkins et al. Mar 1995 A
5403311 Abele et al. Apr 1995 A
5405318 Nita et al. Apr 1995 A
5405346 Grundy et al. Apr 1995 A
5409000 Imran Apr 1995 A
5417672 Nita et al. May 1995 A
5419767 Eggers et al. May 1995 A
5427118 Nita et al. Jun 1995 A
5432876 Appeldorn et al. Jul 1995 A
5441498 Perkins et al. Aug 1995 A
5447509 Mills et al. Sep 1995 A
5451207 Yock et al. Sep 1995 A
5453091 Taylor et al. Sep 1995 A
5454788 Walker et al. Oct 1995 A
5454809 Janssen Oct 1995 A
5455029 Hartman et al. Oct 1995 A
5456682 Edwards et al. Oct 1995 A
5457042 Hartman et al. Oct 1995 A
5471982 Edwards et al. Dec 1995 A
5471988 Fujio Dec 1995 A
5474530 Passafaro et al. Dec 1995 A
5478351 Meade et al. Dec 1995 A
5496311 Abele et al. Mar 1996 A
5496312 Klicek et al. Mar 1996 A
5498261 Strul Mar 1996 A
5505201 Grill et al. Apr 1996 A
5505730 Edwards Apr 1996 A
5507744 Tay et al. Apr 1996 A
5522873 Jackman et al. Jun 1996 A
5531520 Grimson et al. Jul 1996 A
5540656 Pflueger et al. Jul 1996 A
5540679 Fram et al. Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542917 Nita et al. Aug 1996 A
5545161 Imran Aug 1996 A
5562100 Kittrell et al. Oct 1996 A
5571122 Kelly et al. Nov 1996 A
5571151 Gregory Nov 1996 A
5573531 Gregory et al. Nov 1996 A
5573533 Strul Nov 1996 A
5584831 McKay Dec 1996 A
5584872 Lafontaine et al. Dec 1996 A
5588962 Nicholas et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5601526 Chapelon et al. Feb 1997 A
5609606 O'Boyle et al. Mar 1997 A
5626576 Janssen May 1997 A
5630837 Crowley May 1997 A
5637090 McGee et al. Jun 1997 A
5643255 Organ Jul 1997 A
5643297 Nordgren et al. Jul 1997 A
5647847 Lafontaine et al. Jul 1997 A
5649923 Gregory et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653684 Laptewicz et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5665062 Houser Sep 1997 A
5665098 Kelly et al. Sep 1997 A
5666964 Meilus Sep 1997 A
5667490 Keith et al. Sep 1997 A
5672174 Gough et al. Sep 1997 A
5676693 Lafontaine Oct 1997 A
5678296 Fleischhacker Oct 1997 A
5681282 Eggers et al. Oct 1997 A
RE35656 Feinberg Nov 1997 E
5688266 Edwards et al. Nov 1997 A
5693015 Walker et al. Dec 1997 A
5693029 Leonhardt et al. Dec 1997 A
5693043 Kittrell et al. Dec 1997 A
5693082 Warner et al. Dec 1997 A
5695504 Gifford et al. Dec 1997 A
5697369 Long, Jr. et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5702433 Taylor et al. Dec 1997 A
5706809 Littmann et al. Jan 1998 A
5713942 Stern et al. Feb 1998 A
5715819 Svenson et al. Feb 1998 A
5735846 Panescu et al. Apr 1998 A
5741214 Ouchi et al. Apr 1998 A
5741248 Stern et al. Apr 1998 A
5741249 Moss et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5748347 Erickson May 1998 A
5749914 Janssen May 1998 A
5755682 Knudson et al. May 1998 A
5755715 Stern et al. May 1998 A
5755753 Knowlton et al. May 1998 A
5769847 Panescu et al. Jun 1998 A
5769880 Truckai et al. Jun 1998 A
5775338 Hastings Jul 1998 A
5776174 Van Tassel Jul 1998 A
5779698 Clayman et al. Jul 1998 A
5782760 Schaer Jul 1998 A
5785702 Murphy et al. Jul 1998 A
5797849 Vesely et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800484 Gough et al. Sep 1998 A
5800494 Campbell et al. Sep 1998 A
5810802 Panescu et al. Sep 1998 A
5810803 Moss et al. Sep 1998 A
5810810 Tay et al. Sep 1998 A
5817092 Behl Oct 1998 A
5817113 Gifford et al. Oct 1998 A
5817144 Gregory et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827203 Nita et al. Oct 1998 A
5827268 Laufer Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5830213 Panescu et al. Nov 1998 A
5830222 Makower Nov 1998 A
5832228 Holden et al. Nov 1998 A
5833593 Liprie Nov 1998 A
5836874 Swanson et al. Nov 1998 A
5840076 Swanson et al. Nov 1998 A
5843016 Lugnani et al. Dec 1998 A
5846238 Jackson et al. Dec 1998 A
5846239 Swanson et al. Dec 1998 A
5846245 McCarthy et al. Dec 1998 A
5848969 Panescu et al. Dec 1998 A
5853411 Whayne et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860974 Abele Jan 1999 A
5865801 Houser Feb 1999 A
5868735 Lafontaine et al. Feb 1999 A
5868736 Swanson et al. Feb 1999 A
5871483 Jackson et al. Feb 1999 A
5871524 Knowlton et al. Feb 1999 A
5875782 Ferrari et al. Mar 1999 A
5876369 Houser Mar 1999 A
5876374 Alba et al. Mar 1999 A
5876397 Edelman et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5891114 Chien et al. Apr 1999 A
5891135 Jackson et al. Apr 1999 A
5891136 McGee et al. Apr 1999 A
5891138 Tu et al. Apr 1999 A
5895378 Nita Apr 1999 A
5897552 Edwards et al. Apr 1999 A
5902328 Lafontaine et al. May 1999 A
5904651 Swanson et al. May 1999 A
5904667 Falwell et al. May 1999 A
5904697 Gifford et al. May 1999 A
5904709 Arndt et al. May 1999 A
5906614 Stern et al. May 1999 A
5906623 Peterson May 1999 A
5906636 Casscells et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5916227 Keith et al. Jun 1999 A
5916239 Geddes et al. Jun 1999 A
5919219 Knowlton et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5925038 Panescu et al. Jul 1999 A
5931805 Brisken Aug 1999 A
5934284 Plaia et al. Aug 1999 A
5935063 Nguyen Aug 1999 A
5938670 Keith et al. Aug 1999 A
5947977 Slepian et al. Sep 1999 A
5948011 Knowlton et al. Sep 1999 A
5951494 Wang et al. Sep 1999 A
5951539 Nita et al. Sep 1999 A
5954717 Behl et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream et al. Sep 1999 A
5957969 Warner et al. Sep 1999 A
5961513 Swanson et al. Oct 1999 A
5964757 Ponzi et al. Oct 1999 A
5967976 Larsen et al. Oct 1999 A
5967978 Littmann et al. Oct 1999 A
5967984 Chu et al. Oct 1999 A
5971975 Mills et al. Oct 1999 A
5972026 Laufer et al. Oct 1999 A
5980563 Tu et al. Nov 1999 A
5989208 Nita et al. Nov 1999 A
5989284 Laufer Nov 1999 A
5993462 Pomeranz et al. Nov 1999 A
5997497 Nita et al. Dec 1999 A
5999678 Murphy et al. Dec 1999 A
6004269 Crowley et al. Dec 1999 A
6004316 Laufer et al. Dec 1999 A
6007514 Nita Dec 1999 A
6010522 Barbut et al. Jan 2000 A
6013033 Berger et al. Jan 2000 A
6014590 Whayne et al. Jan 2000 A
6022309 Celliers et al. Feb 2000 A
6024740 Lesh Feb 2000 A
6030611 Gorecki et al. Feb 2000 A
6032675 Rubinsky et al. Mar 2000 A
6033397 Laufer et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6036689 Tu et al. Mar 2000 A
6041260 Stern et al. Mar 2000 A
6050994 Sherman et al. Apr 2000 A
6056744 Edwards May 2000 A
6056746 Goble et al. May 2000 A
6063085 Tay et al. May 2000 A
6066096 Smith et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068638 Makower May 2000 A
6068653 Lafontaine May 2000 A
6071277 Farley et al. Jun 2000 A
6071278 Panescu et al. Jun 2000 A
6078839 Carson Jun 2000 A
6079414 Roth Jun 2000 A
6080171 Keith et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6086581 Reynolds et al. Jul 2000 A
6093166 Knudson et al. Jul 2000 A
6096021 Helm et al. Aug 2000 A
6099526 Whayne et al. Aug 2000 A
6102908 Tu et al. Aug 2000 A
6106477 Miesel et al. Aug 2000 A
6110187 Donlon et al. Aug 2000 A
6114311 Parmacek et al. Sep 2000 A
6117101 Diederich et al. Sep 2000 A
6117128 Gregory Sep 2000 A
6120476 Fung et al. Sep 2000 A
6120516 Selmon et al. Sep 2000 A
6121775 Pearlman Sep 2000 A
6123679 Lafaut et al. Sep 2000 A
6123682 Knudson et al. Sep 2000 A
6123702 Swanson et al. Sep 2000 A
6123703 Tu et al. Sep 2000 A
6123718 Tu et al. Sep 2000 A
6129725 Tu et al. Oct 2000 A
6135997 Laufer et al. Oct 2000 A
6142991 Schatzberger et al. Nov 2000 A
6142993 Whayne et al. Nov 2000 A
6149647 Tu et al. Nov 2000 A
6152899 Farley et al. Nov 2000 A
6152912 Jansen et al. Nov 2000 A
6156046 Passafaro et al. Dec 2000 A
6158250 Tibbals et al. Dec 2000 A
6159187 Park et al. Dec 2000 A
6159225 Makower Dec 2000 A
6161048 Sluijter et al. Dec 2000 A
6162184 Swanson et al. Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165172 Farley et al. Dec 2000 A
6165187 Reger et al. Dec 2000 A
6168594 Lafontaine et al. Jan 2001 B1
6171321 Gifford, III et al. Jan 2001 B1
6179832 Jones et al. Jan 2001 B1
6179835 Panescu et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6183468 Swanson et al. Feb 2001 B1
6183486 Snow et al. Feb 2001 B1
6190379 Heuser et al. Feb 2001 B1
6191862 Swanson et al. Feb 2001 B1
6197021 Panescu et al. Mar 2001 B1
6200266 Shokrollahi et al. Mar 2001 B1
6203537 Adrian Mar 2001 B1
6203561 Ramee et al. Mar 2001 B1
6210406 Webster Apr 2001 B1
6211247 Goodman Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6219577 Brown, III et al. Apr 2001 B1
6228076 Winston et al. May 2001 B1
6228109 Tu et al. May 2001 B1
6231516 Keilman et al. May 2001 B1
6231587 Makower May 2001 B1
6235044 Root et al. May 2001 B1
6236883 Ciaccio et al. May 2001 B1
6237605 Vaska et al. May 2001 B1
6238389 Paddock et al. May 2001 B1
6238392 Long May 2001 B1
6241666 Pomeranz et al. Jun 2001 B1
6241753 Knowlton Jun 2001 B1
6245020 Moore et al. Jun 2001 B1
6245045 Stratienko Jun 2001 B1
6248126 Lesser et al. Jun 2001 B1
6251128 Knopp et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6273886 Edwards et al. Aug 2001 B1
6280466 Kugler et al. Aug 2001 B1
6283935 Laufer et al. Sep 2001 B1
6283959 Lalonde et al. Sep 2001 B1
6284743 Parmacek et al. Sep 2001 B1
6287323 Hammerslag Sep 2001 B1
6290696 Lafontaine Sep 2001 B1
6292695 Webster, Jr. et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293943 Panescu et al. Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6298256 Meyer Oct 2001 B1
6299379 Lewis Oct 2001 B1
6299623 Wulfman Oct 2001 B1
6309379 Willard et al. Oct 2001 B1
6309399 Barbut et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6317615 KenKnight et al. Nov 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319251 Tu et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6325797 Stewart et al. Dec 2001 B1
6325799 Goble Dec 2001 B1
6328699 Eigler et al. Dec 2001 B1
6346074 Roth Feb 2002 B1
6346104 Daly et al. Feb 2002 B2
6350248 Knudson et al. Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6353751 Swanson et al. Mar 2002 B1
6355029 Joye et al. Mar 2002 B1
6357447 Swanson et al. Mar 2002 B1
6361519 Knudson et al. Mar 2002 B1
6364840 Crowley Apr 2002 B1
6371965 Gifford, III et al. Apr 2002 B2
6375668 Gifford et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6379352 Reynolds et al. Apr 2002 B1
6379373 Sawhney et al. Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6383151 Diederich et al. May 2002 B1
6387105 Gifford, III et al. May 2002 B1
6387380 Knowlton May 2002 B1
6389311 Whayne et al. May 2002 B1
6389314 Feiring May 2002 B2
6391024 Sun et al. May 2002 B1
6394096 Constantz May 2002 B1
6394956 Chandrasekaran et al. May 2002 B1
6398780 Farley et al. Jun 2002 B1
6398782 Pecor et al. Jun 2002 B1
6398792 O'Connor Jun 2002 B1
6401720 Stevens et al. Jun 2002 B1
6402719 Ponzi et al. Jun 2002 B1
6405090 Knowlton Jun 2002 B1
6409723 Edwards Jun 2002 B1
6413255 Stern Jul 2002 B1
6421559 Pearlman Jul 2002 B1
6423057 He et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6427118 Suzuki Jul 2002 B1
6428534 Joye et al. Aug 2002 B1
6428536 Panescu et al. Aug 2002 B2
6430446 Knowlton Aug 2002 B1
6432102 Joye et al. Aug 2002 B2
6436056 Wang et al. Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440125 Rentrop Aug 2002 B1
6442413 Silver Aug 2002 B1
6443965 Gifford, III et al. Sep 2002 B1
6445939 Swanson et al. Sep 2002 B1
6447505 McGovern et al. Sep 2002 B2
6447509 Bonnet et al. Sep 2002 B1
6451034 Gifford, III et al. Sep 2002 B1
6451044 Naghavi et al. Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6454737 Nita et al. Sep 2002 B1
6454757 Nita et al. Sep 2002 B1
6454775 Demarais et al. Sep 2002 B1
6458098 Kanesaka Oct 2002 B1
6461378 Knowlton Oct 2002 B1
6468276 McKay Oct 2002 B1
6468297 Williams et al. Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6470219 Edwards et al. Oct 2002 B1
6471696 Berube et al. Oct 2002 B1
6475213 Whayne et al. Nov 2002 B1
6475215 Tanrisever Nov 2002 B1
6475238 Fedida et al. Nov 2002 B1
6477426 Fenn et al. Nov 2002 B1
6480745 Nelson et al. Nov 2002 B2
6481704 Koster et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6484052 Visuri et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6488679 Swanson et al. Dec 2002 B1
6489307 Phillips et al. Dec 2002 B1
6491705 Gifford, III et al. Dec 2002 B2
6494891 Cornish et al. Dec 2002 B1
6497711 Plaia et al. Dec 2002 B1
6500172 Panescu et al. Dec 2002 B1
6500174 Maguire et al. Dec 2002 B1
6508765 Suorsa et al. Jan 2003 B2
6508804 Sarge et al. Jan 2003 B2
6508815 Strul et al. Jan 2003 B1
6511478 Burnside et al. Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511500 Rahme Jan 2003 B1
6514236 Stratienko Feb 2003 B1
6514245 Williams et al. Feb 2003 B1
6514248 Eggers et al. Feb 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517572 Kugler et al. Feb 2003 B2
6522913 Swanson et al. Feb 2003 B2
6522926 Kieval et al. Feb 2003 B1
6524299 Tran et al. Feb 2003 B1
6527765 Kelman et al. Mar 2003 B2
6527769 Langberg et al. Mar 2003 B2
6540761 Houser Apr 2003 B2
6542781 Koblish et al. Apr 2003 B1
6544780 Wang Apr 2003 B1
6546272 MacKinnon et al. Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6549800 Atalar et al. Apr 2003 B1
6552796 Magnin et al. Apr 2003 B2
6554780 Sampson et al. Apr 2003 B1
6558381 Ingle et al. May 2003 B2
6558382 Jahns et al. May 2003 B2
6564096 Mest May 2003 B2
6565582 Gifford, III et al. May 2003 B2
6569109 Sakurai et al. May 2003 B2
6569177 Dillard et al. May 2003 B1
6570659 Schmitt May 2003 B2
6572551 Smith et al. Jun 2003 B1
6572612 Stewart et al. Jun 2003 B2
6577902 Laufer et al. Jun 2003 B1
6579308 Jansen et al. Jun 2003 B1
6579311 Makower Jun 2003 B1
6582423 Thapliyal et al. Jun 2003 B1
6589238 Edwards et al. Jul 2003 B2
6592526 Lenker Jul 2003 B1
6592567 Levin et al. Jul 2003 B1
6595959 Stratienko Jul 2003 B1
6600956 Maschino et al. Jul 2003 B2
6602242 Fung Aug 2003 B1
6602246 Joye et al. Aug 2003 B1
6605084 Acker et al. Aug 2003 B2
6623452 Chien et al. Sep 2003 B2
6623453 Guibert et al. Sep 2003 B1
6632193 Davison et al. Oct 2003 B1
6632196 Houser Oct 2003 B1
6645223 Boyle et al. Nov 2003 B2
6648854 Patterson et al. Nov 2003 B1
6648878 Lafontaine Nov 2003 B2
6648879 Joye et al. Nov 2003 B2
6651672 Roth Nov 2003 B2
6652513 Panescu et al. Nov 2003 B2
6652515 Maguire et al. Nov 2003 B1
6656136 Weng et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6659981 Stewart et al. Dec 2003 B2
6666858 Lafontaine Dec 2003 B2
6666863 Wentzel et al. Dec 2003 B2
6669655 Acker et al. Dec 2003 B1
6669692 Nelson et al. Dec 2003 B1
6673040 Samson et al. Jan 2004 B1
6673064 Rentrop Jan 2004 B1
6673066 Werneth Jan 2004 B2
6673090 Root et al. Jan 2004 B2
6673101 Fitzgerald et al. Jan 2004 B1
6673290 Whayne et al. Jan 2004 B1
6676678 Gifford, III et al. Jan 2004 B2
6679268 Stevens et al. Jan 2004 B2
6681773 Murphy et al. Jan 2004 B2
6682541 Gifford, III et al. Jan 2004 B1
6684098 Oshio et al. Jan 2004 B2
6685732 Kramer Feb 2004 B2
6685733 Dae et al. Feb 2004 B1
6689086 Nita et al. Feb 2004 B1
6689148 Sawhney et al. Feb 2004 B2
6690181 Dowdeswell et al. Feb 2004 B1
6692490 Edwards Feb 2004 B1
6695830 Vigil et al. Feb 2004 B2
6695857 Gifford, III et al. Feb 2004 B2
6699241 Rappaport et al. Mar 2004 B2
6699257 Gifford, III et al. Mar 2004 B2
6702748 Nita et al. Mar 2004 B1
6702811 Stewart et al. Mar 2004 B2
6706010 Miki et al. Mar 2004 B1
6706011 Murphy-Chutorian et al. Mar 2004 B1
6706037 Zvuloni et al. Mar 2004 B2
6709431 Lafontaine Mar 2004 B2
6711429 Gilboa et al. Mar 2004 B1
6712815 Sampson et al. Mar 2004 B2
6714822 King et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6720350 Kunz et al. Apr 2004 B2
6723043 Kleeman et al. Apr 2004 B2
6723064 Babaev Apr 2004 B2
6736811 Panescu et al. May 2004 B2
6743184 Sampson et al. Jun 2004 B2
6746401 Panescu Jun 2004 B2
6746464 Makower Jun 2004 B1
6746474 Saadat Jun 2004 B2
6748953 Sherry et al. Jun 2004 B2
6749607 Edwards et al. Jun 2004 B2
6752805 Maguire et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6763261 Casscells, III et al. Jul 2004 B2
6764501 Ganz Jul 2004 B2
6769433 Zikorus et al. Aug 2004 B2
6770070 Balbierz Aug 2004 B1
6771996 Bowe et al. Aug 2004 B2
6773433 Stewart et al. Aug 2004 B2
6786900 Joye et al. Sep 2004 B2
6786901 Joye et al. Sep 2004 B2
6786904 Döscher et al. Sep 2004 B2
6788977 Fenn et al. Sep 2004 B2
6790206 Panescu Sep 2004 B2
6790222 Kugler et al. Sep 2004 B2
6796981 Wham et al. Sep 2004 B2
6797933 Mendis et al. Sep 2004 B1
6797960 Spartiotis et al. Sep 2004 B1
6800075 Mische et al. Oct 2004 B2
6802857 Walsh et al. Oct 2004 B1
6807444 Tu et al. Oct 2004 B2
6811550 Holland et al. Nov 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814730 Li Nov 2004 B2
6814733 Schwartz et al. Nov 2004 B2
6823205 Jara Nov 2004 B1
6824516 Batten et al. Nov 2004 B2
6827726 Parodi Dec 2004 B2
6827926 Robinson et al. Dec 2004 B2
6829497 Mogul Dec 2004 B2
6830568 Kesten et al. Dec 2004 B1
6837886 Collins et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6845267 Harrison Jan 2005 B2
6847848 Sterzer Jan 2005 B2
6849073 Hoey et al. Feb 2005 B2
6849075 Bertolero et al. Feb 2005 B2
6853425 Kim et al. Feb 2005 B2
6855123 Nita Feb 2005 B2
6855143 Davison Feb 2005 B2
6869431 Maguire et al. Mar 2005 B2
6872183 Sampson et al. Mar 2005 B2
6884260 Kugler et al. Apr 2005 B2
6889694 Hooven May 2005 B2
6893436 Woodard et al. May 2005 B2
6895077 Karellas et al. May 2005 B2
6895265 Silver May 2005 B2
6898454 Atalar et al. May 2005 B2
6899711 Stewart et al. May 2005 B2
6899718 Gifford, III et al. May 2005 B2
6905494 Yon et al. Jun 2005 B2
6908462 Joye et al. Jun 2005 B2
6909009 Koridze Jun 2005 B2
6911026 Hall et al. Jun 2005 B1
6915806 Pacek et al. Jul 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926246 Ginggen Aug 2005 B2
6926713 Rioux et al. Aug 2005 B2
6926716 Baker et al. Aug 2005 B2
6929009 Makower et al. Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929639 Lafontaine Aug 2005 B2
6932776 Carr Aug 2005 B2
6936047 Nasab et al. Aug 2005 B2
6942620 Nita et al. Sep 2005 B2
6942657 Sinofsky et al. Sep 2005 B2
6942677 Nita et al. Sep 2005 B2
6942692 Landau et al. Sep 2005 B2
6949097 Stewart et al. Sep 2005 B2
6949121 Laguna Sep 2005 B1
6952615 Satake Oct 2005 B2
6953425 Brister Oct 2005 B2
6955174 Joye et al. Oct 2005 B2
6955175 Stevens et al. Oct 2005 B2
6959711 Murphy et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6962584 Stone et al. Nov 2005 B1
6964660 Maguire et al. Nov 2005 B2
6966908 Maguire et al. Nov 2005 B2
6972015 Joye et al. Dec 2005 B2
6972024 Kilpatrick et al. Dec 2005 B1
6974456 Edwards et al. Dec 2005 B2
6978174 Gelfand et al. Dec 2005 B2
6979329 Burnside et al. Dec 2005 B2
6979420 Weber Dec 2005 B2
6984238 Gifford, III et al. Jan 2006 B2
6985774 Kieval et al. Jan 2006 B2
6986739 Warren et al. Jan 2006 B2
6989009 Lafontaine Jan 2006 B2
6989010 Francischelli et al. Jan 2006 B2
6991617 Hektner et al. Jan 2006 B2
7001378 Yon et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7022105 Edwards Apr 2006 B1
7022120 Lafontaine Apr 2006 B2
7025767 Schaefer et al. Apr 2006 B2
7033322 Silver Apr 2006 B2
7033372 Cahalan Apr 2006 B1
7041098 Farley et al. May 2006 B2
7050848 Hoey et al. May 2006 B2
7063670 Sampson et al. Jun 2006 B2
7063679 Maguire et al. Jun 2006 B2
7063719 Jansen et al. Jun 2006 B2
7066895 Podany Jun 2006 B2
7066900 Botto et al. Jun 2006 B2
7066904 Rosenthal et al. Jun 2006 B2
7072720 Puskas Jul 2006 B2
7074217 Strul et al. Jul 2006 B2
7081112 Joye et al. Jul 2006 B2
7081114 Rashidi Jul 2006 B2
7083614 Fjield et al. Aug 2006 B2
7084276 Vu et al. Aug 2006 B2
7087026 Callister et al. Aug 2006 B2
7087051 Bourne et al. Aug 2006 B2
7087052 Sampson et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7089065 Westlund et al. Aug 2006 B2
7097641 Arless et al. Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101368 Lafontaine Sep 2006 B2
7104983 Grasso, III et al. Sep 2006 B2
7104987 Biggs et al. Sep 2006 B2
7108715 Lawrence-Brown et al. Sep 2006 B2
7112196 Brosch et al. Sep 2006 B2
7112198 Satake Sep 2006 B2
7112211 Gifford, III et al. Sep 2006 B2
7122019 Kesten et al. Oct 2006 B1
7122033 Wood Oct 2006 B2
7134438 Makower et al. Nov 2006 B2
7137963 Nita et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7153315 Miller Dec 2006 B2
7155271 Halperin et al. Dec 2006 B2
7157491 Mewshaw et al. Jan 2007 B2
7157492 Mewshaw et al. Jan 2007 B2
7158832 Kieval et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7162303 Levin et al. Jan 2007 B2
7165551 Edwards et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7172589 Lafontaine Feb 2007 B2
7172610 Heitzmann et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7184811 Phan et al. Feb 2007 B2
7184827 Edwards Feb 2007 B1
7189227 Lafontaine Mar 2007 B2
7192427 Chapelon et al. Mar 2007 B2
7192586 Bander Mar 2007 B2
7197354 Sobe Mar 2007 B2
7198632 Lim et al. Apr 2007 B2
7200445 Dalbec et al. Apr 2007 B1
7201749 Govari et al. Apr 2007 B2
7203537 Mower Apr 2007 B2
7214234 Rapacki et al. May 2007 B2
7220233 Nita et al. May 2007 B2
7220239 Wilson et al. May 2007 B2
7220257 Lafontaine May 2007 B1
7220270 Sawhney et al. May 2007 B2
7232458 Saadat Jun 2007 B2
7232459 Greenberg et al. Jun 2007 B2
7238184 Megerman et al. Jul 2007 B2
7241273 Maguire et al. Jul 2007 B2
7241736 Hunter et al. Jul 2007 B2
7247141 Makin et al. Jul 2007 B2
7250041 Chiu et al. Jul 2007 B2
7250440 Mewshaw et al. Jul 2007 B2
7252664 Nasab et al. Aug 2007 B2
7252679 Fischell et al. Aug 2007 B2
7264619 Venturelli Sep 2007 B2
7279600 Mewshaw et al. Oct 2007 B2
7280863 Shachar Oct 2007 B2
7282213 Schroeder et al. Oct 2007 B2
7285119 Stewart et al. Oct 2007 B2
7285120 Im et al. Oct 2007 B2
7288089 Yon et al. Oct 2007 B2
7288096 Chin Oct 2007 B2
7291146 Steinke et al. Nov 2007 B2
7293562 Malecki et al. Nov 2007 B2
7294125 Phalen et al. Nov 2007 B2
7294126 Sampson et al. Nov 2007 B2
7294127 Leung et al. Nov 2007 B2
7297131 Nita Nov 2007 B2
7297475 Koiwai et al. Nov 2007 B2
7300433 Lane et al. Nov 2007 B2
7301108 Egitto et al. Nov 2007 B2
7310150 Guillermo et al. Dec 2007 B2
7313430 Urquhart et al. Dec 2007 B2
7314483 Landau et al. Jan 2008 B2
7317077 Averback et al. Jan 2008 B2
7323006 Andreas et al. Jan 2008 B2
7326206 Paul et al. Feb 2008 B2
7326226 Root et al. Feb 2008 B2
7326235 Edwards Feb 2008 B2
7326237 DePalma et al. Feb 2008 B2
7329236 Kesten et al. Feb 2008 B2
7335180 Nita et al. Feb 2008 B2
7335192 Keren et al. Feb 2008 B2
7338467 Lutter Mar 2008 B2
7341570 Keren et al. Mar 2008 B2
7343195 Strommer et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7348003 Salcedo et al. Mar 2008 B2
7352593 Zeng et al. Apr 2008 B2
7354927 Vu Apr 2008 B2
7359732 Kim et al. Apr 2008 B2
7361341 Salcedo et al. Apr 2008 B2
7364566 Elkins et al. Apr 2008 B2
7367970 Govari et al. May 2008 B2
7367975 Malecki et al. May 2008 B2
7371231 Rioux et al. May 2008 B2
7387126 Cox et al. Jun 2008 B2
7393338 Nita Jul 2008 B2
7396355 Goldman et al. Jul 2008 B2
7402151 Rosenman et al. Jul 2008 B2
7402312 Rosen et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7406970 Zikorus et al. Aug 2008 B2
7407502 Strul et al. Aug 2008 B2
7407506 Makower Aug 2008 B2
7407671 McBride et al. Aug 2008 B2
7408021 Averback et al. Aug 2008 B2
7410486 Fuimaono et al. Aug 2008 B2
7413556 Zhang et al. Aug 2008 B2
7425212 Danek et al. Sep 2008 B1
7426409 Casscells, III et al. Sep 2008 B2
7435248 Taimisto et al. Oct 2008 B2
7447453 Kim et al. Nov 2008 B2
7449018 Kramer Nov 2008 B2
7452538 Ni et al. Nov 2008 B2
7473890 Grier et al. Jan 2009 B2
7476384 Ni et al. Jan 2009 B2
7479157 Weber et al. Jan 2009 B2
7481803 Kesten et al. Jan 2009 B2
7485104 Kieval Feb 2009 B2
7486805 Krattiger Feb 2009 B2
7487780 Hooven Feb 2009 B2
7493154 Bonner et al. Feb 2009 B2
7494485 Beck et al. Feb 2009 B2
7494486 Mische et al. Feb 2009 B2
7494488 Weber Feb 2009 B2
7494661 Sanders Feb 2009 B2
7495439 Wiggins Feb 2009 B2
7497858 Chapelon et al. Mar 2009 B2
7499745 Littrup et al. Mar 2009 B2
7500985 Saadat Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7505816 Schmeling et al. Mar 2009 B2
7507233 Littrup et al. Mar 2009 B2
7507235 Keogh et al. Mar 2009 B2
7511494 Wedeen Mar 2009 B2
7512445 Truckai et al. Mar 2009 B2
7527643 Case et al. May 2009 B2
7529589 Williams et al. May 2009 B2
7540852 Nita et al. Jun 2009 B2
7540870 Babaev Jun 2009 B2
RE40863 Tay et al. Jul 2009 E
7556624 Laufer et al. Jul 2009 B2
7558625 Levin et al. Jul 2009 B2
7563247 Maguire et al. Jul 2009 B2
7566319 McAuley et al. Jul 2009 B2
7569052 Phan et al. Aug 2009 B2
7582111 Krolik et al. Sep 2009 B2
7584004 Caparso et al. Sep 2009 B2
7585835 Hill et al. Sep 2009 B2
7591996 Hwang et al. Sep 2009 B2
7597704 Frazier et al. Oct 2009 B2
7598228 Hattori et al. Oct 2009 B2
7599730 Hunter et al. Oct 2009 B2
7603166 Casscells, III et al. Oct 2009 B2
7604608 Nita et al. Oct 2009 B2
7604633 Truckai et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615072 Rust et al. Nov 2009 B2
7617005 Demarais et al. Nov 2009 B2
7620451 Demarais et al. Nov 2009 B2
7621902 Nita et al. Nov 2009 B2
7621929 Nita et al. Nov 2009 B2
7626015 Feinstein et al. Dec 2009 B2
7626235 Kinoshita Dec 2009 B2
7632268 Edwards et al. Dec 2009 B2
7632845 Vu et al. Dec 2009 B2
7635383 Gumm Dec 2009 B2
7640046 Pastore et al. Dec 2009 B2
7641633 Laufer et al. Jan 2010 B2
7641679 Joye et al. Jan 2010 B2
7646544 Batchko et al. Jan 2010 B2
7647115 Levin et al. Jan 2010 B2
7653438 Deem et al. Jan 2010 B2
7655006 Sauvageau et al. Feb 2010 B2
7662114 Seip et al. Feb 2010 B2
7664548 Amurthur et al. Feb 2010 B2
7670279 Gertner Mar 2010 B2
7670335 Keidar Mar 2010 B2
7671084 Mewshaw et al. Mar 2010 B2
7678104 Keidar Mar 2010 B2
7678106 Lee Mar 2010 B2
7678108 Chrisitian et al. Mar 2010 B2
7691080 Seward et al. Apr 2010 B2
7699809 Urmey Apr 2010 B2
7706882 Francischelli et al. Apr 2010 B2
7715912 Rezai et al. May 2010 B2
7717853 Nita May 2010 B2
7717909 Strul et al. May 2010 B2
7717948 Demarais et al. May 2010 B2
7722539 Carter et al. May 2010 B2
7725157 Dumoulin et al. May 2010 B2
7727178 Wilson et al. Jun 2010 B2
7736317 Stephens et al. Jun 2010 B2
7736360 Mody et al. Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7738952 Yun et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7741299 Feinstein et al. Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7744594 Yamazaki et al. Jun 2010 B2
7753907 DiMatteo et al. Jul 2010 B2
7756583 Demarais et al. Jul 2010 B2
7758510 Nita et al. Jul 2010 B2
7758520 Griffin et al. Jul 2010 B2
7759315 Cuzzocrea et al. Jul 2010 B2
7766833 Lee et al. Aug 2010 B2
7766878 Tremaglio, Jr. et al. Aug 2010 B2
7766892 Keren et al. Aug 2010 B2
7767844 Lee et al. Aug 2010 B2
7769427 Shachar Aug 2010 B2
7771372 Wilson Aug 2010 B2
7771421 Stewart et al. Aug 2010 B2
7776967 Perry et al. Aug 2010 B2
7777486 Hargreaves et al. Aug 2010 B2
7780660 Bourne et al. Aug 2010 B2
7789876 Zikorus et al. Sep 2010 B2
7792568 Zhong et al. Sep 2010 B2
7799021 Leung et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7806871 Li et al. Oct 2010 B2
7811265 Hering et al. Oct 2010 B2
7811281 Rentrop Oct 2010 B1
7811313 Mon et al. Oct 2010 B2
7816511 Kawashima et al. Oct 2010 B2
7818053 Kassab Oct 2010 B2
7819866 Bednarek Oct 2010 B2
7822460 Halperin et al. Oct 2010 B2
7828837 Khoury Nov 2010 B2
7832407 Gertner Nov 2010 B2
7833220 Mon et al. Nov 2010 B2
7837676 Sinelnikov et al. Nov 2010 B2
7837720 Mon Nov 2010 B2
7841978 Gertner Nov 2010 B2
7846157 Kozel Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7846172 Makower Dec 2010 B2
7849860 Makower et al. Dec 2010 B2
7850685 Kunis et al. Dec 2010 B2
7853333 Demarais Dec 2010 B2
7854734 Biggs et al. Dec 2010 B2
7857756 Warren et al. Dec 2010 B2
7862565 Eder et al. Jan 2011 B2
7863897 Slocum, Jr. et al. Jan 2011 B2
7869854 Shachar et al. Jan 2011 B2
7873417 Demarais et al. Jan 2011 B2
7887538 Bleich et al. Feb 2011 B2
7894905 Pless et al. Feb 2011 B2
7896873 Hiller et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901402 Jones et al. Mar 2011 B2
7901420 Dunn Mar 2011 B2
7905862 Sampson Mar 2011 B2
7918850 Govari et al. Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7937143 Demarais et al. May 2011 B2
7938830 Saadat et al. May 2011 B2
7942874 Eder et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7946976 Gertner May 2011 B2
7950397 Thapliyal et al. May 2011 B2
7955293 Nita et al. Jun 2011 B2
7956613 Wald Jun 2011 B2
7959627 Utley et al. Jun 2011 B2
7962854 Vance et al. Jun 2011 B2
7967782 Laufer et al. Jun 2011 B2
7967808 Fitzgerald et al. Jun 2011 B2
7972327 Eberl et al. Jul 2011 B2
7972330 Alejandro et al. Jul 2011 B2
7983751 Zdeblick et al. Jul 2011 B2
8001976 Gertner Aug 2011 B2
8007440 Magnin et al. Aug 2011 B2
8012147 Lafontaine Sep 2011 B2
8019435 Hastings et al. Sep 2011 B2
8021362 Deem et al. Sep 2011 B2
8021413 Dierking et al. Sep 2011 B2
8025661 Arnold et al. Sep 2011 B2
8027718 Spinner et al. Sep 2011 B2
8031927 Karl et al. Oct 2011 B2
8033284 Porter et al. Oct 2011 B2
8048144 Thistle et al. Nov 2011 B2
8052636 Moll et al. Nov 2011 B2
8052700 Dunn Nov 2011 B2
8062289 Babaev Nov 2011 B2
8075580 Makower Dec 2011 B2
8080006 Lafontaine et al. Dec 2011 B2
8088127 Mayse et al. Jan 2012 B2
8116883 Williams et al. Feb 2012 B2
8119183 O'Donoghue et al. Feb 2012 B2
8120518 Jang et al. Feb 2012 B2
8123741 Marrouche et al. Feb 2012 B2
8128617 Bencini et al. Mar 2012 B2
8131371 Demarals et al. Mar 2012 B2
8131372 Levin et al. Mar 2012 B2
8131382 Asada Mar 2012 B2
8137274 Weng et al. Mar 2012 B2
8140170 Rezai et al. Mar 2012 B2
8143316 Ueno Mar 2012 B2
8145316 Deem et al. Mar 2012 B2
8145317 Demarais et al. Mar 2012 B2
8150518 Levin et al. Apr 2012 B2
8150519 Demarais et al. Apr 2012 B2
8150520 Demarais et al. Apr 2012 B2
8152830 Gumm Apr 2012 B2
8162933 Francischelli et al. Apr 2012 B2
8175711 Demarais et al. May 2012 B2
8187261 Watson May 2012 B2
8190238 Moll et al. May 2012 B2
8192053 Owen et al. Jun 2012 B2
8198611 LaFontaine et al. Jun 2012 B2
8214056 Hoffer et al. Jul 2012 B2
8221407 Phan et al. Jul 2012 B2
8226637 Satake Jul 2012 B2
8231617 Satake Jul 2012 B2
8241217 Chiang et al. Aug 2012 B2
8257724 Cromack et al. Sep 2012 B2
8257725 Cromack et al. Sep 2012 B2
8260397 Ruff et al. Sep 2012 B2
8263104 Ho et al. Sep 2012 B2
8273023 Razavi Sep 2012 B2
8277379 Lau et al. Oct 2012 B2
8287524 Siegel Oct 2012 B2
8287532 Carroll et al. Oct 2012 B2
8292881 Brannan et al. Oct 2012 B2
8293703 Averback et al. Oct 2012 B2
8295902 Salahieh et al. Oct 2012 B2
8295912 Gertner Oct 2012 B2
8308722 Ormsby et al. Nov 2012 B2
8317776 Ferren et al. Nov 2012 B2
8317810 Stangenes et al. Nov 2012 B2
8329179 Ni et al. Dec 2012 B2
8336705 Okahisa Dec 2012 B2
8343031 Gertner Jan 2013 B2
8343145 Brannan Jan 2013 B2
8347891 Demarais et al. Jan 2013 B2
8353945 Andreas et al. Jan 2013 B2
8364237 Stone et al. Jan 2013 B2
8366615 Razavi Feb 2013 B2
8382697 Brenneman et al. Feb 2013 B2
8388680 Starksen et al. Mar 2013 B2
8396548 Perry et al. Mar 2013 B2
8398629 Thistle Mar 2013 B2
8401667 Gustus et al. Mar 2013 B2
8403881 Ferren et al. Mar 2013 B2
8406877 Smith et al. Mar 2013 B2
8409172 Moll et al. Apr 2013 B2
8409193 Young et al. Apr 2013 B2
8409195 Young Apr 2013 B2
8418362 Zerfas et al. Apr 2013 B2
8452988 Wang May 2013 B2
8454594 Demarais et al. Jun 2013 B2
8460358 Andreas et al. Jun 2013 B2
8465452 Kassab Jun 2013 B2
8469919 Ingle et al. Jun 2013 B2
8473067 Hastings et al. Jun 2013 B2
8480663 Ingle et al. Jul 2013 B2
8485992 Griffin et al. Jul 2013 B2
8486060 Kotmel et al. Jul 2013 B2
8486063 Werneth et al. Jul 2013 B2
8488591 Miali et al. Jul 2013 B2
20010007070 Stewart et al. Jul 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020022864 Mahvi et al. Feb 2002 A1
20020042639 Murphy-Chutorian et al. Apr 2002 A1
20020045811 Kittrell et al. Apr 2002 A1
20020045890 Celliers et al. Apr 2002 A1
20020062146 Makower et al. May 2002 A1
20020065542 Lax et al. May 2002 A1
20020087151 Mody et al. Jul 2002 A1
20020095197 Lardo et al. Jul 2002 A1
20020107536 Hussein Aug 2002 A1
20020147480 Mamayek Oct 2002 A1
20020169444 Mest et al. Nov 2002 A1
20020198520 Coen et al. Dec 2002 A1
20030004439 Pant Jan 2003 A1
20030065317 Rudie et al. Apr 2003 A1
20030092995 Thompson May 2003 A1
20030139689 Shturman et al. Jul 2003 A1
20030195501 Sherman et al. Oct 2003 A1
20030199747 Michlitsch et al. Oct 2003 A1
20040010118 Zerhusen et al. Jan 2004 A1
20040019348 Stevens et al. Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040039311 Nita Feb 2004 A1
20040043030 Griffiths et al. Mar 2004 A1
20040064090 Keren et al. Apr 2004 A1
20040073206 Foley et al. Apr 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093055 Bartorelli et al. May 2004 A1
20040106871 Hunyor et al. Jun 2004 A1
20040117032 Roth Jun 2004 A1
20040147915 Hasebe Jul 2004 A1
20040162555 Farley et al. Aug 2004 A1
20040167506 Chen Aug 2004 A1
20040186356 O'Malley et al. Sep 2004 A1
20040187875 He et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040220556 Cooper et al. Nov 2004 A1
20040243022 Carney et al. Dec 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040267250 Yon et al. Dec 2004 A1
20050010095 Stewart et al. Jan 2005 A1
20050015125 Mioduski et al. Jan 2005 A1
20050080374 Esch et al. Apr 2005 A1
20050129616 Salcedo et al. Jun 2005 A1
20050137180 Robinson et al. Jun 2005 A1
20050143817 Hunter et al. Jun 2005 A1
20050148842 Wang et al. Jul 2005 A1
20050149069 Bertolero et al. Jul 2005 A1
20050149080 Hunter et al. Jul 2005 A1
20050149158 Hunter et al. Jul 2005 A1
20050149173 Hunter et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154445 Hunter et al. Jul 2005 A1
20050154453 Hunter et al. Jul 2005 A1
20050154454 Hunter et al. Jul 2005 A1
20050165389 Swain et al. Jul 2005 A1
20050165391 Maguire et al. Jul 2005 A1
20050165467 Hunter et al. Jul 2005 A1
20050165488 Hunter et al. Jul 2005 A1
20050175661 Hunter et al. Aug 2005 A1
20050175662 Hunter et al. Aug 2005 A1
20050175663 Hunter et al. Aug 2005 A1
20050177103 Hunter et al. Aug 2005 A1
20050177225 Hunter et al. Aug 2005 A1
20050181004 Hunter et al. Aug 2005 A1
20050181008 Hunter et al. Aug 2005 A1
20050181011 Hunter et al. Aug 2005 A1
20050181977 Hunter et al. Aug 2005 A1
20050182479 Bonsignore et al. Aug 2005 A1
20050183728 Hunter et al. Aug 2005 A1
20050186242 Hunter et al. Aug 2005 A1
20050186243 Hunter et al. Aug 2005 A1
20050191331 Hunter et al. Sep 2005 A1
20050203410 Jenkins Sep 2005 A1
20050209587 Joye et al. Sep 2005 A1
20050214205 Salcedo et al. Sep 2005 A1
20050214207 Salcedo et al. Sep 2005 A1
20050214208 Salcedo et al. Sep 2005 A1
20050214209 Salcedo et al. Sep 2005 A1
20050214210 Salcedo et al. Sep 2005 A1
20050214268 Cavanagh et al. Sep 2005 A1
20050228286 Messerly et al. Oct 2005 A1
20050228415 Gertner Oct 2005 A1
20050228460 Levin et al. Oct 2005 A1
20050232921 Rosen et al. Oct 2005 A1
20050234312 Suzuki et al. Oct 2005 A1
20050240231 Aldrich et al. Oct 2005 A1
20050245862 Seward Nov 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050252553 Ginggen Nov 2005 A1
20050256398 Hastings et al. Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060018949 Ammon et al. Jan 2006 A1
20060024564 Manclaw Feb 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060062786 Salcedo et al. Mar 2006 A1
20060083194 Dhrimaj et al. Apr 2006 A1
20060089637 Werneth et al. Apr 2006 A1
20060089638 Carmel et al. Apr 2006 A1
20060095096 DeBenedictis et al. May 2006 A1
20060106375 Werneth et al. May 2006 A1
20060142790 Gertner Jun 2006 A1
20060147492 Hunter et al. Jul 2006 A1
20060167106 Zhang et al. Jul 2006 A1
20060167498 DiLorenzo Jul 2006 A1
20060171895 Bucay-Couto Aug 2006 A1
20060184221 Stewart et al. Aug 2006 A1
20060195139 Gertner Aug 2006 A1
20060206150 Demarais et al. Sep 2006 A1
20060224153 Fischell et al. Oct 2006 A1
20060239921 Mangat et al. Oct 2006 A1
20060240070 Cromack et al. Oct 2006 A1
20060247266 Yamada et al. Nov 2006 A1
20060247760 Ganesan et al. Nov 2006 A1
20060263393 Demopulos et al. Nov 2006 A1
20060269555 Salcedo et al. Nov 2006 A1
20060271111 Demarais et al. Nov 2006 A1
20060287644 Inganas et al. Dec 2006 A1
20070013269 Huang Jan 2007 A1
20070016184 Cropper et al. Jan 2007 A1
20070016274 Boveja et al. Jan 2007 A1
20070027390 Maschke et al. Feb 2007 A1
20070043077 Mewshaw et al. Feb 2007 A1
20070043409 Brian et al. Feb 2007 A1
20070049924 Rahn Mar 2007 A1
20070066972 Ormsby et al. Mar 2007 A1
20070073151 Lee Mar 2007 A1
20070093710 Maschke Apr 2007 A1
20070100405 Thompson et al. May 2007 A1
20070106247 Burnett et al. May 2007 A1
20070112327 Yun et al. May 2007 A1
20070118107 Francischelli et al. May 2007 A1
20070129760 Demarais et al. Jun 2007 A1
20070129761 Demarais et al. Jun 2007 A1
20070135875 Demarais et al. Jun 2007 A1
20070149963 Matsukuma et al. Jun 2007 A1
20070162109 Davila et al. Jul 2007 A1
20070173805 Weinberg et al. Jul 2007 A1
20070179496 Swoyer et al. Aug 2007 A1
20070203480 Mody et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208134 Hunter et al. Sep 2007 A1
20070208210 Gelfand et al. Sep 2007 A1
20070208256 Marilla Sep 2007 A1
20070208301 Evard et al. Sep 2007 A1
20070219576 Cangialosi Sep 2007 A1
20070225781 Saadat et al. Sep 2007 A1
20070233170 Gertner Oct 2007 A1
20070239062 Chopra et al. Oct 2007 A1
20070248639 Demopulos et al. Oct 2007 A1
20070249703 Mewshaw et al. Oct 2007 A1
20070254833 Hunter et al. Nov 2007 A1
20070265687 Deem et al. Nov 2007 A1
20070278103 Hoerr et al. Dec 2007 A1
20070282302 Wachsman et al. Dec 2007 A1
20070292411 Salcedo et al. Dec 2007 A1
20070293782 Marino Dec 2007 A1
20070299043 Hunter et al. Dec 2007 A1
20080004673 Rossing et al. Jan 2008 A1
20080009927 Vilims Jan 2008 A1
20080015501 Gertner Jan 2008 A1
20080021408 Jacobsen et al. Jan 2008 A1
20080033049 Mewshaw Feb 2008 A1
20080039746 Hissong et al. Feb 2008 A1
20080039830 Munger et al. Feb 2008 A1
20080051454 Wang Feb 2008 A1
20080064957 Spence Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080071306 Gertner Mar 2008 A1
20080082109 Moll et al. Apr 2008 A1
20080086072 Bonutti et al. Apr 2008 A1
20080091193 Kauphusman et al. Apr 2008 A1
20080097251 Babaev Apr 2008 A1
20080097426 Root et al. Apr 2008 A1
20080108867 Zhou May 2008 A1
20080119879 Brenneman et al. May 2008 A1
20080125772 Stone et al. May 2008 A1
20080132450 Lee et al. Jun 2008 A1
20080140002 Ramzipoor et al. Jun 2008 A1
20080147002 Gertner Jun 2008 A1
20080161662 Golijanin et al. Jul 2008 A1
20080161717 Gertner Jul 2008 A1
20080161801 Steinke et al. Jul 2008 A1
20080171974 Lafontaine et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080172104 Kieval et al. Jul 2008 A1
20080188912 Stone et al. Aug 2008 A1
20080188913 Stone et al. Aug 2008 A1
20080208162 Joshi Aug 2008 A1
20080208169 Boyle et al. Aug 2008 A1
20080213331 Gelfand et al. Sep 2008 A1
20080215117 Gross Sep 2008 A1
20080221448 Khuri-Yakub et al. Sep 2008 A1
20080234790 Bayer et al. Sep 2008 A1
20080243091 Humphreys et al. Oct 2008 A1
20080245371 Gruber Oct 2008 A1
20080249525 Lee et al. Oct 2008 A1
20080249547 Dunn Oct 2008 A1
20080255550 Bell Oct 2008 A1
20080255642 Zarins et al. Oct 2008 A1
20080262489 Steinke Oct 2008 A1
20080275484 Gertner Nov 2008 A1
20080281312 Werneth et al. Nov 2008 A1
20080281347 Gertner Nov 2008 A1
20080287918 Rosenman et al. Nov 2008 A1
20080294037 Richter Nov 2008 A1
20080300618 Gertner Dec 2008 A1
20080312644 Fourkas et al. Dec 2008 A1
20080312673 Viswanathan et al. Dec 2008 A1
20080317818 Griffith et al. Dec 2008 A1
20090018486 Goren et al. Jan 2009 A1
20090018609 DiLorenzo Jan 2009 A1
20090024194 Arcot-Krishnamurthy et al. Jan 2009 A1
20090030312 Hadjicostis Jan 2009 A1
20090036948 Levin et al. Feb 2009 A1
20090043372 Northrop et al. Feb 2009 A1
20090054082 Kim et al. Feb 2009 A1
20090062873 Wu et al. Mar 2009 A1
20090069671 Anderson Mar 2009 A1
20090076409 Wu et al. Mar 2009 A1
20090088735 Abboud et al. Apr 2009 A1
20090093726 Takayama Apr 2009 A1
20090105631 Kieval Apr 2009 A1
20090112202 Young Apr 2009 A1
20090118620 Tgavalekos et al. May 2009 A1
20090118726 Auth et al. May 2009 A1
20090125099 Weber et al. May 2009 A1
20090131798 Minar et al. May 2009 A1
20090143640 Saadat et al. Jun 2009 A1
20090156988 Ferren et al. Jun 2009 A1
20090157057 Ferren et al. Jun 2009 A1
20090157161 Desai et al. Jun 2009 A1
20090171333 Hon Jul 2009 A1
20090192558 Whitehurst et al. Jul 2009 A1
20090198223 Thilwind et al. Aug 2009 A1
20090203962 Miller et al. Aug 2009 A1
20090203993 Mangat et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210953 Moyer et al. Aug 2009 A1
20090216317 Cromack et al. Aug 2009 A1
20090221955 Babaev Sep 2009 A1
20090226429 Salcedo et al. Sep 2009 A1
20090240249 Chan et al. Sep 2009 A1
20090247933 Maor et al. Oct 2009 A1
20090247966 Gunn et al. Oct 2009 A1
20090248012 Maor et al. Oct 2009 A1
20090253974 Rahme Oct 2009 A1
20090264755 Chen et al. Oct 2009 A1
20090270850 Zhou et al. Oct 2009 A1
20090281533 Ingle et al. Nov 2009 A1
20090287137 Crowley Nov 2009 A1
20090318749 Stolen et al. Dec 2009 A1
20100009267 Chase et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100048983 Ball et al. Feb 2010 A1
20100049099 Thapliyal et al. Feb 2010 A1
20100049186 Ingle et al. Feb 2010 A1
20100049188 Nelson et al. Feb 2010 A1
20100049191 Habib et al. Feb 2010 A1
20100049283 Johnson Feb 2010 A1
20100069837 Rassat et al. Mar 2010 A1
20100076299 Gustus et al. Mar 2010 A1
20100076425 Carroux Mar 2010 A1
20100087782 Ghaffari et al. Apr 2010 A1
20100106005 Karczmar et al. Apr 2010 A1
20100114244 Manda et al. May 2010 A1
20100130836 Malchano et al. May 2010 A1
20100137860 Demarais et al. Jun 2010 A1
20100137952 Demarais et al. Jun 2010 A1
20100160903 Krespi Jun 2010 A1
20100160906 Jarrard Jun 2010 A1
20100168624 Sliwa Jul 2010 A1
20100168731 Wu et al. Jul 2010 A1
20100168739 Wu et al. Jul 2010 A1
20100174282 Demarais et al. Jul 2010 A1
20100191112 Demarais et al. Jul 2010 A1
20100191232 Boveda Jul 2010 A1
20100217162 Hissong et al. Aug 2010 A1
20100222786 Kassab Sep 2010 A1
20100222851 Deem et al. Sep 2010 A1
20100222854 Demarais et al. Sep 2010 A1
20100228122 Keenan et al. Sep 2010 A1
20100246332 Huang Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100249773 Clark et al. Sep 2010 A1
20100256616 Katoh et al. Oct 2010 A1
20100268217 Habib Oct 2010 A1
20100268307 Demarais et al. Oct 2010 A1
20100284927 Lu et al. Nov 2010 A1
20100286684 Hata et al. Nov 2010 A1
20100298821 Garbagnati Nov 2010 A1
20100305036 Barnes et al. Dec 2010 A1
20100312141 Keast et al. Dec 2010 A1
20100324472 Wulfman Dec 2010 A1
20110009750 Taylor et al. Jan 2011 A1
20110021976 Li et al. Jan 2011 A1
20110034832 Cioanta et al. Feb 2011 A1
20110040324 McCarthy et al. Feb 2011 A1
20110044942 Puri et al. Feb 2011 A1
20110060324 Wu et al. Mar 2011 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110077498 McDaniel Mar 2011 A1
20110092781 Gertner Apr 2011 A1
20110092880 Gertner Apr 2011 A1
20110104061 Seward May 2011 A1
20110112400 Emery et al. May 2011 A1
20110118600 Gertner May 2011 A1
20110118726 De La Rama et al. May 2011 A1
20110130708 Perry et al. Jun 2011 A1
20110137155 Weber et al. Jun 2011 A1
20110144479 Hastings et al. Jun 2011 A1
20110146673 Keast et al. Jun 2011 A1
20110166499 Demarais et al. Jul 2011 A1
20110178570 Demarais Jul 2011 A1
20110200171 Beetel et al. Aug 2011 A1
20110202098 Demarais et al. Aug 2011 A1
20110207758 Sobotka et al. Aug 2011 A1
20110208096 Demarais et al. Aug 2011 A1
20110257523 Hastings et al. Oct 2011 A1
20110257564 Demarais et al. Oct 2011 A1
20110257622 Salahieh et al. Oct 2011 A1
20110257641 Hastings et al. Oct 2011 A1
20110257642 Griggs, III Oct 2011 A1
20110263921 Vrba et al. Oct 2011 A1
20110264011 Wu et al. Oct 2011 A1
20110264075 Leung et al. Oct 2011 A1
20110264086 Ingle Oct 2011 A1
20110264116 Kocur et al. Oct 2011 A1
20110270238 Rizq et al. Nov 2011 A1
20110306851 Wang Dec 2011 A1
20110319809 Smith Dec 2011 A1
20120029496 Smith Feb 2012 A1
20120029500 Jenson Feb 2012 A1
20120029505 Jenson Feb 2012 A1
20120029509 Smith Feb 2012 A1
20120029510 Haverkost Feb 2012 A1
20120029511 Smith et al. Feb 2012 A1
20120029512 Willard et al. Feb 2012 A1
20120029513 Smith et al. Feb 2012 A1
20120059241 Hastings et al. Mar 2012 A1
20120059286 Hastings et al. Mar 2012 A1
20120065506 Smith Mar 2012 A1
20120065554 Pikus Mar 2012 A1
20120095461 Herscher et al. Apr 2012 A1
20120101413 Beetel et al. Apr 2012 A1
20120101490 Smith Apr 2012 A1
20120101538 Ballakur et al. Apr 2012 A1
20120109021 Hastings et al. May 2012 A1
20120116382 Ku et al. May 2012 A1
20120116383 Mauch et al. May 2012 A1
20120116392 Willard May 2012 A1
20120116438 Salahieh et al. May 2012 A1
20120116486 Naga et al. May 2012 A1
20120123243 Hastings May 2012 A1
20120123258 Willard May 2012 A1
20120123261 Jenson et al. May 2012 A1
20120123303 Sogard et al. May 2012 A1
20120123406 Edmunds et al. May 2012 A1
20120130289 Demarais et al. May 2012 A1
20120130345 Levin et al. May 2012 A1
20120130359 Turovskiy May 2012 A1
20120130360 Buckley et al. May 2012 A1
20120130362 Hastings et al. May 2012 A1
20120130368 Jenson May 2012 A1
20120130458 Ryba et al. May 2012 A1
20120136344 Buckley et al. May 2012 A1
20120136349 Hastings May 2012 A1
20120136350 Goshgarian et al. May 2012 A1
20120136417 Buckley et al. May 2012 A1
20120136418 Buckley et al. May 2012 A1
20120143181 Demarais et al. Jun 2012 A1
20120143293 Mauch et al. Jun 2012 A1
20120143294 Clark et al. Jun 2012 A1
20120150267 Buckley et al. Jun 2012 A1
20120157986 Stone et al. Jun 2012 A1
20120157987 Steinke et al. Jun 2012 A1
20120157988 Stone et al. Jun 2012 A1
20120157989 Stone et al. Jun 2012 A1
20120157992 Smith et al. Jun 2012 A1
20120157993 Jenson et al. Jun 2012 A1
20120158101 Stone et al. Jun 2012 A1
20120158104 Huynh et al. Jun 2012 A1
20120172837 Demarais et al. Jul 2012 A1
20120172870 Jenson et al. Jul 2012 A1
20120184952 Jenson et al. Jul 2012 A1
20120197198 Demarais et al. Aug 2012 A1
20120197252 Deem et al. Aug 2012 A1
20120215106 Sverdlik Aug 2012 A1
20120232326 Habib Sep 2012 A1
20120232409 Stahmann et al. Sep 2012 A1
20120265066 Crow et al. Oct 2012 A1
20120265198 Crow et al. Oct 2012 A1
20130012844 Demarais et al. Jan 2013 A1
20130012866 Deem et al. Jan 2013 A1
20130012867 Demarais et al. Jan 2013 A1
20130013024 Levin et al. Jan 2013 A1
20130023865 Steinke et al. Jan 2013 A1
20130035681 Subramanaim et al. Feb 2013 A1
20130066316 Steinke et al. Mar 2013 A1
20130085489 Fain et al. Apr 2013 A1
20130090563 Weber Apr 2013 A1
20130090578 Smith et al. Apr 2013 A1
20130090647 Smith Apr 2013 A1
20130090649 Smith et al. Apr 2013 A1
20130090650 Jenson et al. Apr 2013 A1
20130090651 Smith Apr 2013 A1
20130090652 Jenson Apr 2013 A1
20130096550 Hill Apr 2013 A1
20130096553 Hill et al. Apr 2013 A1
20130096554 Groff et al. Apr 2013 A1
20130096604 Hanson et al. Apr 2013 A1
20130110106 Richardson May 2013 A1
20130116687 Willard May 2013 A1
20130165764 Scheuermann et al. Jun 2013 A1
20130165844 Shuros et al. Jun 2013 A1
20130165916 Mathur et al. Jun 2013 A1
20130165917 Mathur et al. Jun 2013 A1
20130165920 Weber et al. Jun 2013 A1
20130165923 Mathur et al. Jun 2013 A1
20130165924 Mathur et al. Jun 2013 A1
20130165925 Mathur et al. Jun 2013 A1
20130165926 Mathur et al. Jun 2013 A1
20130165990 Mathur et al. Jun 2013 A1
20130172815 Perry et al. Jul 2013 A1
20130172872 Subramaniam et al. Jul 2013 A1
20130172877 Subramaniam et al. Jul 2013 A1
20130172878 Smith Jul 2013 A1
20130172879 Sutermeister Jul 2013 A1
20130172880 Willard Jul 2013 A1
20130172881 Hill et al. Jul 2013 A1
Foreign Referenced Citations (40)
Number Date Country
10038737 Feb 2002 DE
1053720 Nov 2000 EP
1180004 Feb 2002 EP
1335677 Aug 2003 EP
1874211 Jan 2008 EP
1906853 Apr 2008 EP
1961394 Aug 2008 EP
1620156 Jul 2009 EP
2076193 Jul 2009 EP
2091455 Aug 2009 EP
2197533 Jun 2010 EP
2208506 Jul 2010 EP
1579889 Aug 2010 EP
2092957 Jan 2011 EP
2349044 Aug 2011 EP
2027882 Oct 2011 EP
2378956 Oct 2011 EP
2037840 Dec 2011 EP
2204134 Apr 2012 EP
2320821 Oct 2012 EP
2456301 Jul 2009 GB
9858588 Dec 1998 WO
9900060 Jan 1999 WO
0047118 Aug 2000 WO
03026525 Apr 2003 WO
2004100813 Nov 2004 WO
2004110258 Dec 2004 WO
2006105121 Oct 2006 WO
2008014465 Jan 2008 WO
2008126070 Oct 2008 WO
2009121017 Oct 2009 WO
2010067360 Jun 2010 WO
2010102310 Sep 2010 WO
2011005901 Jan 2011 WO
2011053757 May 2011 WO
2011053772 May 2011 WO
2011091069 Jul 2011 WO
2011130534 Oct 2011 WO
2012019156 Feb 2012 WO
2013049601 Apr 2013 WO
Non-Patent Literature Citations (69)
Entry
US 8,398,630 B2, 03/2013, Demarais et al. (withdrawn)
Van Den Berg, “Light echoes image the human body,” OLE, Oct. 2001, p. 35-37.
“IntraLuminal: Products,” IntraLuminal Therapeutics, Inc., 2003, p. 1-9.
“Laser Catheter to Aid Coronary Surgery,” TechTalk: MIT, Jan. 9, 1991, p. 1-4.
“Optical Coherence Tomography: Advantages of OCT,” LightLab Imaging Technology.
“Optical Coherence Tomography: Image Gallery Cardiovascular Procedures,” LightLab Imaging Technology.
“Optical Coherence Tomography: LightLab Imaging Starts US Cardiology Clinical Investigations,” LightLab Imaging Technology, 2002.
“Optical Coherence Tomography: LightLab Sees Bright Prospects for Cardiac Application of OCT Technology,” LightLab Imaging Technology, 2001, vol. 27, No. 35.
“Optical Coherence Tomography: What is OCT?,” LightLab Imaging Technology.
“Optical Coherence Tomography: Why Use OCT?,” LightLab Imaging Technology.
“Products—Functional Measurement,” VOLCANO Functional Measurement Products US, Mar. 24, 2003, p. 1-2.
Brown et al., “Radiofrequency capacitive heaters: the effect of coupling medium resistivity on power absorption along a mouse leg,” Physics in Medicine and Biology, 1993, p. 1-12, vol. 38.
Carrington, “Future of CVI: It's all about plaque: Identification of vulnerable lesions, not ‘rusty pipes,’ could become cornerstone of preventive cardiology,” Diagnostic Imaging, 2001, p. 1-8.
Chen et al., “Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo,” EuroIntervention, 2013, p. 1-8.
Cimino, “Preventing plaque attack,” Mass High Tech, 2001, p. 1-2.
Dahm et al., “Relation of Degree of Laser Debulking of In-Stent Restenosis as a Predictor of Restenosis Rate,” The American Journal of Cardiology, 2002, p. 68-70, vol. 90.
De Korte et al., “Characterization of Plaque Components With Intravascular Ultrasound Elastography in Human Femoral and Coronary Arteries In Vitro,” Circulation, Aug. 8, 2000, p. 617-623.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook,” Oct. 1986, p. 1-2, Fourth Edition.
Durney et al., “Radiofrequency Radiation Dosimetry Handbook: Contents,” Oct. 1986, p. 1-5, Fourth Edition.
Fournier-Desseux et al., “Assessment of 1-lead and 2-lead electrode patterns in electrical impedance endotomography,” Physiological Measurement, 2005, p. 337-349. Vo. 26, Institute of Physics Publishing.
Fram et al., “Feasibility of Radiofrequency Powered, Thermal Balloon Ablation of Atrioventricular Bypass Tracts Via the Coronary Sinus: In Vivo Canine Studies,” PACE, Aug. 1995, p. 1518-1530, vol. 18.
Fram et al., “Low Pressure Radiofrequency Balloon Angioplasty: Evaluation in Porcine Peripheral Arteries,” JACC, 1993, p. 1512-1521, vol. 21, No. 6, American College of Cardiology.
Fujimori et al., “Significant Prevention of In-Stent Restenosis by Evans Blue in Patients with Acute Myocardial Infarction,” American Heart Association, 2002.
Fujita et al., “Sarpogrelate, An Antagonist of 5-HT(2A) Receptor, Treatment Reduces Restenosis After Coronary Stenting,” American Heart Association, 2002.
Gabriel, “Appendix A: Experimental Data,” 1999, p. 1-21.
Gabriel, “Appendix C: Modeling the frequency dependence of the dielectric properties to a 4 dispersions spectrum,” p. 1-6.
Gregory et al., “Liquid Core Light Guide for Laser Angioplasty,” The Journal of Quantum Electronics, Dec. 1990, p. 2289-2296, vol. 26, No. 12.
Kaplan et al., “Healing after Arterial Dilatation with Radiofrequency Thermal and Nonthermal Balloon Angioplasty Sytems,” Journal of Investigative Surgery, 1993, p. 33-52, vol. 6.
Kolata, “New Studies Question Value of Opening Arteries,” The New York Times, Mar. 21, 2004, p. 1-5.
Konings et al., “Development of an Intravascular Impedance Catheter for Detection of Fatty Lesions in Arteries,” IEEE Transactions on Medical Imaging, Aug. 1997, p. 439-446, vol. 16, No. 4.
Kurtz et al., “Lamellar Refractive Surgery with Scanned Intrastromal Picosecond and Femtosecond Laser Pulses in Animal Eyes,” Journal of Refractive Surgery, Sep./Oct. 1998, p. 541-548.
Lee et al., “Thermal Compression and Molding of Atherosclerotic Vascular Tissue With Use of Radiofrequency Energy: Implications for Radiofrequency Balloon Angioplasty,” JACC, 1989, p. 1167-1175, vol. 13, No. 5, American College of Cardiology.
Lima et al., “Efficacy and Safety of Oral Sirolimus to Treat and Prevent In-Stent Restenosis: A Pilot Study Results,” American Heart Association, 2002, p. 2929.
Lima et al., “Systemic Immunosuppression Inhibits In-Stent Coronary Intimal Proliferation in Renal Transplant Patients,” American Heart Association, 2002, p. 2928.
Morice et al., “A Randomized Comparison of a Sirolimus-Eluting Stent With a Standard Stent for Coronary Revascularization,” The New England Journal of Medicine, Jun. 6, 2012, p. 1773-1780, vol. 346, No. 23.
Muller-Leisse et al., “Effectiveness and Safety of Ultrasonic Atherosclerotic Plaque Ablation: In Vitro Investigation,” CardioVascular and Interventional Radiology, 1993, p. 303-307, vol. 16.
Nair et al., “Regularized Autoregressive Analysis of Intravascular Ultrasound Backscatter: Improvement in Spatial Accuracy of Tissue Maps,” IEEE Transactions on Ultrasonics, Apr. 2004, p. 420-431, vol. 51, No. 4.
Popma et al., “Percutaneous Coronary and Valvular Intervention,” p. 1364-1405.
Resar et al., “Endoluminal Sealing of Vascular Wall Disruptions With Radiofrequency-Heated Balloon Angioplasty,” Catheterization and Cardiovascular Diagnosis, 1993, p. 161-167, vol. 29.
Romer et al., “Histopathology of Human Coronary Atherosclerosis by Quantifying Its Chemical Composition With Raman Spectroscopy,” Circulation, 1998, p. 878-885, vol. 97.
Schauerte et al., “Catheter Ablation of Cardiac Autonomic Nerves for Prevention of Vagal Atrial Fibrillation,” Circulation, 2000, p. 2774-2780, vol. 102.
Scheller et al., “Intracoronary Paclitaxel Added to Contrast Media Inhibits In-Stent Restenosis of Porcine Coronary Arteries,” American Heart Association, 2002, p. 2227.
Scheller et al., “Potential solutions to the current problem: coated balloon,” EuroIntervention, 2008, p. C63-C66, vol. 4 (Supplement C).
Shaffer, “Scientific basis of laser energy,” Clinics in Sports Medicine, 2002, p. 585-598, vol. 21.
Shmatukha et al., “MRI temperature mapping during thermal balloon angioplasty,” Physics in Medicine and Biology, 2006, p. N163-N171, vol. 51.
Slager et al., “Vaporization of Atherosclerotic Plaques by Spark Erosion,” J Am Coll Cardiol, 1985, p. 21-25.
Stiles et al., “Simulated Characterization of Atherosclerotic Lesions in the Coronary Arteries by Measurement of Bioimpedance,” IEEE Transactions on Biomedical Engineering, Jul. 2003, p. 916-921, vol. 50, No. 7.
Suselbeck et al., “In vivo intravascular electric impedance spectroscopy using a new catheter with integrated microelectrodes,” Basic Res Cardiol, 2005, p. 28-34, vol. 100.
Suselbeck et al., “Intravascular electric impedance spectroscopy of atherosclerotic lesions using a new impedance catheter system,” Basic Res Cardiol, 2005, p. 446-452, vol. 100.
Tepe et al., “Local Delivery of Paclitaxel to Inhibit Restenosis during Angioplasty of the Leg,” The New England Journal of Medicine, 2008, p. 689-699, vol. 358.
CardioVascular Technologies Inc., “Heated Balloon Device Technology,” 11 pages, 2008.
Strategic Business Development, Inc., “Thermal and Disruptive Angioplasty: A Physician's Guide,” 8 pages, 1990.
Zhang et al., “Non-contact Radio-Frequency Ablation for Obtaining Deeper Lesions,” IEEE Transaction on Biomedical Engineering, vol. 50, No. 2, 6 pages, Feb. 2003.
Lazebnik et al., “Tissue Strain Analytics Virtual Touch Tissue Imaging and Qualification,” Siemens Whitepaper, Oct. 2008, 7 pages.
Han et al., “Third-Generation Cryosurgery for Primary and Recurrent Prostate Caner,” BJU International, vol. 93, pp. 14-18.
Zhou et al., “Mechanism Research of Cryoanalgesia,” Forefront Publishing Group, 1995.
Florete, “Cryoblative Procedure for Back Pain,” Jacksonville Medicine, Oct. 1998, 10 pages.
Stevenson, “Irrigated RF Ablation: Power Titration and Fluid Management for Optimal Safety Efficacy,” 2005, 4 pages.
Giliatt et al., “The Cause of Nerve Damage in Acute Compression,” Trans Am Neurol Assoc, 1974: 99; 71-4.
Omura et al., “A Mild Acute Compression Induces Neurapraxia in Rat Sciatic Nerve,” The International Journal of Neuroscience, vol. 114 (12), pp. 1561-1572.
Baun, “Interaction with Soft Tissue,” Principles of General & Vascular Sonography, Chapter 2, pp. 23-24, Before Mar. 2012.
Blue Cross Blue Shield Medicaly Policy, “Surgery Section—MRI-Guided Focused Ultrasound (MRgFUS) for the Treatment of Uterine Fibroids and Other Tumors,” 2005, 5 pages.
Gentry et al., “Combines 3D Intracardiac Echo and Ultrasound Ablation,” Medical Imaging 2003: Ultrasonic and Signal Processing, vol. 5035, 2003, pp. 166-173.
Lafon et al., “Optmizing the Shape of Ultrasound Transducers for Interstitial Thermal Ablations,” MEd Phys. Mar. 2002; 29(3): 290-7 (abstract only).
G. Ter Haar, “Ultrasound Focal Beam Surgery,” Ultrasound in Med. & Biol., 1995, vol. 21, No. 9, pp. 1089-1100.
Seip et al., “Transurethral High Intensity Focused Ultrasound: Catheter Based Prototypes and Experimental Results,” IEEE Ultrasonics Symposium Proceeding, 2000, 4 pages.
Toytman et al., “Tissue Dissection with Ultrafast Laser Using Extended and Multiple Foci,” SPIE Proceeding, Optical Interactions with Tissues and Cells XXI, vol. 7562, 2010, 10 pages.
Zhoue et al., “Non-Thermal Ablation of Rabbit Liver VX2 Tumore by Pulsed High Intensity Focused Ultrasound Contrast Agent: Pathological Characteristics,” World Journal of Gastroenterology, vol. 14(43), Nov. 21, 2008, pp. 6743-6747.
Andrew Eastman et al, “Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever”, Experiments in Fluids ; Experimental Methods and Their Applications to Fluid Flow, Springer, Berlin, DE, (Sep. 5, 2012), vol. 53, No. 5, doi:10.1007/S00348-012-1373-6, ISSN 1432-1114, pp. 1533-1543, XP035133497 [A] 1-15.
Related Publications (1)
Number Date Country
20140088630 A1 Mar 2014 US
Provisional Applications (1)
Number Date Country
61704205 Sep 2012 US