The present invention relates to a container of pressurised product, in which a gas is mixed into the product and is gradually released from the product into the headspace in order to achieve a state of equilibrium within the container.
Preferably, the container is a conventional thin-walled beverage can and the pressurised product is a carbonated beverage e.g. a fizzy drink containing CO2. Such thin-walled beverage cans are mass-produced at high speeds of about 800-1500 cans per minute and are rated at about 95 psi (0.655 MPa). After filling the can body (which is open at one end), the open end of the can body is sealed with an end using conventional techniques e.g. a double seam where the can body and end are made from metal.
Accordingly, the present invention provides a self-dispensing container of carbonated product comprising a hollow body having a filling aperture, a carbonated product inserted into the hollow body via the filling aperture leaving a headspace, and a lid adapted to seal the filling aperture after insertion of the carbonated product, and after sealing, the headspace fills with CO2 from the carbonated product to equalise the pressure within the container, characterised in that
the container further includes a valve having open and closed positions, wherein the valve communicates between a valve inlet on the inside of the container and a dispensing orifice on the outside of the container, and in use the container is orientated so that the valve inlet is submerged in the carbonated product and when the valve is in its open position, the CO2 in the headspace dispenses the carbonated product through the dispensing orifice.
In the container according to the invention, a valve is provided. During filling, the valve is closed. After filling with carbonated product, the container is sealed with a lid. CO2 in the product comes out of solution filling the headspace (the volume of the container not filled with product) with CO2 gas to equalise the pressure within the sealed container.
A user then orientates the container so that the valve inlet is submerged in the carbonated product. Thereafter, the valve is opened and the product is self-dispensed from the container using the internal pressure therein to drive the product through the valve. More specifically, the pressure of the gas in the headspace drives dispensing of the product through the open valve. Upon re-closing, the internal pressure in the container will again reach equilibrium, causing more CO2 to come out of solution from the product and replenish the headspace with CO2.
Thus, the dispensing pressure used to drive the product through the valve comes from the CO2 progressively released from the product into the headspace every time the valve is closed and the container sealed. For this reason, the inventors have suggested using the highest carbonation level in the product, which is typically above that conventionally used.
Therefore, considering the case where the container is a conventional thin-walled beverage can, the carbonation level of the product upon filling is preferably 3-4 vols (volumes of CO2 dissolved per volume of product), to ensure that substantially all the product may be dispensed at temperatures ranging from 2-35° C. If the carbonation level is over 4 vols and the temperature is high, the inventors have found that the beverage can may fail due to “base reverse or end peak”. The fact that the can remains pressurised has the further advantage that the thin-walled beverage can remains stiff and the sidewall supported for the entire time that the carbonated product is being dispensed, thereby reducing the risk of damage during use. Thereafter, the beverage can may be vented and crushed, as is the case for a conventional beverage can.
The inventors predict that the worst case dispensing condition is at low temperature, after most of the product has been dispensed. In this case, the final in-can pressure will be less than 5 psi (0.034 MPa), but it is still a positive pressure and all the contents will be ejected. Thus, as a user dispenses product from the beverage can the dispensing pressure will drop. For example, from 50 psi (0.344 MPa) for a “full”, warm beverage can to a low pressure as the beverage can empties.
Furthermore, the headspace left in the beverage can after initial filling is important to the operation of the invention. Preferably the fill volume as a percentage of capacity of the beverage can is in the range of 70-90% (e.g. 85% or 440 ml in a 500 ml can).
In the beverage can according to the invention, the dispensed product differs from a conventional carbonated (“fizzy”) beverage because during dispensing through the valve, the product shears and gas is released turning the dispensed product into carbonated foam.
Nowadays, because of environmental concerns and the pressure to reduce packaging, there is also increasing interest in concentrated products. Such concentrated products contain less water, take up less space and therefore require less packaging. However, the difficulty arising from the use of concentrated products is that it is more difficult to dispense the correct quantity of product prior to dilution. An advantage of using the carbonated dispenser according to the invention is that upon dispensing, the product becomes larger due to the entrapped gases in the dispensed foam, making it easier for a user the see the quantity of product dispensed.
The invention will now be described by way of example only, with reference to the accompanying graphs and drawings, in which;
The graphs shown in
Preferably, the can according to the invention is filled with product having 4 vols carbonation. The inventors have found that this ensures that the carbonated product will fully dispense even at low temperatures and that the can will stay rigid throughout drinking. The can according to the invention provides a different drinking experience, because the product foams before reaching the mouth and appears smoother to the consumer.
Referring to
Care must be taken when handling filled cans according to the first embodiment of the invention to ensure that the protruding spout does not foul on equipment or adjacent cans. Furthermore, due to the projection of the spout beyond the “envelope” occupied by the can, display of the filled cans may require increased shelf space. The cans are likely to be protected with an overcap, which prevents accidental activation and also allows stacking in pallets.
Preferably the filled and sealed cans have a “flat” top, which does not protrude outside the “envelope” of the filled can. This simplifies distribution and storage of the filled cans.
Referring to
Upon opening a user first lifts the tab 55 (as shown in
Conventional beverage can bodies are manufactured at high speed having an open end through, which they can be filled. Once filled, an end is seamed onto the open end of the can body to seal the product therein. Conventionally, multiple ends are supplied to the seaming machine in “stacks”. A problem with the modified ends according to the first and second embodiments of the invention is that the spout 40 lies outside the plane of the end. In the first embodiment of the invention this problem may be mitigated by incorporating the valve on the end prior to seaming and then assembling the applicator (nozzle/overcap etc.) after seaming. The disadvantages of this are increased stack height, slower seaming speed and the need for a secondary process to attach the applicator after seaming. To overcome these problems, the inventor's have also looked at citing the valve 30 elsewhere on the beverage can, within the container “envelope”.
Although the examples discussed above show a simple tilt valve, it will be apparent to people skilled in the art that the valve may take many alternative forms such as a tilt valve, a push valve with return spring, a bite valve or a demand valve etc.
10—Body
20—Top
30—Valve
35—Valve inlet
37—Valve seat
40—Spout
50—Lid
55—Tab
57—Thumb Rest
60—Dispensing Orifice
70—Bottom
Number | Date | Country | Kind |
---|---|---|---|
11161743.7 | Apr 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP12/56112 | 4/3/2012 | WO | 00 | 12/23/2013 |