Self-dispersed pigments and methods for making and using the same

Abstract
A method of modifying a pigment that includes reacting a reactive compound having an X—[Y]n reactive group with a secondary compound N—S—ZM to form a substituted reactive intermediate [Y]a—X—(N—S—ZM)b. A pigment is reacted with the substituted reactive intermediate [Y]a—X—(N—S—ZM)b to attach the substituted reactive intermediate to the surface of the pigment to form a surface modified pigment. X may be a sulfonyl, phosphoryl, or 1,3,5-triazinyl group, Y may be a halogen leaving group, N may be a basic nucleophilic group, S may be an organic group, and ZM may be an ionizable end group. Also, n is an integer between 1 and 3, b is an integer between 1 and 3, and a=n−b. When n is equal to or greater than b, and if b is 2 or 3, each. N—S—ZM can be the same or different.
Description
FIELD OF USE

The present invention relates to a method of making self-dispersing pigments. More particularly, the present invention relates to the surface modification of pigments. Pigments whose surfaces are modified through covalent bonding are known in the industry as self-dispersing pigments. The surface modifications may be carried out in an aqueous environment and may be eco friendly. The invention further relates to end use applications comprising surface-modified pigments, including, without limitation, coatings, paints, papers, adhesives, latexes, toners, textiles, fibers, plastics, and inks. Specific examples of end uses include, without limitation, printing ink for paper, textiles, fibers, metal deco and plastics, wood stains, writing instruments, and color filters. The invention also related to inks such as inkjet inks.


BACKGROUND

Pigments offer several advantages over water-soluble dyes when it comes to inks, coatings, paints, papers, adhesives, latexes, toners, textiles, fibers, wood stains, color filters, and plastics. Pigments may exhibit at least one of greater lightfastness, waterfastness, optical density and edge acuity than water-soluble dyes. Unfortunately, pigments also have a greater propensity to settle during storage, thus initially limiting their use in demanding applications such as inkjet inks. The advent of media mills to grind pigment particles to sub-micron level combined with chemical additives for colloidal stability has propelled the use of pigment dispersions in inkjet ink formulations. However, chemical additives can increase the viscosity of dispersions such that it becomes difficult to jet the ink from the small orifices in an inkjet printhead. Moreover, chemical additives can add significant cost to the preparation of the materials listed above and are therefore economically unfavorable as well. Chemical additives, or dispersants, may not be bonded to the surface of the pigment and therefore, stabilization may be compromised. A need remains for improved ink compositions, especially for use in inkjet printers, which overcome at least some of the problems typically associated with current dye-based systems and pigment systems employing chemical additives. A need also remains for improved materials that use pigments, which overcome at least some of the problems typically associated with current dye based systems and pigment systems employing chemical additives.


SUMMARY

In one aspect, the invention may provide a method of modifying a pigment that may include reacting cyanuric chloride with about three equivalents of a secondary compound or a mixture of secondary compounds to displace all reactive chlorines to form a substituted triazine. The substituted triazine may be reacted with a surface of a pigment to form a surface modified pigment.


In another aspect, the invention may provide a method of modifying a pigment that may include reacting a reactive compound having an X—[Y]n reactive group with a secondary compound N—S—ZM to form a substituted reactive intermediate [Y]a—X—(N—S—ZM)b. The method may also include reacting a pigment with the substituted reactive intermediate [Y]a—X—(N—S—ZM)b to attach the substituted reactive intermediate to the surface of the pigment to form a surface modified pigment. X may be a sulfonyl, phosphoryl, or 1,3,5-triazinyl group. Y may be a halogen leaving group, N may be a nucleophilic group, S may be an organic group, and ZM may be an ionizable end group. Also, n may be an integer between 1 and 3, b may be an integer between 1 and 3, and a=n−b. When n is equal to or greater than b, and if b is 2 or 3, each N—S—ZM can be the same or different.


In yet another aspect, the invention may provide a method of modifying a pigment that may include attaching a reactive group to a surface of a pigment. Subsequently the reactive group may be displaced with an organic substrate having an ionizable end group. The pigment may be selected from the group consisting of pigment red 122, pigment violet 19, pigment violet 23, pigment red 202, pigment red 188, pigment yellow 155, pigment yellow 97, pigment green 7, pigment blue 15:3, pigment blue 15:4, and pigment yellow 74.


In a further aspect, the invention may provide a method of modifying a pigment that may include attaching a reactive group X—Y to a surface of a pigment. Subsequently Y may be displaced with an organic substrate N—S—ZM to form a surface-modified pigment having attached X—N—S—ZM. X may be a sulfonyl, phosphoryl, or 1,3,5-triazine group. Y may be fluorine, chlorine, bromine, or iodine. N may be an amine, an imine, a pyridine, or a thiol group. S may be substituted or unsubstituted alkyls, aryls, or polymer chains having a molecular weight range from about 300 to about 8000. Z may be a carboxyl, sulfonyl, phenolic, phosphoryl, ammonium, trimethylammonium, or tributylammonium group. M may be a halide, a negatively charged ion, a proton in salt form, or a cation in salt form.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 displays low resolution X-Ray Photoelectron Spectroscopy (XPS) spectra for untreated carbon black samples and carbon black samples from Examples 1, 20, 31, and 41.



FIG. 2 displays high resolution N1s XPS spectra for untreated carbon black samples and carbon black samples from Examples 1, 20, 31, and 41.



FIG. 3 displays high resolution O1s XPS spectra for untreated carbon black samples and carbon black samples from Examples 1, 20, 31, and 41.



FIG. 4 displays high resolution S2p XPS spectra for untreated carbon black samples and carbon black samples from Examples 1, 20, 31, and 41.



FIG. 5 displays low resolution XPS spectra for untreated Pigment Blue 15 samples and Pigment Blue 15 samples from Examples 7, 9, 11, 16, and 42.



FIG. 6 displays high resolution O1s XPS spectra for untreated Pigment Blue 15 samples and Pigment Blue 15 samples from Examples 7, 9, 11, 16, and 42.



FIG. 7 displays high resolution Na1s XPS spectra for untreated Pigment Blue 15 samples and Pigment Blue 15 samples from Examples 7, 9, 11, 16, and 42.



FIG. 8 displays low resolution XPS spectra for untreated Pigment Red No. 122 samples and Pigment Red No. 122 samples from Examples 14, 21, 37, and 45.



FIG. 9 displays high resolution O1s XPS spectra for untreated Pigment Red No. 122 samples and Pigment Red No. 122 samples from Examples 14, 21, 37, and 45.



FIG. 10 displays high resolution Na1s XPS spectra for Pigment Red No. 122 samples from Examples 14, 21, 37, and 45.



FIG. 11 displays high resolution S2p XPS spectra for Pigment Red No. 122 samples from Examples 14, 21, 37, and 45.



FIG. 12 displays low resolution XPS spectra for untreated Pigment Yellow No. 74 samples and for Pigment Yellow No. 74 samples from examples 15, 29, and 46.



FIG. 13 displays high resolution C1s XPS spectra for untreated Pigment Yellow No. 74 samples and for Pigment Yellow No. 74 samples from examples 15, 29, and 46.



FIG. 14 displays high resolution O1s XPS spectra for untreated Pigment Yellow No. 74 samples and for Pigment Yellow No. 74 samples from examples 15, 29, and 46.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


It also is understood that any numerical range recited herein includes all values from the lower value to the upper value. For example, if a concentration range is stated as 1% to 50%, it is intended that values such as 2% to 40%, 10% to 30%, or 1% to 3%, etc., are expressly enumerated in this specification. These are only examples of what is specifically intended, and all possible combinations of numerical values between and including the lowest value and the highest value enumerated are to be considered to be expressly stated in this application.


In one embodiment, the invention provides a method of modifying a pigment. The method may include attaching an organic group with charged end groups (negative or positive) through the intermediacy of a reactive molecule to produce a surface stabilized modified pigment. Without being limited by theory, it is believed that the stabilization is achieved by an even distribution of similarly charged groups which are covalently attached on sub micron sized pigment particles by the forces of repulsion.


In another embodiment, the invention provides a method of modifying a pigment. The method may include a chlorosulfonation step to form a reactive sulfonyl chloride intermediate which is then reacted with a suitable organic molecule as described above. In one aspect, the degree of chlorosulfonation may be increased to yield a liquid gel or micelle-like composition, which, when milled with untreated pigment forms a stable dispersion.


In yet another embodiment, the invention provides a dispersion that includes a self-dispersing pigment that has been formed by a reaction of a pigment with a reactive intermediate that has been attached to suitable organic molecules as described above. The selection of reactive intermediates that are stable in an aqueous environment is another aspect of the present invention.


In another embodiment, the invention provides a method of modifying a pigment that may include attaching a reactive group to a surface of a pigment and subsequently displacing the reactive group with an organic substrate having an ionizable end group.


In a further embodiment, the invention provides a dispersion that includes a self-dispersing pigment comprising about 0.01 to about 1.0 mMoles of S and about 0.01 to about 2.0 mMoles of active hydrogen per gram of pigment, and water. In another embodiment, the invention provides a dispersion that includes a self-dispersing pigment comprising about 0.06 to about 0.7 mMoles of S and about 0.07 to about 1.6 mMoles of active hydrogen per gram of pigment, and water.


Method for Making Self-Dispersing Pigments


One aspect of the present invention relates to a method for making stable, self-dispersing pigments.


As used herein, the term “pigment” means a an insoluble in a solvent medium that is used to impart color to a substrate such as plain or coated paper, film and other types of receiving media. Pigments may be black as well as other colors.


As used herein, the term “self-dispersing” pigment means a pigment having stabilizing groups covalently attached to its surface such that the pigment forms a stable aqueous dispersion in the absence of any additional dispersing agents.


As used herein, the term “stable” means that on aging the dispersion will undergo minimal changes as demonstrated by less than 10% change in measured critical properties (such as at least one of mean particle size, viscosity, surface tension and pH) when stored at ambient temperature over a period of at least about three months to six months to two years. Accelerated test methods include a heat stability test at about 70° C. for at least about one week or a heat stability test at about 70° C. for at least about four weeks.


In a first embodiment, the method for making a self-dispersed pigment generally comprises (1) reacting a pigment (P) with a reactive compound having an X—Y reactive group and a halogen-containing reagent to attach the reactive group X—Y to the surface of the pigment (P), and thereby form a pigment reactive intermediate (P)X—Y; and (2) reacting the pigment reactive intermediate (P)X—Y with a secondary compound N—S—ZM to form a self-dispersed pigment (P)—X—S—ZM (“the substitution step”). One example of this embodiment may include, without limitation, a method of modifying a pigment that may comprise attaching a reactive group X—Y to a surface of a pigment; and subsequently displacing Y with an organic substrate N—S—ZM to form a surface modified pigment having attached X—N—S—ZM.


In a second embodiment, the method for making the self-dispersing pigment (P)—X—S-ZM may comprise (1) reacting a reactive compound having an X—Y reactive group with a secondary compound N—S—ZM to form a substituted reactive intermediate X—S—ZM (“the substitution step”); and (2) reacting a pigment (P) with the substituted reactive intermediate X—S—ZM to attach the substituted reactive intermediate X—S—ZM to the surface of the pigment using a secondary displacement reaction to form a self-dispersed pigment (P)—X—S—ZM. One example of this embodiment may include, without limitation, a method of modifying a pigment that may comprise reacting a reactive compound having an X—[Y]n reactive group with a secondary compound N—S—ZM to form a substituted reactive intermediate [Y]a—X—(N—S—ZM)b; and reacting a pigment with the substituted reactive intermediate [Y]a—X—(N—S—ZM)b to attach the substituted reactive intermediate to the surface of the pigment to form a surface modified pigment; wherein n is an integer between 1 and 3; b is an integer between 1 and 3; and a=n−b; wherein n is equal to or greater than b, and wherein if b is 2 or 3, each N—S—ZM may be the same or different. In one embodiment, if b is 2 or 3, each N—S—ZM may be different.


In a third embodiment, the method for making the self-dispersing pigment (P)—X—S-ZM may comprise (1) reacting a reactive compound having an X—Y reactive group with a secondary compound N—S—ZM to form a first substituted reactive intermediate X—S—ZM (“the substitution step”); (2) reacting a reactive compound having an X—Y reactive group with a different secondary compound N2-S2-Z2M2 from step (1) to form a second substituted reactive intermediate X—S2-Z2M2 (“the substitution step”); (3) reacting a pigment (P) with the substituted reactive intermediates X—S—ZM and X—S2-Z2M2 to attach the substituted reactive intermediates to form a self-dispersed pigment Z2M2-S2-X—(P)—X—S—ZM. Optionally S—ZM and S2-Z2M2 could be the same and all reactive groups will be substituted. The final attachment to the pigment surface could be one of radical assisted disproportionation reaction.


In a fourth embodiment, the method for making the self-dispersing pigment (P)—X—S—ZM may comprise (1) using a grind aid and milling and dispersing a pigment to form an aqueous pigment dispersion; (2) reacting a reactive compound having an X—Y reactive group with a secondary compound N—S—ZM to form a first substituted reactive intermediate X—S—ZM (“the substitution step”); (3) reacting a reactive compound having an X—Y reactive group with a different secondary compound N2-S2-Z2M2 from step (2) to form a second substituted reactive intermediate X—S2-Z2M2 (“the substitution step”); (4) reacting a pigment (P) pre-milled with a grind aid with the substituted reactive intermediates X—S—ZM and X—S2-Z2M2 to attach the substituted reactive intermediates X—S—ZM and X—S2-Z7 μM2 to the surface of the pigment using a radical initiated reaction to form a self-dispersed pigment Z2M2-S2-X—(P)(R)—X—S—ZM; and (5) purifying the self-dispersed pigment to remove impurities, including the grind aid. Optionally S—ZM and S2-Z2M2 could be the same.


In each of these embodiments, the reactive compound may have an X—Y reactive group, wherein X may include, without limitation, carbonyl, sulfonyl, phosphoryl, cyanuryl, and NH and Y may include, without limitation, acid halide leaving groups, including, without limitation, fluoride, chloride, bromide, and iodide. In one suitable embodiment, X may be sulfonyl, phosphoryl, or cyanuryl (1,3,5-triazinyl). The acid halide forming reagent contains a halogen. Examples of such reagents include, without limitation, chlorosulfonic acid, thionyl chloride, phosphoryl chloride, and combinations thereof. Other halogens may be substituted for the chlorine in these compounds. The reactive compound may be stable in an aqueous media for short durations at low temperatures.


During the substitution step, at least one leaving group Y of the X—Y reactive group is substituted with the secondary compound N—S—ZM, wherein N is a nucleophilic group such as an amine, an imine, pyridine, or thiol, S may include, without limitation, organic groups such as, substituted or unsubstituted, alkyls, aryls and polymer chains having from about 1 to greater than 100 carbons or having a molecular weight range from about 300 to about 8000, and in the case of stabilization by negative charge, ZM is an acidic tail group, wherein Z may be, without limitation, carboxyl, sulfonyl, phenolic, and phosphoryl and M may be either a proton or a cation if it is present as a salt form. This substitution may impart charge and bulk to the surface of the pigment. The substitution step may take place in an aqueous media. The choice of functional groups at the acidic tail is dictated by the final application while the functional groups at the basic head must have sufficient nucleophilicity to displace the leaving group Y. The secondary compound may comprise polymers, amines, amino acids, alcohols, thiols, and combinations thereof. Examples of secondary compounds and N2-S2-Z2M2 N—S—ZM include, without limitation, amino benzoic acids, amino benzene sulfonic acids, amino phenols, amino sulfonic acids, polyethoxylated amino acids, sodium sulfanilate, sulfanilic acid, sodium p-aminobenzoate, p-aminophenol, ethyl 4-aminobenzoate, taurine, oleic acid (amino), sodium aminooleate, tetramethylammonium 4-aminobenzoate, and sodium 4-aminophenolate. Additional secondary compounds include organic polymeric substrates. Examples of organic polymeric substrates may include, without limitation, linear alkyl and branched ethoxy and propoxy chain polymers with a known molecular weight range of 300-3000 MW, available from Huntsman Chemicals under the trade name “Surfonamines,” linear polyethoxy polymeric amines, linear propoxy polymeric amines, styrene acrylic copolymers available from Johnson Polymers under the trade name “Joncryls,” and polyethyleneimines sold under the trade name “Epomines”.


In the case of stabilization by positive charge, ZM may be a positively charged quaternary ammonium type tail group, wherein Z may be, without limitation, ammonium, trimethylammonium, and tributylammonium, and M may be a halide or any negatively charged ion. Examples of secondary compounds N—S—ZM and N2-S2-Z2M2 include, without limitation, simple diamino aromatics or cationic polymers consisting of polyethyleneimines, polyguanidines, quaternary ammonium compounds etc.


The final self-dispersing pigment may be represented by the formula (P)—X—S—ZM for the first and second embodiments. In some instances, there may be multiple —S—ZMs attached to the pigment that comprise different secondary compounds. For the third embodiment, the final self-dispersing pigment may be represented by the formula Z2M2-S2-X—(P)—X—S—ZM. And finally, the use of “2” to modify N, Z, M and S is meant to denote that N2, Z2, M2 and S2 may be the same or different as N, Z, M and S, N2, Z2, M2 and S2 may be selected from the same options set forth above with respect to N, Z, M and S.


To help illustrate the invention, a specific example of the first embodiment is provided below, wherein P represents a pigment.




embedded image


To help illustrate the invention, a specific example of the second embodiment is provided below, wherein P represents a pigment.




embedded image


To help illustrate the invention, a specific example of the third embodiment is provided below, wherein P represents a pigment.




embedded image


The embodiments of the invention are discussed in more detail below. Generally, the methods for making the self-dispersing pigment begin with selecting a source of pigment.


Pigments


Pigments that may be surface modified according to the present invention may include, but are not limited to, azo pigment, phthalocyanine pigment, anthraquinone pigment, quinacridone pigment, thioindigo pigment, triphenylmethane lake pigment, and oxazine lake pigment. Specifically, those having yellow colors include, for example, C. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 16, 17, 65, 74, 83, 97, 138, 150, 151 and 155. Those having red colors include, for example, C. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 31, 32, 37, 38, 41, 48, 49, 50, 51, 52, 57, 58, 60, 64, 83, 88, 89, 90, 112, 114, 122, 123, 166, 188, 202, C. I. Pigment Violet 19 and 23. Those having blue colors include, for example, C. I. Pigment Blue 1, 2, 15, 15:3, 15:4, 16, 25, and 75. Those having green colors include, for example C.I. Pigment Green 7 and 36. Those having black colors include, for example, C. I. Pigment Black 1 and 7. Commercially available colored pigments include, for example, Pigment Red 122 and Pigment Violet 19 available from Lansco Colors, Montvale, N.J. or BASF Color, Charlotte, N.C. or Clariant Colors, Charlotte, N.C. or Sun Chemical, Cincinnati, Ohio, Pigment Blue 15:1 (available from Fanwood Chemical, Fanwood, N.J.), Pigment Blue 15:3, Pigment 15:4, Pigment Yellow 74 and Pigment Yellow 97 (available from BASF Color, Charlotte, N.C. or Clariant Colors, Charlotte, N.C. or Sun Chemical, Cincinnati, Ohio).


Suitable pigments also include carbon black. Carbon black is the generic name for carbon particles derived from the thermal decomposition or the incomplete combustion of natural gas and hydrocarbons, such as aromatic oils on coal tar basis, mineral oils, coal tar distillate, and acetylene. More than 100 individual grades of carbon black are available on the market today, each with its own distinctive set of characteristics and properties. Any acidic carbon black, neutral carbon black and alkaline carbon black may be beneficially subjected to the treatment disclosed in the present invention. This includes channel blacks, gas blacks, lamp blacks, thermal blacks, acetylene blacks and furnace blacks. More particularly, suitable carbon blacks include channel blacks. The quality of carbon black utilized will have an impact on the critical properties of the dispersion such as mean particle size, opacity, color shade, stability, etc. Examples of commercially available carbon blacks include, but are not limited to, those available from Cabot (Elftex 8, Black Pearls® 490, Black Pearls® 120, Monarch® 120, Monarch® 700, Monarch® 880, Monarch® 1000, Monarch® 1100, Monarch® 1300, Monarch® 1400, Mogul® L, Regal® 99R, Regal® 250R, Regal® 300R, Regal® 330R, Regal® 400R, Regal® 500R, Regal® 660R), Degussa (NIPex® 150 IQ, NIPex® 150, Printex® 55, Printex® 80, Printex® 90, Printex® A, Printex® G, PrinteeU, Printex® V, Printex® 140U, Printee 140V, Purex® LS 35, Corax® HP 160, Thermal Black N 990, NIPex® 160 IQ, NIPee 90, Special black 4, Special black 4A, Special black 5, Special black 6, Special black 100, Special black 250, Color black FW1, Color black FW2, Color black FW2V, Color black FW18, Color black FW200, Color black S150, Color black S160 and Color black S170), Columbian (Raven® 780, Raven® 5000 UII, Raven® 1255, Raven® 2500 U, Raven® 3600 U, Raven® 3500, Raven® 7000, Raven® 1220 and Raven® 1225) and Mitsubishi Kagaku K.K. (MA8, MA11, MA77, MA100, MA220, MA230, MA600, MCF88, #10B, #20B, #30, #33, #40, #44, #45, #45L, #50, #55, #95, #260, #900, 970#, #1000, #2200B, #2300, #2350, #2400B, #2650, #2700, #4000B and CF9).


Pigments are available in a variety of particle sizes. Generally, smaller particle sizes are associated with larger surface areas, and larger surface areas can accommodate a higher concentration of hydrophilic surface groups, which ultimately enhance the dispersibility of the carbon black in aqueous-based media. Therefore, particle size can influence the dispersibility of a surface-modified pigment. For example, the average primary particle size of carbon blacks in the present invention may be less than about 50 nm, particularly less than about 30 nm, particularly less than about 20 nm, and more particularly less than about 10 nm. Aggregates of carbon black particles may be less than about 200 nm, particularly less than about 150 nm, and more particularly less than about 100 nm. The surface area of carbon black particles may be greater than about 100 m2/g, particularly greater than about 150 m2/g, and more particularly greater than about 200 m2/g. Pigment particles with larger dimensions may be comminuted to a desired size either before or during surface modification using any number of techniques known to those skilled in the art. Such techniques may include, but are not limited to, a ball mill, an attritor, a flow jet mixer, an impeller mill, a colloidal mill and a sand mill (e.g., one commercially sold under the trade name ‘Super Mill’, ‘Agitator Mill’, ‘Dyno-mill’ or ‘Beads Mill’). Mill media may include, but are not limited to, glass beads, zirconia beads and stainless steal beads. Mill media may comprise particles ranging in size from about 0.1 mm to about 3 mm, more particularly from about 0.01 mm to about 5 mm. If the carbon black is easily crumbled, a rotary homogenizer or an ultrasonic homogenizer may be used to reduce particle size. In one embodiment, a surface-modified black pigment is made from a commercial grade carbon black pigment consisting of primary particle sizes less than about 30 nm and aggregates not more than about 200 nm with a surface area greater than about 100 m2/g.


Prior to the creation of the self-dispersing pigments, the pigment may or may not be oxidized with an oxidant such as nitric acid, ozone, hydrogen peroxide, persulfate, hypohalite, or a combination thereof. Aqueous oxidation of carbon black using sodium hypochlorite is taught by U.S. Pat. No. 2,439,442 issued Apr. 13, 1948 and U.S. Pat. No. 3,347,632 issued Oct. 17, 1967, each of which is hereby incorporated by reference. Following the oxidation of the pigment, compounds of the formula X—S—ZM are then attached to the surface of the pigment using the methods of the current invention, complementing the newly introduced surface charge groups.


In some instances, prior to the creation of the self-dispersing pigments, the pigment may be wetted and milled to nano sized particles and dispersed using a grind-aid. The pigment may be in powder or wet cake form prior to milling with the aid of a grind aid. The milling may take place prior to, during, or after the reaction with the substituted intermediate. After the attachment reaction is complete, the grind-aid may be removed using purification methods that are known to those skilled in the art, forming a dispersion containing primarily the modified pigment and water. Examples of grind aids include, but are not limited to Triton X-100 (available from Ashland Inc., Dublin, Ohio), Igepal CA-630 (available from Rhodia, Cranbury, N.J.), and Surfynol CT 121, 131, and 141 (available from Air Products, Allentown, Pa.).


In one example of the first embodiment, reactive compounds comprising sulfonyl chloride are attached to a pigment such as carbon black by chlorosulfonation with chlorosulfonic acid. The combination of acid strength, reaction temperature, and duration determine how many sulfonyl groups are attached to the surface of the pigment. In one embodiment, chlorosulfonation is carried out with an amount of chlorosulfonic acid that is five times the weight of carbon black.


Chlorosulfonation may also be carried out with a mixture of chlorosulfonic acid and thionyl chloride to prevent in situ hydrolysis. The amount of thionyl chloride may be varied widely to control the degree of hydrolysis or even to prevent it completely. In one embodiment, chlorosulfonation is carried out with 348 g of chlorosulfonic acid and 30 g of thionyl chloride.


The ratio (by weight) of pigment to acid is largely determined as a function of operational efficiency which includes mixing, ease of transfer, and cost. Chlorosulfonation of the pigment can be achieved in the absence of added solvent by using chlorosulfonic acid in excess. A minimum acid to pigment ratio of about 5 is well-suited to provide good mixing throughout the reaction. A large excess, such as a ratio of about 20, does not result in significant benefit but increases the cost of both materials and handling. In one embodiment, chlorosulfonic acid is used in about five fold excess (w/w). In another embodiment, the ratio of pigment to chlorosulfonating agent is at least about 4:1 (w/w). In yet another embodiment, the ratio of pigment to chlorosulfonating agent is from about 1:20 to about 1:1 (w/w). In a further embodiment, the chlorosulfonating agent may be a mixture of chlorosulfonic acid and thionyl chloride in a ratio of about 3:1 to about 6:1 (w/w).


Chlorosulfonation of pigment may be carried out at elevated temperatures for a period of up to about 2 days. The reaction temperature during chlorosulfonation may be at least about 140° C., particularly at least about 130° C., and more particularly at least about 120° C. Furthermore, the reaction temperature during chlorosulfonation may be less than or equal to about 60° C., particularly less than or equal to about 90° C., and more particularly less than or equal to about 120° C. This includes embodiments where the reaction temperature during chlorosulfonation is about 120° C. to about 130° C., and more particularly no more than about 140° C. In another embodiment, the reaction temperature during chlorosulfonation is from about 25° C. to about 160° C. Generally, higher temperatures require shorter reaction times to achieve a desirable concentration of sulfonyl groups on the surface of the pigment. For example, the desired chlorosulfonation at a reaction temperature of 140° C. may take about 6 hours, whereas the same degree of chlorosulfonation at 80° C. would be expected to take more than 72 hours. In some embodiments, the reaction time may be at least about 2 hours, in others at least about 6 hours, and in yet others at least about 24 hours. In other embodiments, the reaction time may be less than or equal to about 48 hours, in others less than or equal to about 24 hours, and in yet others less than or equal to about 6 hours. This includes embodiments where the reaction time is from about 1 hour to about 48 hours. The contents of the reaction vessel are stirred during chlorosulfonation to insure adequate mixing.


After chlorosulfonation, the reaction mixture may be quenched in water. In some embodiments, the reaction mixture may be cooled to a temperature less than about 20° C. prior to quenching, in others to a temperature of less than about 60° C. prior to quenching, and in yet others to a temperature less than about 90° C. prior to quenching. This includes embodiments where the reaction mixture is cooled to a temperature of about 20° C. to about 90° C. prior to quenching. The water into which the reaction mixture is added may be at or below a temperature of about 10° C. using, for example, ice, a cooling device or combination thereof. In one embodiment, the quench temperature is maintained at about 0° C. to about 5° C. to preserve the reactive sulfonyl chloride intermediate. The chlorosulfonated product, referred to as a wet cake, may be isolated from the water by filtration and washed free of excess reactants and water soluble products. It may be washed with <5° C. water.


The pigment reactive intermediate is subsequently substituted with at least one secondary compound that comprises an organic group that prevents hydrolysis back to an acid. In one embodiment, the pigment reactive intermediate may be immediately used for reaction with a secondary compound. For instance, a carbon black having reactive sulfonyl chloride groups may be immediately reacted with an organic compound containing amino and acidic end groups. The secondary compound that comprises an organic group may be selected by the desired end application for the pigment.


The pigment reactive intermediate may be reacted with the secondary compound in an acidic pH (about 2 to about 5) range. The acidic pH range increases the stability of the reactive compound and decreases the degree of undesirable reactions such as hydrolysis and self-condensation. The reactive compound reacts preferentially with a base such as a primary amine even when an amino phenol is used as the organic group. The reaction can be directed primarily to the amino end by the proper choice of the reaction conditions such as pH, temperature, and dilution which is well known to those skilled in the art. For example, the pH may be from about 2 to about 5 and the temperature may be from about 0° C. to about 5° C. In another embodiment, while reacting the pigment reactive intermediate with the secondary compound, the particle size of the pigment can be reduced by performing the reaction in a bead mill. Due to the corrosivity of the secondary compound, proper materials of construction resistant to strong acids and bases may be selected to prevent metal leaching into the product.


Reaction between the pigment reactive intermediate and the secondary compound may occur for a period of about 2 hours to about 4 hours with mixing. In one embodiment, the reaction may be forced to completion by heating the mixture to elevated temperatures of about 60° C. to about 90° C.


Another example of the first embodiment may include, without limitation, a method of modifying a pigment having a surface that may comprise attaching a reactive group X—Y to the surface of a pigment; and subsequently displacing Y with an organic substrate N—S—ZM to form a surface modified pigment having attached X—N—S—ZM; wherein X is a sulfonyl, phosphoryl, or 1,3,5-triazinyl group; Y is a halogen leaving group; N is a basic nucleophilic group; S is an organic group; and ZM is an ionizable end group. A majority of the pigment surface may be modified to form a liquid gel. The liquid gel may subsequently be milled with excess untreated pigment and water to form a stable aqueous pigment dispersion. One example of modifying a majority of the pigment surface includes, without limitation, chlorosulfonating a pigment at a temperature of at least about 90° C. for at least about one hour to form a chlorosulfonated pigment, or pigment sulfonyl chloride.


In one example of the second embodiment, reactive compounds comprising cyanuryl groups are substituted with a secondary compound that comprises organic groups. The substituted reactive intermediate —X—S—ZM is then attached to a pigment such as carbon black by using cyanuric chloride. The combination of pH, reaction temperature, and duration determine how many groups are attached to the surface of the pigment. In one embodiment, the reaction is carried out with 52 g of cyanuric chloride per 120 g of carbon. In another embodiment, the reaction is carried out with 15 g of cyanuric chloride per 40 g of carbon.


In some embodiments, a slurry of a secondary compound that comprises an organic group, cyanuric chloride, water, ice, and base is created. The secondary compound that comprises an organic group may be selected by the desired end application for the pigment.


In an example of the third embodiment, reactive compounds comprising cyanuryl groups are substituted with a secondary compound that comprises two organic groups, which may be the same or different. The two substituted reactive intermediates X—S—ZM and X—S2-Z2M2 are then attached to a pigment such as carbon black by using the cyanuric chloride. The combination of pH, reaction temperature, and duration determine how many groups are attached to the surface of the pigment. This process can be done sequentially by first reacting with a slurry of secondary compound that comprises an organic group, cyanuric chloride, water, ice, and base. A second slurry of a different secondary compound that comprises an organic group, cyanuric chloride, water, ice, acid, and base is used to complete the sequence.


The ratio of cyanuryl chloride to secondary compound is typically determined by stoichiometry and the concentration is controlled to allow for good mixing. Reaction between the cyanuric chloride and the secondary compound may occur for a period of about 2 hours to about 4 hours with mixing.


In an example of the fourth embodiment, all the reactive chlorines in cyanuryl chloride are displaced by the secondary compound or a mixture of secondary compounds by manipulating the stoichiometry (three equivalents to displace all three chlorines) and temperature (a higher temperature of about 90° C.) prior to the reaction with a pigment. This reaction forms a substituted triazine, which substituted triazine may be attached to the surface of the pigment. The mixture of secondary compounds may include one, two, or three different secondary compounds. In such instances, a radical initiator such as a persulfate moiety is used to disproportionate and facilitate the attachment process. In some embodiments, the reaction may be carried out at a temperature of about 25° C. to about 90° C. In another embodiment, the pigment may be milled to less than about 100 nm before, during, or after reacting the pigment with the substituted triazine.


The pigment is mixed with this “reagent” to create the dispersion. In embodiments where there are two slurries with different secondary compounds, the pigment is mixed with the slurries sequentially. The temperature of the dispersion may be maintained at about 0° C. to about 15° C. for a period of about 1 hour to about 2 hours. The mixture of the reactive compound (e.g., substituted triazine) dispersion and the pigment is then heated to elevated temperatures for a period of up to about 2 days. A free radical initiator such as potassium persulfate may be added to promote the reaction. The reaction temperature may be at least about 40° C., particularly at least about 50° C., and more particularly at least about 60° C. Furthermore, the reaction temperature may be less than or equal to about 90° C., particularly less than or equal to about 80° C., and more particularly less than or equal to about 60° C. This includes embodiments where the reaction temperature is about 50° C. to about 60° C., more particularly no more than 90° C. Generally, temperatures above 50° C. are required for the free radical initiator to be effective. This includes embodiments where the reaction time is from about 16 hours to about 24 hours. The contents of the reaction vessel are stirred during the reaction to insure adequate mixing. The modified pigment may be filtered to remove excess reactants and impurities.


In one embodiment, the reactive compound (such as cyanuric chloride) is reacted with the secondary compound in an acidic pH (about 2 to about 5) range. The acidic pH range increases the stability of the reactive compound and decreases the degree of undesirable reactions such as hydrolysis and self-condensation. The reactive compound reacts preferentially with a base such as a primary amine even when an amino phenol is used as the organic group. The reaction can be directed primarily to the amino end by the proper choice of the reaction conditions such as pH, temperature, and dilution which is well known to those skilled in the art. For example, the pH may be from about 2 to about 5 and the temperature may be from about 0° C. to about 5° C.


Optionally, while reacting the pigment with the group —X—S—ZM, the particle size of the pigment can be reduced by performing the reaction in a bead mill. Due to the corrosivity of the secondary compound, proper materials of construction resistant to strong acids and bases may be selected to prevent metal leaching into the product.


Reaction of the pigments with reactive compounds or secondary groups that include acid derivatives may create acidic surface groups that can lower the pH of the reaction mixture. A decrease in pH may result in a destabilization of the modified pigment dispersion or slurry of reactive compound and secondary compound during the substitution and may also result in an increase in viscosity. Therefore, the pH may be adjusted, as needed, before and during the substitution with a basic reagent. The pH of the reaction mixture during substitution may be greater than or equal to about 7, particularly greater than or equal to about 8, and more particularly greater than or equal to about 9. The pH may be adjusted by any known method in the art including, for example, the addition of base. Suitable bases may include, but are not limited to, alkali hydroxides and calcium free alkali hydroxides (e.g., NaOH, KOH, LiOH, NH4OH), alkali carbonates and bicarbonates (e.g., NaHCO3, KHCO3), and organic bases (e.g., dimethylethanol amine and triethanol amine). In particular, a suitable pH adjuster comprises calcium free sodium hydroxide.


Surface Modified Pigment


After the reactions described above are complete, the self-dispersing pigment may be isolated from the reaction mixture as a dry powder. The resultant modified pigment may be purified by using any number of techniques known to those skilled in the art to remove unreacted raw materials, byproduct salts and other reaction impurities. Purification techniques may include, but are not limited to, filtration, centrifugation, or a combination of the two. The modified pigment may also be isolated, for example, by evaporation or it may be recovered by filtration and drying using techniques known to those skilled in the art.


Alternatively, the self-dispersing pigment may be delivered as concentrated aqueous pigment dispersion. Dispersions of the self-dispersing pigments of the present invention may be purified to remove organic and inorganic impurities and other undesirable free species which can co-exist in the dispersion as a result of the manufacturing process. Purification techniques may include, but are not limited to, water washing, reverse osmosis, and ultrafiltration. In some embodiments, dissolved impurities may be removed by ultrafiltration until the chloride and sulfate content of the feed sample adjusted to 10% solids is less than about 150 ppm, particularly less than about 100 ppm, and more particularly less than about 25 ppm. If necessary, the pH of the dispersion may be adjusted prior to purification. A sufficient amount of acid or base may be added to adjust the pH of the dispersion to at least about 7, particularly to at least about 8, and more particularly to at least about 9. This includes embodiments where the pH of the dispersion is about 7 to about 9. The dispersion may be concentrated if desired by removal of some of the water. In some embodiments, the dispersion is concentrated to at least about 8% solids, in others to at least about 14% solids, and in yet others to at least about 20% solids. This includes embodiments where the dispersion is concentrated to about 8% to about 16% solids. In other embodiments, the dispersion is concentrated to at least about 10% solids, in others to at least about 18% solids, and in yet others to at least about 20% solids. This includes embodiments where the dispersion is concentrated to about 14% to about 8% solids.


A biocide may also be added to the dispersion to inhibit the growth of microorganisms. Examples of suitable biocides include, but are not limited to, sodium benzoate, pentachlorophenol sodium, 2-pyridinethiol-1-oxide sodium, sodium sorbate, sodium dehydroacetate, benzisothiazolinone, 1,2-dibenzothiazolin-3-one, methylisothiazolinone and chloromethylisothiazolinone. Commercially available biocides include Proxel® CRL, Proxel® BDN, Proxel® GXL, Proxel® XL-2, and Proxel® TN (available from Arch Chemicals, Smyrna, Ga.) and XBINX® (available from PMC Specialties Group, Inc., Cincinnati, Ohio). Typically, a small amount, such as 0.05 to 5%, particularly 0.1 to 1%, and more particularly 0.2 to 0.4% by weight of biocide, is used in the dispersion. This includes 0.3% by weight biocide.


Agents may also be added to impart fluidity and stability to the dispersion. Examples of such agents may be found in U.S. Pat. No. 5,059,248 issued Oct. 22, 1991, U.S. Pat. No. 5,591,455 issued Jan. 7, 1997 and U.S. Pat. No. 5,595,592 issued Jan. 21, 1997, each of which is hereby incorporated by reference. Examples include, but are not limited to, linear aliphatic substituted glycine compounds and salts thereof. As used herein, the term “linear aliphatic substituted glycine” designates glycine compounds in which the amino group of glycine has been substituted with linear aliphatic groups. Illustrative of agents of this type which may be used in the practice of the invention are ethylene diamine tetraacetic acid, nitrilo triacetic acid, diethylene triamine pentaacetic acid, hydroxyethylene diamine triacetic acid, dihydroxyethyl glycine, iminodiacetic acid and ethanol diglycine and the alkali metal (e.g., sodium), alkaline earth metal (e.g., calcium) and ammonium salts thereof. Other similar linear aliphatic substituted glycine compounds and salts thereof known to those skilled in the art may also be used. In some embodiments, the forementioned salts of ethylene diamine tetraacetic acid are used because of their availability, cost effectiveness and nontoxicity. In some embodiments, these agents may constitute approximately 0.5 to 3.5 wt. %, preferably about 1.5 to 2.5 wt. %, of the pigment in the dispersion compositions.


The dispersion may be filtered through filter cartridges as required for the designated end use of the dispersion. In some embodiments, the nominal pore size of the filter cartridge is less than or equal to about 5 microns, particularly less than or equal to about 1 micron, particularly less than or equal to about 0.5 micron, and more particularly less than or equal to about 0.2 micron.


In addition to powders and dispersions, the self-dispersing pigment may also be isolated as a water wet presscake. In presscake form, the self-dispersing pigment is not agglomerated to the extent that it is in dry form and thus the self-dispersing pigment does not require as much deagglomeration when used, for example, in the preparation of inks.


If desired, the charge-balancing counterions associated with the surface-modifying groups as a result of the attachment/substitution process may be at least partially substituted or changed with the use of suitable base or salt form or exchanged or substituted with other suitable cations using known ion-exchange techniques such as ultrafiltration, reverse osmosis, conversion to acid form as an intermediate and the like. Examples of counterions include, but are not limited to, alkali metal ions (e.g., Na+, K+ and Li+), NR1R2R3H+, and combinations thereof, wherein R1, R2 and R3 may independently be H or C1-C5 alkyl groups that may be unsubstituted or substituted (e.g., tetraethylammonium ion (TEA), tetramethylammonium ion (TMA), ethanolammonium ion, triethanolammonium ion, tetrabutylammonium ion, etc).


Properties of Modified Pigments


The self-dispersing pigments may exhibit at least one of long-term and high temperature stability, higher water and highlighter fastness than expected of a pigment particle with attached sulfonic or carboxylic acid groups, and have a particle size distribution suitable for use in high speed jetting applications.


The self-dispersing pigments may possess the following properties. The % of solids in the modified pigments may be from about 8-16.


The pH of the modified pigment dispersion may be from about 5 to about 10.


The viscosity of the modified pigment dispersion may be from about 1 to about 10 cps, particularly about 1.3 to about 7.6 cps.


The surface tension of the modified pigment dispersion may be from about 39 to about 72 dynes/cm.


The amount of Na and K in the modified pigment dispersion may be a measure of a newly attached anionic substrate (sulfanilic or 4-aminophenol or 4-aminobenzoic acid as Na/K forms). The amount of Na may be from about 100 to about 6500 ppm and the amount of K may be from about 30 to about 1200 ppm.


The increase in the S content in the modified pigment dispersion may be due to the introduction of a sulfonyl group and/or attachment of a sulfonated substrate such as, without limitation, sulfanilic acid. The amount of S in the modified pigments may be a about 50 ppm to about 2600 ppm. In one embodiment, the amount of S in the modified pigments may be about 50 ppm for 4-aminobenzoic and 4-aminophenol attachments. In another embodiment, the amount of S in the modified pigments may be about 1700 ppm when a sulfanilic acid is attached through a sulfone bond to the pigment.


Applications of Modified Pigments


The self-dispersing pigment according to the present invention may be used in a number of end use applications. These uses include, but are not limited to, coatings, paints, papers, adhesives, latexes, toners, textiles, fibers, plastics, and inks. Specific examples include, without limitation, printing ink for paper, textiles, fibers, metal deco and plastics, wood stains, writing instruments, and color filters. The self-dispersing pigments produced by the process of the invention are particularly well-suited for use in printing applications and wood stains. In one example, an inkjet ink incorporating a pigment of the present invention may be useful in high quality prints in an inkjet photo printer


One aspect of the present invention relates to inkjet ink formulations using the self-dispersing pigment described above. Inkjet formulations containing such pigments may do at least one of the following: 1) provide uniform, bleed-free images with high resolution and high density on print media; 2) not cause nozzle clogging which typically occurs due to drying of the ink at a distal end of a nozzle; 3) rapidly dry on paper; 4) exhibit good lightfastness and waterfastness; 5) demonstrate good long-term storage stability; and 6) demonstrate print characteristics which are independent of the paper quality.


The ink compositions of the present invention may be prepared by combining the above modified pigments with an aqueous vehicle and any suitable additives. The amount of modified pigment (by weight) in the ink composition is at least about 0.1%, particularly at least about 10%, and more particularly at least about 20%. Furthermore, the amount of modified pigment (by weight) in the ink composition is less than or equal to about 12%, particularly less than or equal to about 8%, and more particularly less than or equal to about 5%. This includes embodiments where the amount of modified pigment (by weight) in the ink composition is present in an amount ranging from about 2% to about 12%.


The aqueous vehicle may comprise water or water in combination with one or more water-soluble organic solvents. Water-soluble organic solvents may be combined with water to make up the aqueous vehicle. Water-soluble organic solvents may include alcohols, polyhydric alcohols such as ethylene glycol, ketones and ketone alcohols such as acetone and diacetone alcohol, ethers such as tetrahydrofuran and dioxane, lower alkyl ethers of polyhydric alcohols, such as ethylene glycol monomethyl (or monoethyl)ether, nitrogen-containing solvents such as pyrrolidone, N-methyl-2-pyrrolidone, sulfur-containing solvents such as thiodiethanol, sugars and derivatives thereof such as glucose, an oxyethylene adduct of glycerin; and an oxyethylene adduct of diglycerin. The water-soluble organic solvents may be used alone or in combination. If a mixture of water and a water-soluble organic solvent is used, the amount of water-soluble organic solvent (by weight) in the ink composition is at least about 5%, particularly at least about 15%, and more particularly at least about 25%. Furthermore, the amount of water-soluble organic solvent (by weight) in the ink composition is less than or equal to about 50%, particularly less than or equal to about 30%, and more particularly less than or equal to about 15%. This includes embodiments where the amount of water-soluble organic solvent (by weight) in the ink composition is about 5% to about 30%. The amount of water in the ink composition is at least about 40%, particularly at least about 50%, and more particularly at least about 60%. Furthermore, the amount of water (by weight) in the ink composition is less than or equal to about 90%, particularly less than or equal to about 80%, and more particularly less than or equal to about 70%. This includes embodiments where the amount of water (by weight) in the ink composition is about 40% to about 80%.


Additives may be incorporated into the aqueous vehicle to impart any number of desired properties, such as might be needed to adapt the ink to the requirements of a particular inkjet printer or to provide a balance of light stability, smear resistance, viscosity, surface tension, coating penetration, optical density, adhesion, highlighter resistance or crust resistance. Penetrants, for example, may be added to reduce bleed, improve wetting of the print media, and otherwise improve overall performance of the print image. Examples of penetrants may include, but are not limited to, alkyl alcohols having 1 to 4 carbon atoms, such as ethanol, glycol ethers, such as ethylene glycol monomethyl ether, diols such as 1,2-alkyl diols, formamide, acetamide, dimethylsulfoxide, sorbitol and sulfolane. The penetrants may be used alone or in combination. The amount of penetrant (by weight) in the ink composition ranges from 0% to about 60%, particularly from about 2% to about 40%, and more particularly from about 5% to about 20%. This includes embodiments where the amount of penetrant (by weight) in the ink composition is present in an amount ranging from about 10% to about 15%.


Surfactants may be added to the aqueous medium to reduce the surface tension of the ink composition. The surfactants may be anionic surfactants, non-ionic surfactants and/or cationic surfactants. Suitable surfactants may include those listed below and in U.S. Pat. No. 5,116,409 issued May 26, 1992, U.S. Pat. No. 5,861,447 issued Jan. 19, 1999, and U.S. Pat. No. 6,849,111 issued Feb. 1, 2005, each of which is hereby incorporated by reference.


Surfactants are commercially available under various well-known trade names, such as the PLURONIC® series (BASF Corporation, Parsippany, N.J.), the TETRONIC® series (BASF Corporation, Parsippany, N.J.), the ARQUAD® series (Akzo Chemical Inc., Chicago, Ill.), the TRITON® series (Union Carbide Corp., Danbury, Conn.), the SURFONIC® series (Texaco Chemical Company, Houston, Tex.), the ETHOQUAD® series (Akzo Chemical Inc., Chicago, the ARMEEN® series (Akzo Chemical Inc., Chicago, Ill.), the ICONOL® series (BASF Corporation, Parsippany, N.J.), the SURFYNOL® series (Air Products and Chemicals, Inc. Allentown, Pa.), and the ETHOMEEN® series (Akzo Chemical Inc., Chicago, Ill.), to name a few.


The surfactants may be used alone or in combination. The amount of surfactant (by weight) in the ink composition may range from 0% to about 10%, particularly from about 0.1% to about 10%, and more particularly from about 0.3% to about 5%. This includes embodiments where the amount of surfactant (by weight) in the ink composition may range from about 0.1% to about 8%.


One or more humectants may be added to the aqueous vehicle to prevent clogging, caused by drying out during periods of latency, of inkjet nozzles. Humectants may be selected from materials having high hygroscopicity and water-solubility. Examples of humectants include, but are not limited to, polyols such as glycerol, lactams such as 2-pyrrolidone, urea compounds such as urea, 1,3-dimethylimidazolidinone, saccharides such as sorbitol, 1,4-cyclohexanedimethanol, 1-methyl-2-piperidone, N-ethylacetamide, 3-amino-1,2-propanediol, ethylene carbonate; butyrolacetone and Liponic EG-1. There are no particular limitations on the amount used of the humectant, but in general the amount of humectant (by weight) in the ink composition may range from 0% to about 30%, particularly from about 1% to about 15%, and more particularly from about 5% to about 10%.


Polymers may be added to the ink composition to improve the water-fastness, rub and highlightfastness of the images on print media. Suitable polymers may include, but are not limited to, polyvinyl alcohol, polyester, polyestermelamine, styrene-acrylic acid copolymers, styrene-maleic acid copolymers, styrene-maleic acid-alkyl acrylate copolymers, styrene-metacrylic acid copolymers, styrene-metacrylic acid-alkyl acrylate copolymers, styrene-maleic half ester copolymers, vinyl-naphthalene-acrylic acid copolymers, vinyl naphthalene-maleic acid copolymers and salts thereof. The amount of polymer (by weight) in the ink composition may range from 0% to about 5%, particularly from about 0.1% to about 3%, and more particularly from about 0.2% to about 2.5%. This includes embodiments where the amount of polymer (by weight) in the ink composition may range from about 0.1% to about 3.0%.


Ink compositions of the present invention may be buffered to a desired pH using any number of pH modifiers. Suitable pH modifiers may include alkali hydroxides, alkali carbonates and bicarbonates, triethylamine, dimethylethanolamine, triethanolamine, mineral acids, hydrochloric acid, and sulfuric acid. The pH modifiers may be used alone or in combination. The amount of pH modifier (by weight) in the ink composition may range from 0% to about 3.0%, particularly from about 0.1% to about 2.0%, and more particularly from about 0.5% to about 1.5%. This includes embodiments where the amount of pH modifier (by weight) in the ink composition ranges from about 0.2% to about 2.5%.


Preservatives, such as biocides and fungicides, may also be added to the ink composition. Examples of suitable preservatives include sodium benzoate, pentachlorophenol sodium, 2-pyridinethiol-1-oxide sodium, sodium sorbate, sodium dehydroacetate, benzisothiazolinone, 1,2-dibenzothiazolin-3-one, methylisothiazolinone and chloromethylisothiazolinone. Commercially available biocides include UCARCIDE® 250 (available from Union Carbide Company), Proxel® CRL, Proxel® BDN, Proxel® GXL, Proxel® XL-2, Proxel® TN (available from Arch Chemicals, Smyrna, Ga.), Dowicides® (Dow Chemical, Midland, Mich.), Nuosept® (Huls America, Inc., Piscataway, N.J.), Omidines® (Olin Corp., Cheshire, Conn.), Nopcocides® (Henkel Corp., Ambler, Pa.), Troysans® (Troy Chemical Corp., Newark, N.J.), and XBINX® (PMC Specialties Group, Inc., Cincinnati, Ohio). The preservatives may be used alone or in combination. The amount of preservatives (by weight) in the ink composition may range from 0% to about 1.5%, particularly from about 0.05% to about 1.0%, and more particularly from about 0.1% to about 0.3%. This includes embodiments where the amount of preservative (by weight) in the ink composition may range from about 0.05% to about 0.5%.


The ink composition may contain one or more viscosity modifiers. Viscosity modifiers may include rosin compounds, alginic acid compounds, polyvinyl alcohol, hydroxypropyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, salts of polyacrylic acid, polyvinyl pyrrolidone, gum arabic and starch. The amount of viscosity modifier (by weight) in the ink composition may range from 0% to about 10%, particularly from about 0.5% to about 8%, and more particularly from about 1% to about 5%. This includes embodiments where the amount of viscosity modifier (by weight) in the ink composition may range from about 1% to about 7%.


Other additives which may be incorporated into the aqueous vehicle may also include antioxidants, ultraviolet absorbers, chelating agents, electric conductivity adjusters, viscosity modifiers, oxygen absorbers, anti-kogation agents, anti-curling agents, anti-bleed agents, defoamers, and buffers. The ink compositions of the present invention may contain one or more colorants in addition to the pigment dispersion of the present invention.


The ink compositions of the present invention are particularly suited for use as an ink composition for inkjet printing wherein droplets of the ink composition are ejected from a printing apparatus and deposited onto a substrate to generate an image. Suitable printing apparatus include, but are not limited to, Continuous Ink Jet (CIJ), prop-on-Demand Valve (DoD Valve), prop-on-Demand Piezo-Electric (DoD Piezo) and Thermal Ink Jet (TIJ). Similarly, any suitable substrate may be employed including plain papers, bonded papers, coated papers, transparency materials, textile materials, plastics, polymeric films and inorganic substrates. However, it should be recognized by those skilled in the art that the above ink compositions may also have use in other applications including, but not limited to, general writing utensil applications and stamp applications.


The ink compositions of the present invention may be used alone, or with a color underlay, to produce a black image or in combination with other ink compositions to produce a color image. In some embodiments, the ink composition of the present invention is used in combination with other ink composition(s), such as a cyan ink, a magenta ink and/or a yellow ink. In other embodiments, a cyan ink, a magenta ink and a yellow ink are overprinted to form a black image and this printing is used in combination with the printing of the black ink of the present invention.


Wood Stains


Another aspect of the present invention relates to aqueous formulations using the self-dispersing pigment described above as wood stains and coatings. Wood stain formulations containing such pigments may exhibit at least one of the following properties: 1) good wood absorption and adhesion; 2) good transparency; and 3) excellent water and light resistance.


Water resistance is measured by difference in measured DE* values of wood stain in dipped areas versus control. Lower DE* values may indicate higher water resistance. If DE* is small it may mean that there is minimal to no color change due to degradation or loss. For example, lower DE* values may indicate higher water resistance as seen with carboxy modified pigment dispersions. The DE* value of the modified pigment dispersion may be from about 0 to about 3. One specific example is a pigment modified with 4-aminobenzoic acid. In another example, carboxy modified Pigment Blue 15 and Pigment Yellow No. 74 dispersions had low DE* values of about 0.19 and 0.43, respectively. Delta E is the difference between two colors. L, a, and b values are measurements based on spherical color. +L=white, −L=black, +a=red, −a=green, +b=yellow, −b=blue. C is chroma (saturation) and H=Hue. Readings are measured using a spectrophotometer. Delta E=√(L1-L2)2+(a1-a2)2+(b1-b2)2.


Coatings


Coating formulations containing such pigments may exhibit at least one of the following properties: 1) good adhesion to substrates such as metal, paper, glass, plastic, and wood; 2) ease of application and drying; 3) good weather fastness, water and light resistance; 4) good gloss retention; and 5) good chemical and flocculation resistance.


As with water resistance, resistance to strong acids and bases of coatings are measured as the difference in DE* value of spotted versus control. The DE* value of the modified pigment dispersion may be from about 0 to about 3. In one example, coatings containing modified carbon black had a low DE* value for acid resistance of about 0.08. In another example, coatings containing modified Pigment Blue No. 15 had a low DE* value for resistance to strong bases of about 1.56.


Color Filters


Another aspect of the present invention relates to aqueous formulations using the self-dispersing pigment described above in color filters. Color filters find application in display imaging areas including, without limitation, desktop monitor/laptop screens, LCD TV screens, cell phone display panels, digital camera screens, and GPS panels. Color filter formulations containing pigments of the present invention may exhibit at least one of the following properties: 1) good adhesion to glass and plastic film substrates; 2) good transparency; 3) ease of application and drying; and 4) good heat and light resistance.


The transmission values of a specific color filter is measured to determine its usefulness. The color filters may have maximum transmittance in a narrow band to provide the most utility.


In one embodiment, carbon black may have no transmission bands, magenta pigment dispersions may have a lowest transmission in the about 520 to about 560 nm range, yellow pigment dispersions may have a lowest transmission in the about 400 to about 480 nm range, and cyan pigment dispersions may have the lowest transmission in the about 600 to about 680 nm range.


Textile Printing


Another aspect of the present invention relates to aqueous formulations using the self-dispersing pigment described above in textile printing applications. Textile printing formulations containing pigments of the present invention may exhibit at least one of the following properties: 1) good adhesion to textile fabrics such as cotton, nylon, polyester, wool, polyacrylic, or blends of the same; 2) ease of application and drying; 3) good water and light resistance; and 4) good washfastness.


The wash and water fastness properties of dyed textile may be measured by the difference in DE* value of a control versus a washed fabric.


The DE* value of the modified pigment dispersion may be from about 0 to about 3. In one example, modified carbon black may have a low DE* value of about 0.23. In another example, modified Pigment Yellow No. 74 may have a high DE* value of about 6.72.


EXAMPLES

Exemplary embodiments of the present invention are provided in the following examples. The following examples are presented to illustrate the present invention and to assist one of ordinary skill in making and using the same. The examples are not intended in any way to otherwise limit the scope of the invention.


Example 1

Pigment Dispersion (example of chlorosulfonation in chlorosulfonic acid and thionyl chloride followed by attachment of small molecules).


Commercial gas carbon black (65 g) available from Degussa (Burr Ridge, Ill.), with a primary particle size of 20 nm and B.E.T surface area of 160 m2/g was chlorosulfonated with 332 g of lab grade chlorosulfonic acid at 120-4° C. for 20 hours. The reaction mixture was cooled to 56° C. and 68.5 g of thionyl chloride was introduced dropwise. After all the thionyl chloride was added, the reaction mass was heated back to 103-5° C. and held at that temperature for 4 hours. The reaction mixture was then cooled to RT and quenched in water and ice, controlling the quench temperature below −5° C. The precipitated product was isolated by filtration and washed free of dissolved material with ice cold (<5° C.) water. The product cake (253 g) was then reacted with a solution of ethyl 4-aminobenzoate (lab grade from Aldrich, 21.7 g) in 140 g DI water containing 15.5 g concentrated hydrochloric acid (37%) at 2-5° C. After mixing at 2000 rpm for 30 minutes, it was then milled in a Hockmeyer media mill (available from Hockmeyer Equipment Corp., Elizabeth City, N.C.) at 5000 rpm using 0.4 mm YTZ media (available from Quackenbush Co., Inc., Crystal Lake, Ill.) allowing the temperature to rise to 10° C. and pH to 4.7 by the addition of 20% sodium acetate solution. Milling was continued for another five hours. After one hour into the milling, the pH was raised to 12.6 with the addition of calcium free sodium hydroxide (23 g). The reaction mixture was removed from the mill and heated to 85° C. for 2 hours to hydrolyze the methyl ester. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to 18% solids and mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, the product was filtered through a 0.7 micron GF filter.


Examples 2-9

Examples 2-9 were prepared following the same process as set forth above for Example 1.









TABLE 1





Examples of attachment through reactive


sulfonyl chloride intermediate























Attachment


Exam-
Pigment
HClSO3
SOCl2
Group













ple [#]
Type
(g)
(g)
(g)

(g)





2
Carbon1
40
169
59
4-ABA
7.5


3
Carbon1
40
150
27
SA
9.6


4
Carbon1
80
431
0
4-ABA
21.5


5
Carbon1
91.5
452
90
4-AP
20


6
PB152
40
225
0
4-ABA
14


7
PB153
40
205
0
SA
20


8
PB154
40
187
0
SA
20


9
PB153
40
160
0
4-ABA
14














Exam-
Step 1
Step 2
Mill
Step 3















ple [#]
° C.
h
° C.
h
° C.
h
° C.
h





2
110-30 
20
80
2


90
0.5


3
110-25 
22
82
2


90
<0.1  


4
117-8 
19


 4-24
2
60
3  


5
124-30 
21
78
2
 4-24
10




6
90
0.1


12-33
5
65
1  


7
90
1


16-68
8




8
90
1.5


19-48
3




9
90
0.1


 4-49
3
65
16  






1Degussa (Burr Ridge, IL)




2PB15:4 from CIBA (Newport, DE)




3PB 15:3 from BASF (Mount Olive, NJ), large particles were separated by centrifuge at 10,000 rpm for 5 min prior to filtration with 0.7 micron TCLP




4PB15:3 from Clariant Colors (Charlotte, NC)







Throughout the examples, abbreviations are used for the sake of brevity. “H” stands for hours, “AP” stands for aminophenol, “SA” stands for sulfanilic acid, and “4ABA” stands for 4-aminobenzoic acid.


Example 10

Pigment Dispersion (example of formation of a different salt form via attachment—example tetramethyl ammonium salt).


Commercial gas carbon black (66 g) available from Degussa, with a primary particle size of 20 nm and B.E.T surface area of 160 m2/g was chlorosulfonated with 348 g of lab grade chlorosulfonic acid at 122-7° C. for 19 hours. The reaction mixture was cooled to 74° C. and 30.0 g of thionyl chloride was introduced dropwise. After all the thionyl chloride was added the reaction mass was heated back to 134° C. and held at that temperature for one hour. The reaction mixture was then cooled to RT and quenched in water and ice, controlling the quench temperature below −5° C. The precipitated product was isolated by filtration and washed free of dissolved material with ice cold (<5° C.) water. The product cake (326 g) was then mixed in ice cold DI water to get a slurry at pH=1.5. The pH was initially raised to 4.5 with tetramethyl ammonium hydroxide solution (25%). The pH was further raised to 6.5 with a solution of 4-aminobenzoic acid (lab grade from Aldrich, 18 g) in 90 g DI water containing 40.3 g tetramethyl ammonium hydroxide solution (25%) at 25° C. and 8 g of Surfynol CT-141 (available from Air Products & Chemicals, Inc., Allentown, Pa.). It was then briefly mixed with additional tetramethyl ammonium hydroxide solution (25%) to a final pH of 9.6. The mixture was cooled to 4° C. and then milled in a Hockmeyer media mill (available from Hockmeyer Equipment Corp., Elizabeth City, N.C.) at 4800 rpm using 0.4 mm YTZ media (available from Quackenbush Co., Inc., Crystal Lake, Ill.) allowing the temperature to rise to 37° C. and controlling the pH to above 8.8 by the addition of tetramethyl ammonium hydroxide solution. Milling was continued for a total of four hours. The reaction mixture was removed from the mill and heated to 60-76° C. for 15 hours. Additional tetramethyl ammonium hydroxide was added to raise the pH to 9.2. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to 17% solids and mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, part of the product (112 g) was filtered through a 0.7 micron GF filter.


Example 11

Pigment Dispersion (example of chlorosulfonation of PB 15 in chlorosulfonic acid; attachment with sulfanilic acid and dispersing PB15).


Commercial Pigment Blue no. 15:1 (60 g) available from Newchemic (Montvale, N.J.) was chlorosulfonated with 320 g of lab grade chlorosulfonic acid at 110-118° C. for one hour. The reaction mixture was cooled to 25° C. and quenched in water and ice, controlling the quench temperature below 0° C. The precipitated product was isolated by filtration and washed free of dissolved material with ice cold (<5° C.) water at a pH<4. The product cake (365 g) was then added to a solution of sulfanilic acid (20 g, available from Nation Ford Chemical, Fort Mill, S.C.), Ca free sodium hydroxide granules (6.4 g) and sodium bicarbonate (21.7 g)c in DI water (200 g) with good mixing (1100 rpm). The pH was controlled above 8.0 with additional 37 g sodium bicarbonate and 21 g sodium carbonate. The mixture was then milled in a Hockmeyer media mill (available from Hockmeyer Equipment Corp., Elizabeth City, N.C.) at 4000 rpm using 0.2 mm YTZ media (available from Quackenbush Co., Inc., Crystal Lake, Ill.). The temperature was allowed to rise to 80° C. and the mixture was milled for three hours. The reaction mixture was removed from the mill and heated to 83° C. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to about 5% solids to get 1446 g of liquid. A part (220 g) of the liquid product was used to disperse 40 g of Pigment Blue 15:3 available from Clariant Colors, Charlotte, N.C. and milled at 7000 rpm for three hours. The pH was constantly adjusted to above 8 with dropwise addition of calcium free sodium hydroxide solution (1.4 g, 25%). The product was removed from the mill and heated to 86° C. and once again the dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to about 12% solids, mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Larger particles were removed by centrifugation at 3,200 rpm for 15 minutes and the product (210 g) was filtered through a 0.7 micron GF filter.


Example 12

Pigment Dispersion (example of cyanuryl group addition and attachment of sodium 4-aminobenzoate).


A solution of 4-aminobenzoic acid (40 g) in DI water (600 g), calcium free sodium hydroxide (14 g) and sodium bicarbonate (52 g) was added to a stirred mixture of cyanuric chloride (52 g, available from Lonza Walkersville, Inc., Walkersville, Md.), ice (880 g) and DI water (200 g). The pH climbed to 3.1 as the reaction mixture turned into a milky white dispersion.


A prior art method, described in U.S. Pat. No. 3,347,632, of oxidizing carbon black with sodium hypochlorite was used to oxidize commercial gas carbon black (Degussa) with a primary particle size of 20 nm and B.E.T surface area of 160 m2/g. A carbon black slurry (908 g at 11%) was slowly added to the milky white dispersion described above while holding the temperature at 1-6° C. After one hour, the reaction mixture was heated to 19° C. and the pH was maintained at 7.3 with the addition of calcium free sodium hydroxide (2 g) and sodium bicarbonate (10 g) [Step 1]. After an addition of potassium persulfate (63.6 g lab grade, available from Fisher Scientific), the reaction mixture was heated to 57-70° C. for 20 hours [Step 2]. The pH was raised from 5.3 to 10.3 with calcium free sodium hydroxide (32.3 g) after diluting to 3 L. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to 11% solids and mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, the product (832 g) was filtered through a 0.7 micron GF filter.


Examples 13-21

Examples 13-21 were prepared following the same process as set forth above for Example 12. The additional step of footnote 5 is unique to Example 13.









TABLE 2





Examples of attaching small molecules to a


pigment via a Cyanuric adduct.

























Attachment


Exam-
Pigment
C3N3Cl3
NaHCO3
K2S2O8
Group














ple [#]
Type
(g)
(g)
(g)
(g)

(g)





13
Carbon5
120
52
60
50
4-ABA
35


14
PR1226
80
10
30.6
30
SA
20.4


15
PY747
80
10
30.6
30
SA
20.4


16
PB153
50
10.5
20.4
12.1
SA
10


17
PB153
50
14
19.4
8.5
SA
28


18
PB158
50
15
12.9
34.6
SA
28


19
PB158
75
14.25
58.6
26.5
SA
26.8


20
Carbon1
40
5
25.4
15
SA
10.3


21
PR1229
80
10
30.6
30
SA
20.4













Exam-
Step 1
Step 2
Mill













ple [#]
° C.
h
° C.
h
° C.
h





13
62
1
65
15




14
39
0.2
80
6
75-80
5.5


15
40
0.2
80
5
80
5


16
24
0.2
50
20
26-50
5.5


17
24
0.2
90
1
40-70
4


18
50
0.5
50
1
50-85
5


19
40
0.5
40
0.5
35-75
7.5


20
24
0.2


24-71
5.5


21
39
0.2
80
6
75-80
5.5






5Degussa, with a primary particle size of 13 nm and B.E.T surface area of 320 m2/g. The pH was raised from 5.7 to 9.0 with 50% sodium hydroxide (20.3 g) after diluting to 3.6 L. This slurry was filtered hot (90° C. through 300 micron bag filter). 30 g of potassium persulfate was added to the carbon slurry that had been pre-cooled to room temperature. A solution of 4-aminobenzoic acid (15 g) in DI water (300 g), calcium free sodium hydroxide (5 g) along with cyanuric chloride (15.3 g, available from Lonza Walkersville, Inc.), and sodium bicarbonate (20 g) was added to this stirred mixture. The foam was controlled by the addition of drops of Surfynol CT-121 (available from Air Products & Chemicals, Inc., Allentown, PA). The pH was adjusted to 7.7 with 50% sodium hydroxide solution (5.4 g) and mixed with a high shear mixer for an additional 15 minutes. The temperature was raised to above 50° C. and held for 20 hours. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to 11% solids and mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, GA). Finally, the product (736 g) was filtered through a 1.0 micron Whatman POLYCAP 36 AS filter capsule




6PR 122 from CIBA (Newport, DE)




7PY 74 from SUN (Parsippany, NJ)




8PB 15:3 from CIBA




9PR 122 from SUN







Example 22

Pigment Dispersion (example of cyanuryl group addition and attachment of sodium 4-aminobenzoate and an alkylpolymeric amine with an approximate MW of 300).


A solution of 4-aminobenzoic acid (7.4 g) in DI water (200 g), calcium free sodium hydroxide (2.3 g) and sodium bicarbonate (30 g) was added to a stirred mixture of cyanuric chloride (10 g, available from Lonza Walkersville, Inc.), ice (130 g) and DI water (40 g). The pH climbed to 5.5 as the reaction mixture turned into a milky white dispersion.


A solution of Surfonamine B 30 (8.6 g, available from Huntsman Chemicals, Austin, Tex.) in DI water (60 g) containing concentrated hydrochloric acid (3.75 g) at a pH of 1.5 was added to a stirred mixture of cyanuric chloride (5 g, available from Lonza Walkersville, Inc.), ice (100 g) and DI water (30 g). The pH climbed to 2.1 as the reaction mixture turned into a milky white dispersion. While holding the temperature cold (5.7° C.), the pH was raised gradually to 7.1 with 20 g of sodium bicarbonate.


A self-dispersed carbon black dispersion (Sensijet® Black SDP 2000, 500 g at 14%, available from Sensient Colors Inc, St. Louis, Mo.), formed by sulfonating and oxidizing carbon black with sulfuric acid and sodium hypochlorite, was pre-cooled in an ice box. To the cold carbon black dispersion was added the cold milky white dispersion described above while holding the temperature at 6-13.7° C. After one hour, the 4-aminobenzoic acid adduct with cyanuryl chloride, prepared above (10.7° C.) was added with good mixing. The reaction mixture was allowed to warm up to 18.8° C. (pH of 7.4) and then 34 g of potassium persulfate was added. Immediately following this step, the reaction mixture was heated to 51-57° C. for 20 hours [Step 1]. The pH was raised from 7.2 to 10.9 with calcium free sodium hydroxide (22 g) after diluting to 2 L. The dissolved impurities were removed by ultrafiltration until the chloride and sulfate content of the feed sample were less than 50 ppm. The product was then concentrated to 14.4% solids and mixed with (0.3%, wt/wt) Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, the product (538 g) was filtered through a 0.7 micron GF filter.


Examples 23-25

Examples 23-25 were prepared following the same process as set forth above for Example 22.









TABLE 3







Attachment of linear propoxy polymers via cyanuryl intermediate.













Exam-
Pigment
C3N3Cl3
NaHCO3
K2S2O8
Attachment Groups
Step 1
















ple [#]
Type
(g)
(g)
(g)
(g)

(g)
° C.
h



















23
Carbon10
500
10
60
22
4-ABA,
7.4
58
16





5


L100
13




24
Carbon11
500
13
20
40
4-ABA
13
58-60
60





2


L300
13




25
Carbon11
500
12
20
32
4-ABA
8.9
58-62
16





3


B60
10






10Sensijet ® Black SDP 2000 available from Sensient Colors Inc, St. Louis, MO




11Sensijet ® Black SDP 1000 available from Sensient Colors Inc, St. Louis, MO







Example 26

Pigment Dispersion (example of preparation of a cyanuryl tris adduct (S) with sulfanilic acid and use in the surface modification of a pigment).


A solution of sulfanilic acid (114 g) in DI water (310 g), calcium free sodium hydroxide (32 g) and sodium bicarbonate (55 g) at a pH=8.5 was added to a stirred mixture of cyanuric chloride (40.2 g, available from Lonza Walkersville, Inc., Walkersville, Md.), ice (570 g) and DI water (480 g) in three stages controlling the temperature <0° C., <3° C. and <10° C. respectively. After the addition, pH=7.1, the reaction mixture was heated to 90° C. over 4.5 hours to get 1000 g of a clear liquid.


Carbon Black12 (40 g, available from Cabot Corporation, Billerica, Mass.), with a primary particle size of 16 nm and a CTAB surface area of 255 m2/g, was slowly added to a stirred mixture of the reagent described above (an equivalent of 10.55 g of sulfanilic acid was used) and 250 g of DI water. This mixture was milled with a Hockmeyer media mill (available from Hockmeyer Equipment Corp., Elizabeth City, N.C.) with 0.2 mm YTZ media (available from Quackenbush Co., Inc., Crystal Lake, Ill.). A solution of 15 g of potassium persulfate and sodium bicarbonate in DI water was added to the mill and milling was continued for a total of 5 hours. The dissolved impurities were removed by ultrafiltration until each of the chloride content and the sulfate content of the feed sample are less than 50 ppm. The product was then concentrated to 11.6% solids and mixed with 0.3%, wt/wt Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, the product was filtered through 0.7 micron GF filter.


Examples 27-38

Examples 27-38 were prepared following the same process as set forth above for Example 26.









TABLE 4







Examples of attaching small molecules to a pigment via a Tris Sulfanilic-Cyanuric adduct.


















Sulfanilic





Tris


Acid



Exam-
Pigment
Adduct
NaHCO3
K2S2O8
equivalent
Mill















ple [#]
Type
(g)
(g)
(g)
(g)
(g)
° C.
h


















27
PB15:34
40
197.5
11.2
6.38
11.4
65
5


28
PY747
40
130
9.9
8
5.3
75
8


29
PY747
40
195
12.4
10.5
7.5
75
6


30
PY747
40
260
14.8
14
10.6
70
6


31
Carbon1
40
159.4
14.3
9.2
12.6
74
4


32
Carbon1
40
244.4
25.1
24.9
15.5
69
6


33
Carbon13
40
333.2
28.4
33
21.1
75
2.5


34
PB15:34
40
573
54
42.3
33.1
95
7


35
PB15:33
40
205
7.01
13.3
14.1
60
5.5


36
Carbon1
40
86.5
4.8
15.4
9.8
45
2


37
PR1226
40
332
39.1
30
20
55
3


38
PR1226
40
200
13.8
11
8.1
55
2






12Cabot (Leominster, MA) Monarch ® 880




13Cabot (Leominster, MA) Monarch ® 700







Example 39

Pigment Dispersion (example of preparation of a cyanuryl tris adduct with 4-aminobenzoic acid and use in the surface modification of a pigment).


A solution of 4-aminobenzoic acid (90.1 g) in DI water (300 g), calcium free sodium hydroxide (30 g) and sodium bicarbonate (55 g) at a pH=7.2 was added to a stirred mixture of cyanuric chloride (40.2 g, available from Lonza Walkersville, Inc., Walkersville, Md.), ice (550 g) and DI water (500 g) in three stages controlling the temperature <0° C., <3° C. and <10° C. respectively. After the addition, pH=7.1, the reaction mixture was heated to 92° C. over 3 hours to get 901 g of a clear liquid.


Carbon Black (40 g, available from Degussa, Burr Ridge, Ill.), with a primary particle size of 20 nm and a B.E.T. surface area of 160 m2/g, was slowly added to a stirred mixture of the reagent described above (an equivalent of 10.22 g of 4-aminobenzoic acid was used) and 250 g of DI water. This mixture was milled with a Hockmeyer media mill (available from Hockmeyer Equipment Corp., Elizabeth City, N.C.) with 0.2 mm YTZ media (available from Quackenbush Co., Inc., Crystal Lake, Ill.). A solution of 8.5 g of potassium persulfate and sodium bicarbonate in DI water was added to the mill and milling was continued for a total of 6 hours. The dissolved impurities were removed by ultrafiltration until each of the chloride content and the sulfate content of the feed sample are less than 50 ppm. The product was then concentrated to 10.3% solids and mixed with 0.3%, wt/wt Proxel GXL (available from Arch Chemicals, Smyrna, Ga.). Finally, the product was filtered through 0.7 micron GF filter.


Examples 40-47

Examples 40-47 were prepared following the same process as set forth above for Examples 39.









TABLE 5







Examples of attaching small molecules to a pigment via a Tris 4-ABA-Cyanuric adduct.













Example
Pigment
Tris Adduct
NaHCO3
K2S2O8
4-ABA
Mill















[#]
Type
(g)
(g)
(g)
(g)
equivalent
° C.
h


















40
PB154
40
309.2
16.3
25.5
19.82
83
6


41
Carbon1
40
188.4
24.28
19.7
10
65
6


42
PB154
40
175.2
13
7.3
10
70
7


43
PB154
60
283.3
29.5
27.8
15.06
80
4


44
Carbon1
40
188.4
12.1
19.7
10
42
2


45
PR1226
40
305
42.2
30
20
55
5


46
PY747
60
90
13.6
11
6
55
4


47
PR1226
40
95
13.8
11
6.33
55
2.5









Example 48

The physical properties of the modified pigments from the examples above are set forth in the following table.













TABLE 6





Analytical Results of Pigment Dispersions.







































Surface














tension



Heavy


Example
Pigment
Solids

Cl
SO4
Viscosity
Conduc-
Dynes/
Na
K
S
metals14


[#]
Type
(%)
pH
ppm
ppm
cps
tivity μS
cm
ppm
ppm
ppm
Ppm





1
Carbon1
17.9
9.9
15
45



6500


34.7


2
Carbon1
9.1
7.1
33
9









3
Carbon1
12.9
8.2
29
24









4
Carbon1
14.0
9.7
10
32
3.05
668
71
3443


38.2


5
Carbon1
7.8
8.5
12
14



1451


176.7


6
PB152
7.5
8.5
6
4
1.62
1000
71
457
25
688
39.7


7
PB153
8.2
8.8
3
4
1.82
521
67.2
384
1.6
767
33.8


8
PB154
8.1
8.5
8
10
1.88
1400
66.3
921
6.7
1632
18


9
PB153
9.8
8.0
1
2
1.92
1037
70.1
649
3.2
1133
37.5


10
Carbon1
17.4
8.0
10
45
7.5


148


13.3


11
PB153
11.3
8.8
1
1
1.78
1610
64.5
807
11.4

169.2


12
Carbon1
11.2

5
8



2562


45


13
Carbon5
9.6
7.9
10
53
1.94

61.5
426


94


14
PR1226
10.4
8.3
7
8
2.02
610
69.5
316
108
337
109


15
PY747
9.6
7.8
10
34
1.7
770
68
291
230
371
83


16
PB153
10.8
8.48
3
29
2.90
638
69.8
164
25.1
359
9.5


17
PB153
5.69
8.79
4
6
1.34
1466
73.7
34.9
7.4
53.8
27


18
PB152
9.4
8.7
2
16
1.45
375
70.3
109
4.7
219
112


19
PB152
12.5
8.1
19
36
7.55
667
70.2
125
49
406
75


20
Carbon1
9.5
8.6
7
130
1.91
1190
70.2
539
558
1223
12.6


21
PR1229
10.73
7.5
29
2
1.79
490
69.8
147
73
242
63


22
Carbon1
14.4
9.4
14
35
2.6
1346
47.2
4042


34


23
Carbon1
18.9
9.2
9
77
3.34
1670
39.8
4110


20.2


24
Carbon1
13.1
9.4
5
7
2.66
1596
58.1
3743


44


25
Carbon1
12.3
7.3
8
47
2.7
1624
50.1
2185


79.6


26
Carbon12
11.6
7.4
4
4
2.16
1180
70.3
678
786
2230
52.6


27
PB152
7.4
8.2
2
12
1.38
375
69.4
142
26.5
198
35.8


28
PY747
6.3
8.5
15
37
1.42
1390
65.2
443
290
592
53


29
PY747
9.5
7.9
1
8
1.61
1045
68.6
436
331
632
62


30
PY747
9.9
8.2
5
3
1.62
1340
70.4
1180
786
708
48.5


31
Carbon1
9.31
7.27
3
69
2.02
900
70.5
355
422
1076
27.3


32
Carbon1
11.4
8.7
12
45
2.39
2530
69.2
1141
1101
2262
44.5


33
Carbon13
10.2
8.07
3
8
1.77
2630
69.0
892
944
2599
24.6


34
PB154
7.65
8.3
2
6
1.5
1220
69.4
306
143
594
41


35
PB152
7.71
8.7
4
9
1.39
1256
71.4
266
103
555
10.1


36
Carbon1
10.61
7.8
18
19
2.23
1130
70.7
353
406
1564
33.1


37
PR1226
11.88
7.9
1
88
2.12
1120
70.9
1718
675
684
15


38
PR1226
9.9
8.0
1
20
2.01
515
70.6
240
107
394
56


39
Carbon1
10.3
8.8
1
18
3.53
1485
70.2
778
440
372
60


40
PB154
7.9
8.3
3
25
1.49
1340
69.7
377
280
260
116.7


41
Carbon1
12.1
9
5
93
2.35
2520
69.4
346
365
505
77.2


42
PB154
8.04
7.5
13
12
1.41
622
56.1
165
56
219
18.4


43
PB154
8.01
8.16
17
12
1.46
568
69.5
236
66
235
18.9


44
Carbon1
9.8
7.8
15
15
1.81
1815
69.6
571
560
389
17.3


45
PR1226
8.0
7.8
14
107
1.77
560
71.4
125
84
126
30


46
PY747
9.7
8.2
2
3
1.84
601
70.8
308
233
457
92


47
PR1226
9.8
7.7
1
5
2.11
430
68.5
181
73
164
78






14Sum of Ca, Mg and Fe present as a contaminant in the raw materials and/or formed during the milling process.







Example 49

X-Ray Photoelectron Spectroscopy (XPS) Analyses


XPS data were collected and analyzed for Black Samples 1-5 (Table 7), Cyan samples (6-11), Magenta samples (12-16), and Yellow samples (17-21). Dried samples of purified “Tris” reagents were also analyzed for identifying the nature of the groups attached to the pigment surface.









TABLE 7







XPS of pigment samples.









Sample
Example
Source












1
[—] Carbon Black
Gas carbon black, available from




Degussa, Akron, OH.


2
[20] [Carbon] S-49
Dispersion from Example #20 with SA




attachment


3
[31] [Carbon] S-47
Dispersion from Example #31 with SA




attachment


4
[1] [Carbon] A-79
Dispersion from Example #1,




Chlorosufonation and 4-ABA attachment


5
[41] [Carbon] A-71
Dispersion from Example #41 with 4ABA




attachment


6
[—] PB15 -
Inkjet Grade Pigment Blue 15:3 from



untreated
BASF


7
[11] [PB15] A-2B
Dispersion from Example #11,




Chlorosulfonation and SA attachment


8
[9] [PB15] AS-7B
Dispersion from Example #9




Chlorosulfonation and 4-ABA attachment


9
[7] [PB15] S-35
Dispersion from Example #7 with SA




attachment


10
[42] [PB15] A-59
Dispersion from Example #42 with 4ABA




attachment


11
[16] [PB15] S-82
Dispersion from Example #16 with SA




attachment


12
[—] [PR122 -
Inkjet Grade Pigment Red 122 from CIBA



untreated]



13
[14] [PR122] S-77
Dispersion from Example #14 with SA




attachment


14
[21] [PR122] S-80
Dispersion from Example #21 with SA




attachment


15
[37] [PR122] S-17
Dispersion from Example #37 with SA




attachment


16
[45] [PR122] A-20
Dispersion from Example #45 with 4-ABA




attachment


17
[—] [PY 74 -
Inkjet Grade Pigment Yellow 74 from SUN



untreated]



18
[15] [PY 74] S-03
Dispersion from Example #15 with SA




attachment


19
[29] [PY 74] S-32
Dispersion from Example #29 with SA




attachment


20
[46] [PY 74] A-38
Dispersion from Example #46 with 4ABA




attachment









The XPS data were acquired by EAG Labs (in Chanhassen, Minn.) using a probe beam of focused, monochromatic Al Kα radiation. The x-rays generate photoelectrons that are energy analyzed and counted to reveal the atomic composition and chemistry of the sample surface. The escape depth of the photoelectrons limits the depth of analysis to the outer ˜50 Å. The data presented includes low resolution survey scans, which give the full spectrum between 0 and 1400 eV binding energy. Also included in the data are high resolution spectra from selected elements, which provide chemical state information. The spectra are used to obtain surface composition by integrating the areas under the photoelectron peaks and applying empirical sensitivity factors. The XPS data is presented in FIGS. 1-14.









TABLE 8





Analytical Conditions.
















Instrument:
Physical Electronics 5802 Multitechnique,



Quantum 2000 Scanning XPS


X-ray Source:
Monochromatic Al Kα 1486.6eV


Analysis Area:
1.5 mm × 0.6 mm - 5802,



1.2 mm × 0.2 mm - Quantum 2000


Take-off Angle:
45°


Charge Correction:
C—C, C—H in C1s spectra set to 284.8eV


Charge Neutralization:
Low energy electron and ion floods










Tables for Carbon Black Samples


The following tables were normalized to 100% of the elements detected. XPS does not detect H or He. Detection limits are typically between 0.05% and 1.0% for other elements. A dash “-” indicates the element was not detected. High S (0.6) for Example [1] [Carbon] A-79 is indicative of a surface SO2 bond introduced by chlorosulfonation. High S content in SA attached Examples [20] and [31] are due to the SO3Na groups present on the surface due to the SA attachment. Both unreacted carbon and 4-ABA attached carbon from Example [41] have only a low level of S as expected. The levels of N and Na present in all samples, except the unreacted carbon, is a measure of charge groups present either as amino benzoic or benzene sulfonic acid groups as corresponding sodium salts.









TABLE 9-1







XPS Surface Concentrations of Carbon Black Samples (Atomic %).













Example
C
N
O
Na
S
Cl
















[−] [Carbon - untreated]
97.5

2.4

0.11
0.03


[20] [Carbon] S-49
90.1
1.4
6.8
0.8
0.7
0.2


[31] [Carbon] S-47
88.6
1.5
7.9
0.7
0.9
0.2


[1] [Carbon] A-79
80.8
0.7
13.4
2.6
0.6
1.6


[41] [Carbon] A-71
70.3
2.7
20.9
2.2
0.2

















TABLE 9-2







Carbon Chemistries of Carbon Black Samples (% of total C).














C—O/

COONa/
Aromatic


Example
C—C, H
C—N
C═O
CSO3Na
Shake-up





[—] [Carbon - untreated]
86
3
0.7
0.2
10


[20] [Carbon] S-49
90
3
0.5
1.4
6


[31] [Carbon] S-47
89
3
1.3
1.4
6


[1] [Carbon] A-79
86
6
0.9
4
3


[41] [Carbon] A-71
88
4

6
2
















TABLE 9-3







Nitrogen Chemistries of Carbon Black Samples (% of total N).










Example
N—C═N
NH
NO3





[20] [Carbon] S-49
54
46



[31] [Carbon] S-47
53
47



[1] [Carbon] A-79
47
53



[41] [Carbon] A-71
46
54

















TABLE 9-4







Oxygen Chemistries of Carbon Black Samples (% of total O).











Example
C═O, COONa, SOx
C—O







[—] [Carbon - untreated]
32
68



[20] [Carbon] S-49
62
38



[31] [Carbon] S-47
61
39



[1] [Carbon] A-79
51
49



[41] [Carbon] A-71
60
25

















TABLE 9-5







Sulfur Chemistries of Carbon Black Samples


(% of total S).











Example
Sulfides
SOx















[—] [Carbon - untreated]
69
31



[20] [Carbon] S-49
8
92



[31] [Carbon] S-47
7
93



[1] [Carbon] A-79
8
92



[41] [Carbon] A-71

100










The S present in untreated carbon as sulfides was largely oxidized to sulfate/sulfone in all treated samples, adding to the surface charge groups.


Tables for PB 15 Samples









TABLE 10-1







XPS Surface Concentrations of PB 15 Samples (Atomic %).














Example
C
N
O
Na
S
Cl
Cu

















[−] [PB 15 - untreated]
78.7
17.3
1.6
0.1
0.09

2.3


[11] [PB 15] A-2B
73.2
14.1
6.5
0.8
0.7

1.6


[9] [PB 15] AS-7B
75.6
16.4
4.5
0.7
0.6
0.05
2.2


[7] [PB 15] S-35
78.4
15.9
2.9
0.4
0.4
0.12
2.0


[42] [PB 15] A-59
78.0
16.2
2.9
0.3
0.2

2.4


[16] [PB 15] S-82
73.2
17.4
5.2

0.3

4.0
















TABLE 10-2







Carbon Chemistries of PB 15 Samples (% of total C).
















COONa/
Aromatic


Example
C—C,H
N—C═N*
CN—Cu?
CSO3Na
Shake-up





[—] [PB 15 -
67
22
4.7
1.1
5


untreated]







[11] [PB 15] A-2B
73
21
2.7
1.1
2


[9] [PB 15] AS-7B
68
23
3.7
1.5
4


[7] [PB 15] S-35
72
20
2.6
0.8
4


[42] [PB 15] A-59
70
22
3.5
0.7
4


[16] [PB 15] S-82
68
23
4.5
0.9
4





*C—O bonding may also contribute to the intensity of this band.













TABLE 10-3







Nitrogen Chemistries of PB 15 Samples (% of total N).















Aromatic



Example
N—C═N
CN—Cu
Shake-up
















[—] [PB 15 - untreated]
79
9
12



[11] [PB 15] A-2B
76
8
15



[9] [PB 15] AS-7B
76
9
15



[7] [PB 15] S-35
78
7
15



[42] [PB 15] A-59
81
8
11



[16] [PB 15] S-82
77
9
14

















TABLE 10-4







Oxygen Chemistries of PB 15 Samples (% of total O).










Example
Metal Oxide
C═O, COONa, SOx
C—O













[—] [PB 15 - untreated]

69
31


[11] [PB 15] A-2B
10
75
15


[9] [PB 15] AS-7B

62
38


[7] [PB 15] S-35

65
35


[42] [PB 15] A-59

57
43


[16] [PB 15] S-82

92
8










Tables for PR 122 Samples









TABLE 11-1







XPS Surface Concentrations of PR 122 Samples (Atomic %).













Example
C
N
O
Na
S
Cl
















[−] [PB 122 - untreated]
85.3
7.9
6.8





[14] [PB 122] S-77
83.4
7.9
8.3
0.2
0.2
0.03


[21] [PB 122] S-80
83.1
7.9
8.4
0.2
0.3
0.04


[37] [PB 122] S-17
81.8
7.7
9.8
0.3
0.3



[45] [PB 122] A-20
83.1
7.6
8.8
0.15
0.05
0.03
















TABLE 11-2







Carbon Chemistries of PR 122 Samples (% of total C).
















COONa/
Aromatic


Example
C—C, H
C2NH*#
C═O
CSO3Na
Shake-up





[—] [PR 122 - untreated]
7.0
21
2.6
1.4
5


[14] [PR 122] S-77
66
21
5.8
1.8
6


[21] [PR 122] S-80
68
20
5.6
2.0
5


[37] [PR 122] S-17
68
21
4.3
2.0
5


[45] [PR 122] A-20
66
22
3.5
2.1
6





*C—O bonding may also contribute to the intensity of this band.



#C2NH denotes each of the C atoms bonded in the following group:





embedded image















TABLE 11-3







Oxygen Chemistries of PR 122 Samples (% of total O).













Aromatic


Example
C═O, COONa, SOx
C—O
Shake-up













[—] [PR 122 - untreated]
79
12
9


[14] [PR 122] S-77
67
24
9


[21] [PR 122] S-80
67
24
10


[37] [PR 122] S-17
62
28
11


[45] [PR 122] A-20
60
32
8










Tables for PY 74 Samples









TABLE 12-1







XPS Surface Concentrations of PY 74 Samples (Atomic %).












Example
C
N
O
Na
S





[—] [PY 74 - untreated]
64.6
13.8
20.8
0.3
0.3


[15] [PY 74] S-03
52.6
10.6
29.3
0.6
0.6


[29] [PY 74] S-32
63.2
13.8
21.6
0.4
0.4


[46] [PY 74] A-38
56.4
11.2
27.1
0.5
0.3
















TABLE 12-2







Carbon Chemistries of PY 74 Samples (% of total C).


















COONa/
Aromatic


Example
C—C,H
C—NH*
C—O
C═O
CSO3Na
Shake-up





[—] [PY 74 -
45
17
21
11
1.8
4


untreated]








[15] [PY 74] S-03
44
20
18
12
2.8
4


[29] [PY 74] S-32
44
19
21
11
2.1
3


[46] [PY 74] A-38
45
19
18
11
2.5
4





*C—O bonding may also contribute to the intensity of this band.













TABLE 12-3







Nitrogen Chemistries of PY 74 Samples (% of total N).










Example
C—N
NO2
NO3













[—] [PY 74 - untreated]
71
9
20


[15] [PY 74] S-03
73
9
18


[29] [PY 74] S-32
70
11
19


[46] [PY 74] A-38
72
9
19
















TABLE 12-4







Oxygen Chemistries of PY 74 Samples (% of total O).











Example
C═O, COONa, SOx
C—O, NOx







[—] [PY 74 - untreated]
41
59



[15] [PY 74] S-03
48
52



[29] [PY 74] S-32
42
58



[46] [PY 74] A-38
45
55










The XPS results indicate that the surface modification as disclosed yields a modified carbon black with an increase in surface nitrogen, as an NH/N—C═N group distributed almost equally, in about 0.7 to 2.7 atomic %.


The XPS results indicate that the surface modification as disclosed yields a modified carbon black with a surface oxygen in the atomic ratio of 6.8 to 20.9% wherein >51 to 62% of the oxygen is present as C═O, COONa, or SOx group and the balance (49-38%) as a C—O group. In contrast, the surface oxygen in the untreated carbon black is only about 2.4% and is distributed as 32% as a C═O, COONa or SOx group and the balance (68%) as a C—O group. SOx may be an oxidized form of S and may include, without limitation, a sulfone, a sulfate, or a sulfonic acid.


The XPS results indicate that the surface modification as disclosed yields a modified carbon black with an increase in surface sodium, as COONa/SO3Na, in about 0.7 to 2.6 atomic %.


The XPS results indicate that the surface modification as disclosed yields a modified carbon black wherein at least 90% of the S present is oxidized S(SOx).


The XPS results for untreated carbon blacks and carbon blacks from Examples 1, 20, 31, and 41 are displayed in FIGS. 1-4.


The XPS results indicate that surface modification as disclosed yields a modified Pigment Blue No. 15 with significantly higher surface oxygen content (>2.5% atomic ratio) compared to a low 1.6% in the untreated pigment. The XPS results for untreated Pigment Blue No. 15 and Pigment Blue No. 15 from Examples 7, 9, 11, 16 and 42 are displayed in FIGS. 5-7.


The XPS results indicate that the surface modification as disclosed yields a modified Pigment Red No. 122 with a surface oxygen in the atomic ratio of 8.3-9.8% wherein 24-32% of the total 0 exists as a C—O bond compared to only 12% present as C—O in the untreated pigment. The XPS results for untreated Pigment Red No. 122 and Pigment Red No. 122 from Examples 14, 21, 37, and 45 are displayed in FIGS. 8-11.


The XPS indicate that the surface modification as disclosed yields a modified Pigment Yellow No. 74 with a surface oxygen in the atomic ratio of 21.6 to 29.3% of which 42-48% is present as C═O, COONa/CSO3Na. In contrast, in the untreated pigment the surface oxygen is only about 20.8%, of which 41% is present as a C═O, COONa/CSO3Na group. The XPS results for untreated Pigment Yellow No. 74 and Pigment Yellow No. 74 from Examples 15, 29, and 46 are displayed in FIGS. 12-14.


Example 50








TABLE 13





Elemental analysis (% C, H, N, & S).



















Sample [Ex #] [Pigment Type]
C
H
N
S





1 [—] [PB 154 - untreated]
66.78
3.09
18.42
0.25


2 [7] [PB 153] S-35
62.54
2.81
18.46
1.12


3 [9] [PB 153] AS-7B
62.47
2.97
18.00
1.38


4 [11] [PB 153] A-2B
61.67
3.02
17.26
1.17


5 [16] [PB 153] S-82
62.05
2.76
18.39
0.85


6 [42] [PB 154] A-59
65.95
3.15
18.82
0.54


7 [—] [PR1226 - untreated]
74.55
4.92
 8.36
0.16


8 [14] [PR 1223] S-77
74.86
4.61
 7.90
0.44


9 [21] [PR 1223] S-80
74.93
4.70
 8.00
0.36


10 [37] [PR 1223] S-17
74.20
4.88
 8.04
0.60


11 [45] [PR1223] A-20
75.74
4.54
 8.09
0.20


12 [—] [PY 747 - untreated]
52.98
4.47
13.53
0.31


13 [15] [PY 747] S-03
52.40
4.77
13.48
0.42


14 [29] [PY 747] S-32
52.75
4.63
13.49
0.57


15 [46] [PY 747] A-38
52.56
4.66
13.40
0.53


16 [—] [Carbon1 - untreated]
91.35
1.15
 0.10
0.32


17 [1] [Carbon1] A-79
72.93
1.08
 0.54
2.25


18 [20] [Carbon1] S-49
85.25
0.88
 0.91
1.13


19 [31] [Carbon1] S-47
86.53
0.88
 0.88
1.04


20 [41] [Carbon1] A-71
80.87
1.36
 1.61
0.33






[S]


[H]


Sample [Ex #] [Pigment Type]
mmol/g
Na15
K15
mmol/g





1 [—] [PB 154 - untreated]
0.078





2 [7] [PB 153] S-35
0.349
0.47
0  
0.204


3 [9] [PB 153] AS-7B
0.430
0.66
0  
0.287


4 [11] [PB 153] A-2B
0.365
0.72
0  
0.313


5 [16] [PB 153] S-82
0.265
0.15
0.02
0.070


6 [42] [PB 154] A-59
0.168
0.2 
0.07
0.105


7 [—] [PR1226 - untreated]
0.050





8 [14] [PR 1223] S-77
0.137
0.32
0.10
0.168


9 [21] [PR 1223] S-80
0.112
0.14
0.07
0.077


10 [37] [PR 1223] S-17
0.187
0.57
0.58
0.394


11 [45] [PR1223] A-20
0.062
0.11
0.16
0.086


12 [—] [PY 747 - untreated]
0.097





13 [15] [PY 747] S-03
0.131
0.30
0.24
0.192


14 [29] [PY 747] S-32
0.178
0.46
0.35
0.290


15 [46] [PY 747] A-38
0.165
0.24
0.47
0.225


16 [—] [Carbon1 - untreated]
0.100





17 [1] [Carbon1] A-79
0.702
3.63
0  
1.579


18 [20] [Carbon1] S-49
0.352
0.57
0.59
0.399


19 [31] [Carbon1] S-47
0.324
0.38
0.45
0.280


20 [41] [Carbon1] A-71
0.103
0.29
0.3 
0.203






15The sodium and potassium were calculated @ 100% solids from ICP metal analysis of the original dispersion.







The results of the elemental analysis indicate that the surface modification as disclosed yields a modified Pigment Blue No. 15 with 0.168-0.430 mMoles of S and 0.070-0.313 mMoles of active hydrogen per gram of pigment.


The results of the elemental analysis indicate that the surface modification as disclosed yields a modified Pigment Red No. 122 with 0.062-0.187 mMoles of S and 0.077-0.394 mMoles of active hydrogen per gram of pigment.


The results of the elemental analysis indicate that the surface modification as disclosed yields a modified Pigment Yellow No. 74 with 0.131-0.178 mMoles of S and 0.192-0.290 mMoles of active hydrogen per gram of pigment


The results of the elemental analysis indicate that the surface modification as disclosed yields a modified Carbon Black with 0.103-0.702 mMoles of S and 0.203-1.579 mMoles of active hydrogen per gram of pigment.


Example 51

Particle Size and Stability Measurement


Samples comprising 8-15% solids were prepared by diluting one drop of sample to 15 ml deionized water and loading into a 1 cm disposable cuvette, avoiding air bubbles. Malvern Zetasizer Nano series Model ZEN3600 was then used to measure mean particle size in the sample.









TABLE 14







Particle Size Measurements and Stability data of Pigment Dispersions.













Viscosity
Particle Size

















Pigment

Week
Week

Week
Week
pH
















Example [#]
Type
Initial
1
3
Initial
1
3
Initial
Final



















7
PB153
1.82
2.06
2.02
203
206
198
8.8
7.9


11
PB153
1.78
1.78
1.81
157
156
156
8.0
8.0


15
PY747
1.7
1.7
1.6
173
153
155
7.8
7.3


24
Carbon1
2.66
2.67
3.22
110
115
113
9.4
9.1


25
Carbon1
2.7
3.27
3.60
125
134
129
7.3
7.2


27
PB152
1.38
1.37
1.36
207
202
196
8.2
7.9


28
PY747
1.42
1.45
1.52
178
167
170
8.5
7.3


29
PY747
1.61
1.59
1.57
169
149
155
7.9
7.5


30
PY747
1.62
1.55
1.70
175
172
170
8.2
7.2


42
PB154
1.41
1.46
1.42
206
196
193
7.5
7.0


43
PB154
1.46
1.50
1.58
190
181
186
8.2
7.7


46
PY747
1.84
1.69
1.78
185
178
176
8.2
7.6









Examples 52-55

Print Performance—Print Testing with Epson C88+ Printer


A total of three ink sets were prepared. The first set (SA3) consisted of inks made, as detailed below, from dispersions made by sulfanilic acid (SA) attachment. The second and third ink sets (BA3 and BA) were prepared using the 4-aminobenzoic acid (4-ABA) attached pigments. Using an Epson C88+ printer Model B251A, known to use pigmented ink sets, test pages were printed with four different commonly used copy papers. The printed pages were analyzed by the Center for Integrated Manufacturing, Rochester Institute of Technology, Rochester, N.Y. The results are in Tables 17 and 20-22.


Example 52

The following ink base was made according to the procedure described below and used to make final inks with black dispersions.









TABLE 15







Ink Base I formulation.










Ingredients
% by Weight














Water, deionized
9.6



2-Pyrrolidone water blend
10.0



1,5-pentanediol
5.0



PEG 600 Carb. Polyethylene Glycol
4.0



Nipacide BIT 20
0.3



Surfynol 104E solution
0.1



1,2-hexanediol
1.0










First, 9.6% by weight of water was added to a clean vessel. A mixing device was then placed inside the vessel to agitate the water and provide mixing while the other ingredients are added. Mixing was achieved by using a magnetic stirring device. Next, 10% by weight of 2-pyrrolidone, 5% by weight of 1,5-pentanediol, 4% by weight of PEG 600, and 1% by weight of 1,2-hexanediol were added to the vessel. These were allowed to dissolve. Then, 0.1% by weight of Surfynol 104E solution and 0.3% by weight of Nipacide BIT 20 were added and allowed to dissolve.


Example 53

The following inks were made according to the procedure described below.









TABLE 16







Inks A-C.











Ink A
Ink B
Ink C


Pigment
Example #33
Example #41
Example #39


Dispersion from:
(g)
(g)
(g)













Water, deionized
39.12
43.97
39.40


Dispersion
30.88
26.03
30.60


Inkbase
30.00
30.00
30.00


Surfynol 465
0.54
0.55
0.55


Surfynol 440
0.38
0.36
0.36









A second vessel was prepared by adding calculated % by weight of DI water to the pigment dispersion to the vessel per Table 16. A magnetic stiffing device was then placed into the vessel. Next the ink base followed by Surfynol surfactants (Air Products & Chemicals, Inc., Allentown, Pa.) were slowly added to the pigment dispersion in the second vessel. The dispersion was mixed during this process. After all of the diluent has been added, the ink was mixed for about 1 hour, or until it was completely homogenous. After mixing, the ink was filtered using a 1 micron glass filter (available from Whatman, Kent, England).


The print performance characteristics of the black inks are identified below.


Image Quality was measured with ImageXpert Full Motion System. Optical Density was measured with X-rite 939 Spectrodensitometer. Ozone Exposure was measured using RIT custom ozone chamber and Sutherland Rub test was done with Sutherland rub fixture. RIT was supplied with printed pages identified by ink set and media. Highlighter A is Sanford Yellow Major Accent® and Highlighter B is Avery Dennison Fluorescent Yellow Hi-Liter®









TABLE 17





Print Performance Characteristics.


Ink A with SA attachment and Inks B&C with 4ABA attachment.


















HP MP - ColorLok
Xerox 4200














Ink A
Ink B
Ink C
Ink A
Ink B
Ink C





Optical Density
1.039
1.073
1.076
1.032
1.038
0.969


Rub Resistance
0.07
0.06
0.04
0.04
0.02
0.03


(OD Diff)








Highlighter A
0.046
0.043
0.02
0.014
0.008
0.019


Resistance (OD Diff)








Highlighter B
0.039
0.069
0.027
0.019
0.008
0.017


Resistance (OD Diff)








Water resistance
0
0
0.003
0.003
0.002
0.001


(OD Diff)








Ozone Fade
0.616
0.587
0.780
0.678
0.633
0.918


Line Width
0.006
0.006
0.009
0.014
0.006
0.012


Edge Acuity
0.012
0.011
0.015
0.016
0.015
0.016


Mottle
1.925
2.171
1.84
1.596
1.508
1.686


Black Yellow Bleed -
0.013
0.012
0.016
0.017
0.016
0.016


Horizontal








Black Yellow Bleed -
0.016
0.014
0.020
0.016
0.014
0.016


Vertical













Office Depot 104
Hammerill GW














Ink A
Ink B
Ink C$
Ink A
Ink B
Ink C





Optical Density
1.012
1.04
1.259
0.941
0.966
0.95


Rub Resistance
0.02
0.01

0.06
0.05
0.03


(OD Diff)








Highlighter A
0.011
0.021
0
0.04
0.049
0.018


Resistance (OD Diff)








Highlighter B
0.02
0.032
0.003
0.064
0.047
0.036


Resistance (OD Diff)








Water resistance
0
0
0
0.002
0
0.001


(OD Diff)








Ozone Fade
0.699
0.737
0.885
0.909
0.674
0.826


Line Width
0.007
0.008
0.008
0.013
0.005
0.019


Edge Acuity
0.014
0.013
0.003
0.019
0.017
0.018


Mottle
2.287
1.98
0.918
3.75
3.018
2.737


Black Yellow Bleed -
0.016
0.014
0.004
0.020
0.018
0.018


Horizontal








Black Yellow Bleed -
0.014
0.015
0.009
0.016
0.016
0.019


Vertical






$Epson Photo Paper was used instead of Office Depot 104 for Ink Set 3.







Example 54

The following ink base was made according to the procedure described below and used to make final inks with color dispersions.









TABLE 18







Ink Base II formulation.










Ingredients
% by Weight














Water
12.3



Glycerine
14



PEG 600
2



Butyl Carbitol
3



TEA
0.1



Cobratec
0.3



Xbinx 19G
0.3



Ethanol
2



Butanol
1










First, 12.3% by weight of water was added to a clean vessel. A mixing device was then placed inside the vessel to agitate the water and provide mixing while the other ingredients are added. Mixing was achieved by using a magnetic stirring device. Next, 14% by weight of glycerine, 2% by weight of PEG 600, 3% by weight of butyl carbitol, 2% by weight of ethanol, and 1% by weight of butanol were added to the vessel. These were allowed to dissolve. Then, 0.1% by weight of triethanolamine was added and allowed to dissolve. Finally, 0.3% by weight of Cobratec solution and 0.3% by weight of Xbinx 19G were added and allowed to dissolve.


Example 55

The following inks were made according to the procedure described below.









TABLE 19





Inks D-L.



















Pigment
Ink D
Ink E
Ink F
Ink G


Dispersion
Example
Example
Example
Example


from:
#27
#37
#30
#42





Water,
10.54
31.08
24.29
14.88


deionized (g)






Dispersion (g)
54.46
33.92
40.71
50.12


Ink base (g)
35.00
35.00
35.00
35.00


Surfynol 465 (g)
0.515
0.60
0.55
0.55


Surfynol 440 (g)
0.40
0.38
0.375
0.40















Pigment
Ink H
Ink I
Ink J
Ink K
Ink L


Dispersion
Example
Example
Example
Example
Example


from:
#45
#46
#11
#47
#46





Water,
14.62
28.45
28.00
29.20
29.00


deionized (g)







Dispersion (g)
50.38
41.55
37.00
35.80
36.00


Ink base (g)
35.00
35.00
35.00
35.00
35.00


Surfynol 465 (g)
0.55
0.55
0.55
0.55
0.55


Surfynol 440 (g)
0.36
0.36
0.40
0.36
0.36









A second vessel was prepared by adding the calculated percentage by weight of DI water to the pigment dispersion to the vessel per Table 19. A magnetic stirring device was then placed into the vessel. Next the ink base followed by Surfynol surfactants (Air Products & Chemicals, Inc., Allentown, Pa.) were slowly added to the pigment dispersion in the second vessel. The dispersion was mixed during this process. After all of the diluent has been added, the ink was mixed for about 1 hour, or until it was completely homogenous. After mixing, the ink was filtered using a 1 micron glass filter (available from Whatman, Kent, England).


The print performance characteristics of the color inks are identified below.









TABLE 20







Ink Set 1, made with SA attached pigment dispersions














Ink D
Ink E
Ink F
Ink D
Ink E
Ink F













HP MP - ColorLok
Xerox 4200













Optical Density
0.786
0.854
0.606
0.846
0.865
0.646


Rub Resistance
0.03
0.02
0.04
0.06
0.01
0.04


(OD Diff)








Highlighter A
0.026
0.015

0.006
0



Resistance (OD Diff)








Highlighter B
0.023
0.016

0.015
0.014



Resistance (OD Diff)








Water resistance
0
0
0
0.002
0.001
0.002


(OD Diff)








Ozone Fade
3.058
0.766
0.492
4.44
0.875
0.647


Mottle
1.618
1.818
1.608
1.913
2.193
1.921










Office Depot 104
Hammerill GW













Optical Density
0.858
0.872
0.658
0.82
0.807
0.631


Rub Resistance
0.03
0
0.01
0.04
0.02
0.06


(OD Diff)








Highlighter A
0.022
0.009

0.043
0.031



Resistance (OD Diff)








Highlighter B
0.024
0.02

0.039
0.054



Resistance (OD Diff)








Water resistance
0
0
0
0.002
0.001
0.002


(OD Diff)








Ozone Fade
4.658
1.143
0.552
4.01
0.902
0.44


Mottle
1.954
2.17
1.731
2.031
2.797
2.018
















TABLE 21







Ink Set 2, made with 4ABA attached pigment dispersions














Ink G
Ink H
Ink I
Ink G
Ink H
Ink I













HP MP - ColorLok
Xerox 4200













Optical Density
0.779
0.849
0.592
0.822
0.865
0.675


Rub Resistance
0.06
0.02
0.03
0.06
0.01
0.04


(OD Diff)








Highlighter A
0.026
0.034

0.018
0



Resistance (OD Diff)








Highlighter B
0.044
0.033

0.018
0



Resistance (OD Diff)








Water resistance
0
0.001
0.001
0.001
0.002
0.003


(OD Diff)








Ozone Fade
2.345
0.789
0.351
3.204
1.194
0.606


Mottle
1.807
1.821
1.863
2.123
2.078
2.052










Office Depot 104
Hammerill GW













Optical Density
0.837
0.877
0.674
0.8
0.808
0.649


Rub Resistance
0.04
0
0.02
0.07
0.01
0.04


(OD Diff)








Highlighter A
0.03
0.022

0.045
0.034



Resistance (OD Diff)








Highlighter B
0.031
0.03

0.032
0.028



Resistance (OD Diff)








Water resistance
0.003
0.001
0.001
0
0
0


(OD Diff)








Ozone Fade
3.302
1.249
0.55
2.912
1.021
0.474


Mottle
2.315
1.989
1.873
2.002
2.42
1.825
















TABLE 22







Ink Set 3, made with 4ABA attached pigment dispersions














Ink J
Ink K
Ink L
Ink J
Ink K
Ink L













HP Multi-Purpose




ColorLok
Xerox 4200













Optical Density
0.829
0.89
0.674
0.809
0.828
0.652


Rub Resistance
0.02
0.01
0.055
0.02
0
0.045


(OD Diff)








Highlighter A
0.014
0.017

0.02
0.02



Resistance (OD Diff)








Highlighter B
0.023
0.02

0.017
0.02



Resistance (OD Diff)








Water resistance
0.003
0.004
0.004
0.004
0.001
0.003


(OD Diff)








Ozone Fade
2.246
0.725
0.341
2.242
0.777
0.388


Mottle
1.7
1.679
2.024
1.689
1.993
1.986










Epson Photo Paper
Hammerill Great White













Optical Density
0.775
0.879
0.845
0.806
0.823
0.67


Rub Resistance



0.02
0.01
0.045


(OD Diff)








Highlighter A
0
0

0.012
0.02



Resistance (OD Diff)








Highlighter B
0.004
0.011

0.04
0.029



Resistance (OD Diff)








Water resistance
0
0.001
0
0.003
0.003
0.003


(OD Diff)








Ozone Fade
1.739
1.298
0.481
2.07
0.538
0.323


Mottle
1.093
1.244
1.087
1.697
2.388
2.206









Example 56

Wood Stain Application Performance


The following wood stains were prepared and tested at 6% dry pigment loading with a resin solution consisting of 18% Joncryl 95 (available from Johnson Polymer, Sturtevant, Wis.) and the balance de-ionized water. Waterfastness comparison of drawdowns on Leneta Form 3NT-3 using a wire wound rod#7 (available from Paul N. Gardner Company, Pompano Beach, Fla.) was done with 1″×4″ strips. Half of each strip was dipped in de-ionized water for one minute. The strips were allowed to dry at ambient temperature. The color difference (DE*) was read with a spectrophotometer. Lower DE* indicates better waterfastness.









TABLE 23







Wood stain comparison.










Example
Pigment
Attachment
Dipped area vs. Control















[#]
Type
Type
DL*
Da*
Db*
DC*
DH*
DE*


















32
Carbon1
SA
2.99
1.08
2.67
2.83
0.58
4.15


41
Carbon1
4-ABA
1.23
0.34
0.38
0.50
0.02
1.33


37
PR1226
SA
3.03
1.96
2.06
1.60
2.34
4.15


47
PR1226
4-ABA
2.24
2.22
1.32
1.93
1.73
3.42


30
PY747
SA
0.55
1.60
1.96
1.94
1.63
2.59


46
PY747
4-ABA
0.25
0.26
0.22
0.22
0.27
0.43


27
PB152
SA
1.38
1.55
0.50
0.31
1.60
2.14


43
PB154
4-ABA
0.18
0.02
0.05
0.04
0.04
0.19









Example 57

Coating Performance


The following coating formulations (Masstone) were prepared and tested at 6% dry pigment loading with a resin solution consisting of 25% acrylic vehicle (available from Valspar, Wheeling, Ill.) and the balance de-ionized water. The drawdown was prepared on Leneta form 2A using a 6.0 mil wire wound rod. Chemical resistance was measured separately by spotting 10 drops of 10% hydrochloric acid and 10 drops of 10% sodium hydroxide solution on a Masstone drawdown. The degree of chemical resistance is measured by taking the DE* value between the spotted area versus the control area.









TABLE 24







Coating resistance to strong acid (10% Hydrochloric acid).










Example
Pigment
Attachment
Spotted area vs Control















[#]
Type
Type
DL*
Da*
Db*
DC*
DH*
DE*


















32
Carbon1
SA
0.15
0.12
0.20
0.16
0.17
0.28


41
Carbon1
4-ABA
0.03
0.02
0.07
0.07
0.00
0.08


37
PR1226
SA
1.55
4.01
3.09
4.16
2.89
5.30


47
PR1226
4-ABA
1.27
3.87
2.85
4.33
2.09
4.97


30
PY747
SA
0.03
0.45
0.06
0.00
0.46
0.46


46
PY747
4-ABA
0.19
0.32
0.18
0.22
0.30
0.41


27
PB152
SA
0.12
0.34
1.07
1.10
0.21
1.13


43
PB154
4-ABA
0.44
0.32
0.79
0.57
0.64
0.96
















TABLE 25







Coating resistance to strong base (10% Sodium hydroxide).










Example
Pigment
Attachment
Spotted area vs Control















[#]
Type
Type
DL*
Da*
Db*
DC*
DH*
DE*


















32
Carbon1
SA
8.79
0.03
0.27
0.26
0.09
8.80


41
Carbon1
4-ABA
1.93
0.05
0.91
0.90
0.15
2.14


37
PR1226
SA
1.42
2.56
0.69
2.61
0.46
3.00


47
PR1226
4-ABA
0.40
1.78
0.36
1.82
0.03
1.86


30
PY747
SA
6.70
0.19
2.57
2.53
0.52
7.18


46
PY747
4-ABA
3.17
0.77
4.51
4.57
0.19
5.56


27
PB152
SA
2.05
1.65
3.49
3.86
0.17
4.37


43
PB154
4-ABA
1.23
0.79
0.54
0.83
0.47
1.56









Example 58

Color Filter Application Performance


The following color filter formulations were prepared and tested at 6% dry pigment loading adjusted to 75% of the total with de-ionized water and then mixed with a vehicle (25%) consisting of 30% Valspar acrylic vehicle, 30% Joncryl 1972 (available from Johnson Polymer, Sturtevant, Wis.) and 40% 1-methoxy-2-propanol (Propylene Glycol Monomethyl Ether). Transmission values of the color filter coatings on a transparent olefin polymer substrate using a wire wound rod #7 (Paul N. Gardner Company, Pompano Beach, Fla.) were measured after drying at ambient temperature.









TABLE 26







Transmission Values of Color Filter Coatings.










Example
Pigment
Attachment
% Transmittance (nm)

















[#]
Type
Type
400
440
480
520
560
600
640
680




















32
Carbon1
SA
2.75
3.95
5.17
6.50
7.91
9.37
10.81
12.26


41
Carbon1
4-ABA
2.49
3.71
4.91
6.25
7.66
9.12
10.58
12.03


37
PR1226
SA
59.89
63.21
54.43
36.01
25.60
71.86
84.46
86.50


47
PR1226
4-ABA
63.88
65.57
56.12
37.07
25.94
73.45
85.20
86.80


30
PY747
SA
11.00
5.94
13.44
66.63
78.37
82.56
85.02
86.60


46
PY747
4-ABA
11.42
6.27
14.49
68.85
79.40
83.45
85.94
87.33


27
PB152
SA
48.25
74.75
83.15
76.29
32.96
10.93
9.07
13.68


43
PB154
4-ABA
47.47
74.75
83.04
74.98
29.92
9.57
8.05
12.12









Example 59

Textile Printing Application Performance


The following printing pastes were prepared and tested at 6% dry pigment loading with Delta Ceramcoat Textile Medium16 (33%), Valspar Acrylic Vehicle (5%) and the balance de-ionized water. The drawdowns of the print pastes on a white cotton fabric were prepared using a 6.0 mil wire wound rod. After drying at ambient temperature the prints were heat fixed at 140° C. for 10 minutes in an oven. The fabric was cut into 1″×4″ strips and half of each strip (1″×2″) was immersed in boiling de-ionized water for five minutes. Afterwards, the exposed strips were washed in cold tap water for one minute and allowed to dry at ambient temperature. The washfastness and waterfastness were assessed by measuring the total color difference (DE*) between control and treated fabric.









TABLE 27







Wash and Water Fastness Evaluation.










Example
Pigment
Attachment
Washed Fabric vs Control















[#]
Type
Type
DL*
Da*
Db*
DC*
DH*
DE*


















32
Carbon1
SA
0.23
0.03
0.11
0.09
0.06
0.25


41
Carbon1
4-ABA
0.22
0.05
0.04
0.00
0.06
0.23


37
PR1226
SA
0.10
0.78
0.23
0.71
0.29
0.78


47
PR1226
4-ABA
0.15
0.02
0.50
0.06
0.49
0.52


30
PY747
SA
3.50
0.22
5.73
5.72
0.41
6.72


46
PY747
4-ABA
1.52
0.44
2.19
2.13
0.67
2.70


27
PB152
SA
0.93
0.35
0.74
0.66
0.49
1.24


43
PB154
4-ABA
0.03
0.11
0.57
0.53
0.26
0.59






16The amount was adjusted to 23% DCTM and 2% VAV for the two PB 15 pigment dispersions.






Claims
  • 1. A method of modifying a pigment, the method comprising: reacting cyanuric chloride with about three equivalents of a secondary compound or a mixture of secondary compounds to displace all reactive chlorines to form a substituted triazine; andreacting the substituted triazine with a surface of a pigment to form a surface modified pigment.
  • 2. The method of claim 1, further comprising reacting the substituted triazine with the surface of the pigment using a radical initiator to form a surface modified pigment.
  • 3. The method of claim 2, wherein the radical initiator comprises a persulfate.
  • 4. The method of claim 1, wherein the mixture of secondary compounds may include one, two, or three different secondary compounds.
  • 5. The method of claim 1, wherein the method is carried out at a temperature of about 25° C. to about 90° C.
  • 6. The method of claim 1, wherein the secondary compound or mixture of secondary compounds comprises at least one of amino benzoic acids, amino benzene sulfonic acids, amino phenols, amino sulfonic acids, polyethoxylated amino acids, sodium sulfanilate, sulfanilic acid, sodium p-aminobenzoate, p-aminophenol, ethyl 4-aminobenzoate, tetramethylammonium 4-aminobenxoate, sodium 4-aminophenolate, taurine, oleic acid (amino), sodium aminooleate, organic polymeric substrates, linear polyethoxy polymeric amines, linear propoxy polymeric amines, a diamino aromatic, a polyethyleneimine, a polyguanidine, a quarternary ammonium compound, or a combination thereof.
  • 7. The method of claim 1, wherein the pigment comprises at least one of carbon black, pigment red 122, pigment violet 19, pigment violet 23, pigment red 202, pigment red 188, pigment yellow 155, pigment yellow 97, pigment green 7, pigment blue 15:3, pigment blue 15:4, and pigment yellow 74, and combinations thereof.
  • 8. The method of claim 1, further comprising milling the pigment to less than about 100 nm before, during, or after reacting the pigment with the substituted triazine.
  • 9. The method of claim 1, wherein the surface modified pigment comprises about 0.01 to about 1.0 mMoles of S and about 0.01 to about 2.0 mMoles of active hydrogen per gram of pigment.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a divisional of U.S. patent application Ser. No. 12/197,087, filed Aug. 22, 2008, now U.S. Pat. No. 7,964,033 B2, which claims the benefit of U.S. Provisional Application No. 60/957,596, filed Aug. 23, 2007. The entire contents of each of these applications are hereby incorporated by reference.

US Referenced Citations (900)
Number Name Date Kind
630868 Dorman Aug 1899 A
1901861 Baker Mar 1933 A
2034508 Boer et al. Mar 1936 A
2178383 Wiegand Oct 1939 A
2281261 Bjorksten et al. Apr 1942 A
2439442 Amon et al. Apr 1948 A
2439443 Aske Apr 1948 A
2641533 Cines Jun 1953 A
2811501 Stedry Oct 1957 A
2816046 Damusis Dec 1957 A
2867540 Melvin Jan 1959 A
2993903 Kraus Jul 1961 A
3023118 Donnet Feb 1962 A
3025259 Watson et al. Mar 1962 A
3043708 Edwin et al. Jul 1962 A
3243752 Lawrence Mar 1966 A
3271383 Yamaya et al. Sep 1966 A
3291788 Yamaya et al. Dec 1966 A
3306761 Johnson Feb 1967 A
3323932 Aboytes et al. Jun 1967 A
3347632 Parker Oct 1967 A
3368990 Goulston Feb 1968 A
3412054 Milligan et al. Nov 1968 A
3442679 Rivin et al. May 1969 A
3519452 Rivin et al. Jul 1970 A
3528840 Aboytes Sep 1970 A
3565657 Dannenberg et al. Feb 1971 A
3623899 Lagally Nov 1971 A
3697425 Lagally Oct 1972 A
3755287 Hegar et al. Aug 1973 A
3895004 de Montmollin et al. Jul 1975 A
3901818 Durand et al. Aug 1975 A
3971849 Prasad et al. Jul 1976 A
3992218 Suetsugu et al. Nov 1976 A
4003981 Turk Jan 1977 A
4069218 Hegar Jan 1978 A
4156616 Dietz et al. May 1979 A
4197221 Eisenmenger et al. Apr 1980 A
4201647 Spaziante et al. May 1980 A
4243772 Paul et al. Jan 1981 A
4298526 Sappok et al. Nov 1981 A
4343767 Long et al. Aug 1982 A
4386851 Eidorff Jun 1983 A
4388115 Sugiyama et al. Jun 1983 A
4406662 Beran et al. Sep 1983 A
4425162 Sugiyama et al. Jan 1984 A
4435717 Eida et al. Mar 1984 A
4477621 Sato et al. Oct 1984 A
4485041 Hoyer et al. Nov 1984 A
4500672 Suzuki et al. Feb 1985 A
4507236 Seiler et al. Mar 1985 A
4508570 Fujii et al. Apr 1985 A
4530961 Nguyen et al. Jul 1985 A
4532296 Gardner Jul 1985 A
4533776 Baasner et al. Aug 1985 A
4581445 Ramanathan Apr 1986 A
4597794 Ohta et al. Jul 1986 A
4609404 Marraccini et al. Sep 1986 A
4624709 Otsuka Nov 1986 A
4624773 Hettinger Nov 1986 A
4627875 Kobayashi et al. Dec 1986 A
4631085 Kawanishi et al. Dec 1986 A
4647310 Shimada et al. Mar 1987 A
4666519 Akiyama et al. May 1987 A
4666993 Urano et al. May 1987 A
4670059 Hackleman et al. Jun 1987 A
4680332 Hair et al. Jul 1987 A
4683002 Mirua et al. Jul 1987 A
4685968 Palmer Aug 1987 A
4689078 Koike Aug 1987 A
4694302 Hackleman Sep 1987 A
4695824 Tazaki Sep 1987 A
4711668 Shimada et al. Dec 1987 A
4713081 Becker Dec 1987 A
4713113 Shimada et al. Dec 1987 A
4732613 Shioya et al. Mar 1988 A
4737190 Shimada et al. Apr 1988 A
4761180 Askeland et al. Aug 1988 A
4765838 Ohata et al. Aug 1988 A
4786327 Wenzel et al. Nov 1988 A
4790880 Miller Dec 1988 A
4793860 Murakami et al. Dec 1988 A
4798856 Ayala et al. Jan 1989 A
4810292 Palmer Mar 1989 A
4836851 Pawlowski et al. Jun 1989 A
4836852 Knirsch et al. Jun 1989 A
4838938 Tomida Jun 1989 A
4844569 Wada et al. Jul 1989 A
4846851 Guro et al. Jul 1989 A
4853036 Koike et al. Aug 1989 A
4853037 Johnson et al. Aug 1989 A
4855762 Suzuki Aug 1989 A
4914562 Abe et al. Apr 1990 A
4931950 Isle et al. Jun 1990 A
4952551 Buehler Aug 1990 A
4952617 Ayala et al. Aug 1990 A
4957553 Koike Sep 1990 A
4959661 Buxton Sep 1990 A
4973499 Iwata et al. Nov 1990 A
4978969 Chieng Dec 1990 A
4994110 Stoffel et al. Feb 1991 A
5013361 Case et al. May 1991 A
5017224 Tomita et al. May 1991 A
5017227 Koike et al. May 1991 A
5017644 Fuller et al. May 1991 A
5026425 Hindagolla et al. Jun 1991 A
5026426 Russell Jun 1991 A
5026427 Mitchell et al. Jun 1991 A
5053078 Koike Oct 1991 A
5059248 Signorino et al. Oct 1991 A
5061316 Moffatt Oct 1991 A
5062892 Halko Nov 1991 A
5067980 Koike Nov 1991 A
5075699 Koike Dec 1991 A
5082496 Yamamoto et al. Jan 1992 A
5085698 Ma et al. Feb 1992 A
5102459 Ritter et al. Apr 1992 A
5103361 Nagatsuka Apr 1992 A
5106417 Hauser Apr 1992 A
5108501 Moffatt Apr 1992 A
5108503 Hindagolla et al. Apr 1992 A
5108504 Johnson Apr 1992 A
5110355 Pendleton May 1992 A
5114479 Keaveney May 1992 A
5116409 Moffatt May 1992 A
5118351 Shirota et al. Jun 1992 A
5124201 Kurabayashi et al. Jun 1992 A
5125969 Nishiwaki et al. Jun 1992 A
5133803 Moffatt Jul 1992 A
5142393 Okumura et al. Aug 1992 A
5145518 Winnik et al. Sep 1992 A
5156470 Suzuki et al. Oct 1992 A
5156472 Suzuki et al. Oct 1992 A
5156473 Suzuki et al. Oct 1992 A
5156675 Breton et al. Oct 1992 A
5158377 Suzuki et al. Oct 1992 A
5159009 Wolff Oct 1992 A
5160372 Matrick Nov 1992 A
5165968 Johnson et al. Nov 1992 A
5172133 Suga et al. Dec 1992 A
5176745 Moore et al. Jan 1993 A
5181045 Shields Jan 1993 A
5183502 Meichsner Feb 1993 A
5184148 Suga Feb 1993 A
5190582 Shinozuka et al. Mar 1993 A
5196057 Escano et al. Mar 1993 A
5207824 Moffatt May 1993 A
5211747 Breton et al. May 1993 A
5212819 Wada May 1993 A
5215577 Eida et al. Jun 1993 A
5220346 Carreira et al. Jun 1993 A
5221148 Suzuki et al. Jun 1993 A
5221332 Kohlmeier Jun 1993 A
5221334 Ma et al. Jun 1993 A
5246518 Hale Sep 1993 A
5248363 Hale Sep 1993 A
5258066 Kobayashi et al. Nov 1993 A
5258505 Eida et al. Nov 1993 A
5262268 Bertrand Nov 1993 A
5272201 Ma et al. Dec 1993 A
5281261 Lin Jan 1994 A
5281569 Amon et al. Jan 1994 A
5296022 Kobayashi et al. Mar 1994 A
5300148 Domingo et al. Apr 1994 A
5302223 Hale Apr 1994 A
5310778 Shor et al. May 1994 A
5318617 Nagasawa et al. Jun 1994 A
5320668 Shields Jun 1994 A
5334435 Rossi Aug 1994 A
5342439 Lauw Aug 1994 A
5344483 Hinton Sep 1994 A
5352484 Bernard et al. Oct 1994 A
5364461 Beach et al. Nov 1994 A
5364462 Crystal Nov 1994 A
5364702 Idei Nov 1994 A
5372697 Akutsu et al. Dec 1994 A
5377024 Dillinger Dec 1994 A
5378269 Rossi Jan 1995 A
5389134 Breton et al. Feb 1995 A
5393461 Fillipova Feb 1995 A
5393821 Shieh et al. Feb 1995 A
5395435 Mizobuchi Mar 1995 A
5407725 Ryoke et al. Apr 1995 A
5421658 Suzuki et al. Jun 1995 A
5421871 Onishi et al. Jun 1995 A
5424780 Cooper Jun 1995 A
5428383 Shields Jun 1995 A
5431501 Hale Jul 1995 A
5437716 Sano et al. Aug 1995 A
5441564 Vogt Aug 1995 A
5484475 Breton Jan 1996 A
5484899 Deitz et al. Jan 1996 A
5485188 Tochihara et al. Jan 1996 A
5487614 Hale Jan 1996 A
5488401 Mochizuki et al. Jan 1996 A
5488402 Shields Jan 1996 A
5488907 Xu Feb 1996 A
5503664 Sano et al. Apr 1996 A
5509140 Koitabashi et al. Apr 1996 A
5522317 Hale Jun 1996 A
5522922 Furusawa Jun 1996 A
5529616 Prasad Jun 1996 A
5529767 Brox et al. Jun 1996 A
5531816 Wickramanayake Jul 1996 A
5531818 Lin Jul 1996 A
5534051 Lauw Jul 1996 A
5536306 Johnson et al. Jul 1996 A
5538548 Yamazaki et al. Jul 1996 A
5550082 Wolfe et al. Aug 1996 A
5552182 Scarpetti Sep 1996 A
5554739 Belmont Sep 1996 A
5555813 Hale Sep 1996 A
5559169 Belmont Sep 1996 A
5560720 Suzuki et al. Oct 1996 A
5562762 Mrvos et al. Oct 1996 A
5570118 Rezanka et al. Oct 1996 A
5571311 Belmont et al. Nov 1996 A
5575845 Belmont et al. Nov 1996 A
5575877 Hale Nov 1996 A
5580372 Gino et al. Dec 1996 A
5585189 Inoue et al. Dec 1996 A
5589522 Beach et al. Dec 1996 A
5590600 Hale Jan 1997 A
5591455 Signorino et al. Jan 1997 A
5593459 Gamblin Jan 1997 A
5595592 Signorino et al. Jan 1997 A
5601023 Hale et al. Feb 1997 A
5604276 Suga Feb 1997 A
5609671 Nagasawa Mar 1997 A
5611847 Guistina et al. Mar 1997 A
5615957 Suzuki et al. Apr 1997 A
5621027 Roschger et al. Apr 1997 A
5622439 Suzuki et al. Apr 1997 A
5622557 Mahmud et al. Apr 1997 A
5624485 Calhoun Apr 1997 A
5626655 Pawlowski et al. May 1997 A
5630868 Belmont et al. May 1997 A
5631309 Yanagi et al. May 1997 A
5640180 Hale et al. Jun 1997 A
5642141 Hale Jun 1997 A
5644988 Xu Jul 1997 A
5647896 Nishimura et al. Jul 1997 A
5647897 Ouki et al. Jul 1997 A
5648405 Ma Jul 1997 A
5656071 Kappele Aug 1997 A
5658376 Noguchi et al. Aug 1997 A
5665150 Schwarz Sep 1997 A
5667569 Fujioka Sep 1997 A
5667571 Ono et al. Sep 1997 A
5667572 Taniguchi Sep 1997 A
5672198 Belmont Sep 1997 A
5679143 Looman Oct 1997 A
5686508 Shimomura Nov 1997 A
5686633 Vieira Nov 1997 A
5688311 Adamic Nov 1997 A
5690721 Itoh Nov 1997 A
5690722 Pawlowski Nov 1997 A
5690723 Sano et al. Nov 1997 A
5693126 Ito Dec 1997 A
5698016 Adams et al. Dec 1997 A
5700317 Adamic Dec 1997 A
5704969 Kanaya Jan 1998 A
5707432 Adams et al. Jan 1998 A
5709976 Malhotra Jan 1998 A
5713988 Belmont Feb 1998 A
5713989 Wickramanayake Feb 1998 A
5713992 Satoh et al. Feb 1998 A
5714538 Beach et al. Feb 1998 A
5718746 Nagasawa et al. Feb 1998 A
5719204 Beach et al. Feb 1998 A
5721344 Baettig Feb 1998 A
5725641 MacLeod Mar 1998 A
5725643 Higashiyama Mar 1998 A
5725644 Sano et al. Mar 1998 A
5730790 Rehman Mar 1998 A
5734396 Hale Mar 1998 A
5734403 Suga et al. Mar 1998 A
5735941 Feeman et al. Apr 1998 A
5745140 Stoffel et al. Apr 1998 A
5746816 Xu May 1998 A
5746817 Katsen et al. May 1998 A
5746818 Yatake May 1998 A
5747562 Mahmud et al. May 1998 A
5749950 Mahmud et al. May 1998 A
5749951 Yoshiike et al. May 1998 A
5749952 Tsang May 1998 A
5750592 Shinozuka et al. May 1998 A
5751320 Scheffelin et al. May 1998 A
5766327 Maze Jun 1998 A
5769930 Sano Jun 1998 A
5772742 Wang Jun 1998 A
5777648 Scheffelin et al. Jul 1998 A
5785743 Adamic et al. Jul 1998 A
5786436 Fischer et al. Jul 1998 A
5788754 Deardurff et al. Aug 1998 A
5795375 Yamazaki et al. Aug 1998 A
5803958 Katsen et al. Sep 1998 A
5803959 Johnson Sep 1998 A
5814138 Fague Sep 1998 A
5814683 Branham Sep 1998 A
5814685 Satake et al. Sep 1998 A
5821283 Hesler Oct 1998 A
5825387 Cowger et al. Oct 1998 A
5830263 Hale Nov 1998 A
5830264 Fujioka et al. Nov 1998 A
5830265 Tsang et al. Nov 1998 A
5830930 Mahmud et al. Nov 1998 A
5837043 Wong et al. Nov 1998 A
5837045 Johnson Nov 1998 A
5837374 Hirayama et al. Nov 1998 A
5846306 Kubota Dec 1998 A
5846307 Nagasawa et al. Dec 1998 A
5849067 Tsuchiya et al. Dec 1998 A
5851274 Lin Dec 1998 A
5851280 Belmont et al. Dec 1998 A
5853465 Tsang Dec 1998 A
5854307 Kimura Dec 1998 A
5854331 Ma Dec 1998 A
5858075 Deardurff et al. Jan 1999 A
5858078 Andes et al. Jan 1999 A
5861447 Nagasawa et al. Jan 1999 A
5863323 Mahmud et al. Jan 1999 A
5868823 Yamazaki et al. Feb 1999 A
5869550 Mahmud Feb 1999 A
5871572 Marritt Feb 1999 A
5874974 Courian et al. Feb 1999 A
5876491 Gunn et al. Mar 1999 A
5877100 Smith et al. Mar 1999 A
5877238 Mahmud et al. Mar 1999 A
5877253 Matta et al. Mar 1999 A
5885335 Adams Mar 1999 A
5885336 Kitahara et al. Mar 1999 A
5886065 Tsang et al. Mar 1999 A
5891232 Moffatt Apr 1999 A
5891934 Moffatt et al. Apr 1999 A
5895522 Belmont et al. Apr 1999 A
5897694 Woolf Apr 1999 A
5897961 Malhotra Apr 1999 A
5898445 Becker et al. Apr 1999 A
5900029 Belmont et al. May 1999 A
5904762 Mahmud May 1999 A
5911816 Gore Jun 1999 A
5916934 Mahmud et al. Jun 1999 A
5916956 Wang et al. Jun 1999 A
5919293 Moffatt et al. Jul 1999 A
5919841 Mahmud et al. Jul 1999 A
5919855 Reed Jul 1999 A
5922118 Johnson Jul 1999 A
5925176 Rehman Jul 1999 A
5928419 Uemura et al. Jul 1999 A
5932631 Marritt Aug 1999 A
5935309 Moffatt et al. Aug 1999 A
5938829 Higashiyama et al. Aug 1999 A
5946012 Courian et al. Aug 1999 A
5948150 Lin Sep 1999 A
5948835 Mahmud et al. Sep 1999 A
5951749 Krepski et al. Sep 1999 A
5952481 Markham Sep 1999 A
5955232 Little Sep 1999 A
5955515 Kimura et al. Sep 1999 A
5958999 Bates et al. Sep 1999 A
5961703 Fraas Oct 1999 A
5963238 Scheffelin et al. Oct 1999 A
5965196 Sawada Oct 1999 A
5966156 Scheffelin et al. Oct 1999 A
5968243 Belmont Oct 1999 A
5968244 Ueda et al. Oct 1999 A
5969003 Foucher et al. Oct 1999 A
5972083 Iijima Oct 1999 A
5976232 Gore Nov 1999 A
5976233 Osumi et al. Nov 1999 A
5977213 Mahmud Nov 1999 A
5981623 McCain et al. Nov 1999 A
5985015 Kanaya Nov 1999 A
5985016 Tsang Nov 1999 A
5990202 Nguyen Nov 1999 A
6004389 Yatake Dec 1999 A
6007611 Mheidle et al. Dec 1999 A
6008272 Mahmud et al. Dec 1999 A
6013123 Scarpetti Jan 2000 A
6015454 Lacroix et al. Jan 2000 A
6017980 Wang Jan 2000 A
6019828 Rehman Feb 2000 A
6020397 Matzinger Feb 2000 A
6022908 Ma Feb 2000 A
6024786 Gore Feb 2000 A
6028137 Mahmud et al. Feb 2000 A
6034153 Tsang et al. Mar 2000 A
6036759 Wickramanayake Mar 2000 A
6039796 Kubota Mar 2000 A
6042643 Belmont et al. Mar 2000 A
6050671 Rotering Apr 2000 A
6054238 Little Apr 2000 A
6056812 Lin May 2000 A
6057387 Mahmud May 2000 A
6068688 Whitehouse et al. May 2000 A
6069190 Bates May 2000 A
6074042 Gasvoda et al. Jun 2000 A
6083315 Nakamura et al. Jul 2000 A
6086197 Kubota et al. Jul 2000 A
6086198 Shields Jul 2000 A
6089687 Helterline Jul 2000 A
6099632 Nagasawa et al. Aug 2000 A
6100315 Kitamura et al. Aug 2000 A
6102996 Parazak Aug 2000 A
6103041 Wagner et al. Aug 2000 A
6103380 Devonport Aug 2000 A
6103782 Mizobuchi Aug 2000 A
6105502 Wagner et al. Aug 2000 A
6107350 Boes et al. Aug 2000 A
6110266 Gonzalez-Blanco et al. Aug 2000 A
6110994 Cooke et al. Aug 2000 A
6116409 Yokajty Sep 2000 A
6120594 Curtis et al. Sep 2000 A
6124376 Nichols et al. Sep 2000 A
6126731 Kemeny Oct 2000 A
6132021 Smith Oct 2000 A
6132502 Yatake Oct 2000 A
6136286 Okuyama et al. Oct 2000 A
6137502 Anderson et al. Oct 2000 A
6139139 Stoffel et al. Oct 2000 A
6142621 Romano Nov 2000 A
6149327 Ward et al. Nov 2000 A
6150433 Tsang et al. Nov 2000 A
6150453 Mahmud et al. Nov 2000 A
6152038 Wagner et al. Nov 2000 A
6169129 Mahmud et al. Jan 2001 B1
6172154 Brown Jan 2001 B1
6174354 Takizawa et al. Jan 2001 B1
6176629 Suzuki et al. Jan 2001 B1
6177498 Rehman Jan 2001 B1
6180691 Cheng et al. Jan 2001 B1
6184268 Nichols et al. Feb 2001 B1
6187086 Rehman Feb 2001 B1
6193364 Iida Feb 2001 B1
6197274 Mahmud et al. Mar 2001 B1
6206517 Kovacs et al. Mar 2001 B1
6207719 Pardikes Mar 2001 B1
6209998 Yue Apr 2001 B1
6211279 Mahmud Apr 2001 B1
6214100 Parazak et al. Apr 2001 B1
6218067 Belmont Apr 2001 B1
6221141 Takada et al. Apr 2001 B1
6221142 Wang et al. Apr 2001 B1
6221143 Palumbo Apr 2001 B1
6221932 Moffatt et al. Apr 2001 B1
6224202 Romano, Jr. May 2001 B1
6231655 Marritt May 2001 B1
6239193 Cheng May 2001 B1
H1967 Woolf Jun 2001 H
6241811 Sano Jun 2001 B1
6242529 Marritt Jun 2001 B1
6244687 Gast et al. Jun 2001 B1
6247808 Ma Jun 2001 B1
6258864 Dalton et al. Jul 2001 B1
6264301 Helterline Jul 2001 B1
6271285 Miyabayashi et al. Aug 2001 B1
6276791 Kovacs et al. Aug 2001 B1
6277183 Johnson et al. Aug 2001 B1
6277184 Kato Aug 2001 B1
6280512 Botros Aug 2001 B1
6280513 Osumi et al. Aug 2001 B1
6280516 Lucchi et al. Aug 2001 B1
6280871 Tosco et al. Aug 2001 B1
6281267 Parazak Aug 2001 B2
6281917 Katsuragi et al. Aug 2001 B1
6284029 Sano Sep 2001 B1
6291572 Brown et al. Sep 2001 B1
6299675 Ono Oct 2001 B1
6300391 Parazak Oct 2001 B2
6306204 Lin Oct 2001 B1
6312103 Haluzak Nov 2001 B1
6314574 Chan et al. Nov 2001 B1
6323257 Moffatt et al. Nov 2001 B1
6323258 Lin Nov 2001 B1
6323273 Mahmud et al. Nov 2001 B1
6328894 Chan et al. Dec 2001 B1
6332919 Osumi et al. Dec 2001 B2
6336965 Johnson et al. Jan 2002 B1
6337358 Whitehouse et al. Jan 2002 B1
6341856 Thompson et al. Jan 2002 B1
6342094 Kabalnov Jan 2002 B1
6342095 Takizawa et al. Jan 2002 B1
6348939 Xu Feb 2002 B1
6350519 Devonport Feb 2002 B1
6352341 Kovacs et al. Mar 2002 B2
6354693 Looman et al. Mar 2002 B1
6361156 Romano, Jr. Mar 2002 B1
6364472 Barinaga et al. Apr 2002 B1
6364944 Mahmud et al. Apr 2002 B1
6367922 Romano, Jr. et al. Apr 2002 B2
6368239 Devonport et al. Apr 2002 B1
6372329 Graczyk et al. Apr 2002 B1
6372818 Kimura et al. Apr 2002 B1
6372820 Devonport Apr 2002 B1
6375317 Osumi et al. Apr 2002 B1
6379443 Komatsu et al. Apr 2002 B1
6383274 Lin May 2002 B1
6383275 Lin May 2002 B1
6386695 Kowalski May 2002 B1
6387168 Koitabashi et al. May 2002 B1
6387500 Behl May 2002 B1
6391947 Noguchi et al. May 2002 B1
6398858 Yu et al. Jun 2002 B1
6399029 Porteous Jun 2002 B1
6399202 Yu Jun 2002 B1
6399674 Kashiwazaki et al. Jun 2002 B1
6402313 Xu et al. Jun 2002 B1
6402825 Sun Jun 2002 B1
6406143 Chen et al. Jun 2002 B1
6406528 Macholdt et al. Jun 2002 B1
6412935 Doumaux Jul 2002 B1
6417249 Nguyen Jul 2002 B1
6419733 Sano et al. Jul 2002 B1
6423375 Bi et al. Jul 2002 B1
6425331 Xu Jul 2002 B1
6425662 Teraoka et al. Jul 2002 B1
6431677 Anderson et al. Aug 2002 B1
6432194 Johnson et al. Aug 2002 B2
6432523 Ma et al. Aug 2002 B1
6435240 Fagebaume et al. Aug 2002 B1
6435659 Bruinsma Aug 2002 B1
6436178 Hosmer Aug 2002 B1
6439710 Hale Aug 2002 B1
6444017 Yue Sep 2002 B1
6444294 Malhotra et al. Sep 2002 B1
6447629 Thompson et al. Sep 2002 B1
6448309 Mahmud et al. Sep 2002 B2
6450098 Hale Sep 2002 B1
6450632 Tsang Sep 2002 B1
6451098 Lye et al. Sep 2002 B1
6451103 Uemura et al. Sep 2002 B1
6451379 Tsao Sep 2002 B1
6454403 Takada et al. Sep 2002 B1
6454846 Yatake Sep 2002 B2
6458195 Stoffel et al. Oct 2002 B1
6458458 Cooke et al. Oct 2002 B1
6460987 Katsuragi et al. Oct 2002 B1
6460989 Yano et al. Oct 2002 B1
6461418 Yue et al. Oct 2002 B1
6464334 Lopez et al. Oct 2002 B2
6467896 Meyer Oct 2002 B2
6468340 Moffatt Oct 2002 B1
6468342 Itoh et al. Oct 2002 B1
6471757 Koitabashi et al. Oct 2002 B1
6471763 Karl Oct 2002 B1
6472471 Cooke et al. Oct 2002 B2
6475271 Lin Nov 2002 B2
6475612 Knight et al. Nov 2002 B1
6478863 Johnson et al. Nov 2002 B2
6478963 Rossmanith Nov 2002 B1
6479571 Cooke et al. Nov 2002 B1
6485138 Kubota et al. Nov 2002 B1
6486903 Wagner et al. Nov 2002 B1
6488370 Hale et al. Dec 2002 B2
6488753 Ito et al. Dec 2002 B1
6491976 Horiuchi et al. Dec 2002 B2
6494943 Yu et al. Dec 2002 B1
6494946 Belmont et al. Dec 2002 B1
6497479 Stoffel et al. Dec 2002 B1
6498222 Kitamura et al. Dec 2002 B1
6500248 Hayashi Dec 2002 B1
6500880 Parazak Dec 2002 B1
6502917 Shinada et al. Jan 2003 B1
6502920 Anderson et al. Jan 2003 B1
6503307 Noguchi Jan 2003 B1
6503308 Stramel Jan 2003 B2
6503311 Karl et al. Jan 2003 B1
6503317 Ortalano Jan 2003 B1
6503978 Tsao Jan 2003 B1
6505910 Doval Jan 2003 B1
6505929 Chow Jan 2003 B1
6506239 Osumi Jan 2003 B1
6506240 Takemoto Jan 2003 B2
6506245 Kinney et al. Jan 2003 B1
6508871 Kato Jan 2003 B1
6508872 Nguyen Jan 2003 B2
6511534 Mishina et al. Jan 2003 B1
6514330 Kanaya et al. Feb 2003 B1
6514920 Katsuragi et al. Feb 2003 B1
6517199 Tomioka et al. Feb 2003 B1
6521034 Osumi et al. Feb 2003 B1
6522522 Yu Feb 2003 B2
6524383 Komatsu et al. Feb 2003 B2
6528148 Niu Mar 2003 B2
6530656 Teraoka et al. Mar 2003 B1
6533406 Katsuragi Mar 2003 B2
6533407 Mouri et al. Mar 2003 B2
6533853 Mishina Mar 2003 B1
6534569 Mahmud et al. Mar 2003 B2
6536878 Kasperchik et al. Mar 2003 B2
6536890 Kato et al. Mar 2003 B1
6537364 Dietz et al. Mar 2003 B2
6538047 Miyabayashi Mar 2003 B1
6538049 Kappele Mar 2003 B1
6540329 Kaneko et al. Apr 2003 B1
6540334 Mrvos et al. Apr 2003 B1
6540345 Wagner et al. Apr 2003 B1
6541538 Matzinger Apr 2003 B1
6543889 Murcia et al. Apr 2003 B2
6547381 Watanabe et al. Apr 2003 B2
6548572 Breck Apr 2003 B1
6550901 Iida Apr 2003 B2
6550902 Shinada et al. Apr 2003 B2
6550903 Katsuragi Apr 2003 B2
6551393 Devonport et al. Apr 2003 B2
6554891 Momose Apr 2003 B1
6562121 Nickel et al. May 2003 B2
6565202 Rose et al. May 2003 B2
6572226 Tyvoll Jun 2003 B2
6572690 Rehman et al. Jun 2003 B2
6572692 Osumi Jun 2003 B1
6578943 Arquilevich et al. Jun 2003 B2
6582508 Dietz et al. Jun 2003 B2
6585815 Koitabashi et al. Jul 2003 B2
6585817 Lee Jul 2003 B2
6585818 Thakkar et al. Jul 2003 B2
6586501 Dalton et al. Jul 2003 B1
6588880 Gasvoda et al. Jul 2003 B1
6592657 Lee et al. Jul 2003 B2
6596065 Ito Jul 2003 B2
6596068 Ito et al. Jul 2003 B1
6596378 Hanmura et al. Jul 2003 B2
6602333 Miyabayashi Aug 2003 B2
6602335 Moffatt et al. Aug 2003 B2
6604809 Katsuragi Aug 2003 B2
6605420 Nakai et al. Aug 2003 B2
6607266 Katsuragi et al. Aug 2003 B2
6607268 Bruinsma Aug 2003 B2
6607565 Herrmann et al. Aug 2003 B1
6607589 Adamic et al. Aug 2003 B2
6610129 Sader et al. Aug 2003 B1
6616273 Bruinsma Sep 2003 B1
6618066 Hale Sep 2003 B2
6620229 Doi et al. Sep 2003 B2
6630268 Tosco et al. Oct 2003 B2
6631984 Thompson et al. Oct 2003 B2
6632275 Schoen et al. Oct 2003 B1
6632485 Tang et al. Oct 2003 B1
6632594 Nakai et al. Oct 2003 B2
6637876 Hori Oct 2003 B2
6638350 Butler et al. Oct 2003 B2
6641259 Kopolow et al. Nov 2003 B1
6641651 Suzuki Nov 2003 B2
6641653 Yu Nov 2003 B2
6641656 Yu Nov 2003 B2
6643220 Anderson Nov 2003 B2
6644778 Rotering Nov 2003 B2
6648950 Lee Nov 2003 B2
6648953 Yamazaki et al. Nov 2003 B2
6648954 Uemura et al. Nov 2003 B2
6649317 Wagner et al. Nov 2003 B2
6652084 Teraoka Nov 2003 B1
6659582 Underwood Dec 2003 B2
6660075 Bergemann et al. Dec 2003 B2
6664312 Devonport Dec 2003 B2
6673503 Wagner et al. Jan 2004 B2
6679576 Crivelli Jan 2004 B2
6679598 Kato et al. Jan 2004 B2
6685769 Karl et al. Feb 2004 B1
6686314 Xu et al. Feb 2004 B2
6686409 Mahmud et al. Feb 2004 B2
6688737 Nagai et al. Feb 2004 B2
6689433 Niu et al. Feb 2004 B2
6699319 Adams Mar 2004 B2
6706104 Takuhara et al. Mar 2004 B2
6706105 Takada et al. Mar 2004 B2
6709506 Mahmud et al. Mar 2004 B2
6715866 Kasperchik Apr 2004 B2
6716278 Prasad et al. Apr 2004 B2
6719420 Tomioka et al. Apr 2004 B2
6720367 Taniguchi et al. Apr 2004 B2
6722765 Rolly et al. Apr 2004 B2
6723161 Langenmayr et al. Apr 2004 B2
6723783 Palumbo et al. Apr 2004 B2
6730152 Rehman May 2004 B2
6733120 Ogasawara et al. May 2004 B2
6737449 Yatake May 2004 B1
6740151 Belmont et al. May 2004 B2
6740689 Lee et al. May 2004 B1
6749773 Emanuel Jun 2004 B2
6753425 Nakai et al. Jun 2004 B2
6759459 Lin Jul 2004 B2
6761759 Oki et al. Jul 2004 B2
6767640 Moffatt Jul 2004 B2
6776830 Marritt Aug 2004 B2
6777462 Smith et al. Aug 2004 B2
6779864 Underwood Aug 2004 B2
6779884 Ma Aug 2004 B1
6780389 Karl et al. Aug 2004 B2
6780901 Endo et al. Aug 2004 B1
6786957 Choy et al. Sep 2004 B2
6790268 Lee et al. Sep 2004 B2
6790878 Kurabayashi Sep 2004 B2
6793308 Sugimoto et al. Sep 2004 B2
6793329 Batey et al. Sep 2004 B2
6793722 Chien et al. Sep 2004 B2
6793723 Auslander et al. Sep 2004 B2
6794427 Kurabayashi et al. Sep 2004 B2
6797347 Chow Sep 2004 B2
6805736 Wickramanayake Oct 2004 B2
6806300 Waki et al. Oct 2004 B2
6806925 Ishii et al. Oct 2004 B2
6808555 Wang Oct 2004 B2
6808583 Kwasny et al. Oct 2004 B2
6811597 Oki et al. Nov 2004 B2
6814790 Sir et al. Nov 2004 B2
6814791 Moore Nov 2004 B2
6814792 Taniguchi Nov 2004 B2
6814793 Akers et al. Nov 2004 B2
6818048 Prasad et al. Nov 2004 B2
6820972 Kinalski Nov 2004 B2
6821328 Tomioka et al. Nov 2004 B2
6821330 Sano Nov 2004 B1
6822781 Amici et al. Nov 2004 B1
6824263 Taniguchi et al. Nov 2004 B2
6827403 Paasche et al. Dec 2004 B2
6827434 Katsuragi et al. Dec 2004 B1
6827768 Andrievsky et al. Dec 2004 B2
6830326 Tsao Dec 2004 B2
6830327 Asakawa Dec 2004 B2
6830927 Rao Dec 2004 B2
6832830 Seino Dec 2004 B2
6833026 Palumbo Dec 2004 B2
6834945 Ishizawa et al. Dec 2004 B2
H2113 Nichols et al. Jan 2005 H
6840614 Wagner et al. Jan 2005 B2
6843838 Zimmer et al. Jan 2005 B2
6844035 Niu et al. Jan 2005 B2
6848779 Lo et al. Feb 2005 B2
6848781 Ogino et al. Feb 2005 B2
6849111 Suzuki Feb 2005 B2
6851787 Johnson Feb 2005 B2
6852153 Uhlir-Tsang Feb 2005 B2
6852156 Yeh et al. Feb 2005 B2
6855193 Andrievsky et al. Feb 2005 B2
6858301 Ganapathiappan Feb 2005 B2
6860593 Kashiwazaki et al. Mar 2005 B2
6863719 Butler et al. Mar 2005 B2
6866378 Wotton et al. Mar 2005 B2
6866381 Kelly-Rowley et al. Mar 2005 B2
6866707 Kato Mar 2005 B2
6867286 Holloway Mar 2005 B1
6869470 Kato Mar 2005 B2
6869647 Page Mar 2005 B2
6871929 Crivelli et al. Mar 2005 B2
6872430 Burch et al. Mar 2005 B2
6887640 Zhang et al. May 2005 B2
6896647 Karger May 2005 B1
6899754 Yeh May 2005 B2
6908185 Chen Jun 2005 B2
6911073 Adams et al. Jun 2005 B2
6916088 Smith et al. Jul 2005 B2
6916089 Iida Jul 2005 B2
6921429 Sago et al. Jul 2005 B2
6921433 Kuribayashi et al. Jul 2005 B2
6935717 Su et al. Aug 2005 B2
6945644 Kabalnov Sep 2005 B2
6948021 Derrico Sep 2005 B2
6948804 Iida Sep 2005 B2
6953239 Gondek et al. Oct 2005 B2
6955422 Miyazawa et al. Oct 2005 B2
6961076 Wagner Nov 2005 B2
6964702 Shen et al. Nov 2005 B2
6966643 Hale Nov 2005 B2
6969159 Su et al. Nov 2005 B2
RE38952 Hale et al. Jan 2006 E
6988796 Rolly et al. Jan 2006 B2
6991329 Gore Jan 2006 B2
6991676 Kabalnov et al. Jan 2006 B2
6997979 Bauer Feb 2006 B2
7001649 Wagner et al. Feb 2006 B2
7001660 Garitano Feb 2006 B2
7001936 Akers, Jr. et al. Feb 2006 B2
7005003 Mott Feb 2006 B2
7005461 Sanada et al. Feb 2006 B2
7008053 Hashii et al. Mar 2006 B2
7008977 Sakai et al. Mar 2006 B2
7011397 Miyazawa et al. Mar 2006 B2
7018030 Seino et al. Mar 2006 B2
7018953 Gore et al. Mar 2006 B2
7025813 Vanmaele et al. Apr 2006 B2
7025820 Champlin et al. Apr 2006 B2
7027185 Subirada et al. Apr 2006 B2
7030174 Yatake Apr 2006 B2
7030175 Vincent Apr 2006 B2
7033423 Rolly Apr 2006 B2
7034149 Hirokazu et al. Apr 2006 B2
7034273 O Apr 2006 B1
7037398 Kwasny et al. May 2006 B2
7041424 Xu May 2006 B2
7045002 Bauer et al. May 2006 B2
7046389 Lopez et al. May 2006 B2
7049039 Tazawa et al. May 2006 B2
7052535 Uhlir-Tsang et al. May 2006 B2
7056962 Johnson et al. Jun 2006 B2
7058339 Wilcox Jun 2006 B2
7066590 Lee et al. Jun 2006 B2
7074843 Nakamura et al. Jul 2006 B2
7086732 Kasperchik Aug 2006 B2
7090719 Ishikawa et al. Aug 2006 B2
7097275 Murcia Aug 2006 B2
7112629 Niu et al. Sep 2006 B2
7115675 Schut Oct 2006 B2
7119133 Vincent Oct 2006 B2
7125100 Ishizawa et al. Oct 2006 B2
7129284 Ma Oct 2006 B2
7148182 Field et al. Dec 2006 B2
7150522 Sen Dec 2006 B2
7152965 Ishizawa et al. Dec 2006 B2
7157504 Ma et al. Jan 2007 B2
7159975 Yue Jan 2007 B2
7163577 Tyrell Jan 2007 B2
7165836 Ahlvin et al. Jan 2007 B2
7173078 Lamprey et al. Feb 2007 B2
7204872 Uhlir-Tsang Apr 2007 B2
7204873 Bauer Apr 2007 B2
7214260 Doi et al. May 2007 B2
7217315 Bauer May 2007 B2
7220303 Tyvoll May 2007 B2
7220304 Momose et al. May 2007 B2
7220528 Ganapathiappan May 2007 B2
7221878 Chen May 2007 B2
7241334 Srinivas Jul 2007 B2
7247195 Dodge et al. Jul 2007 B2
7253216 Miyabayashi Aug 2007 B2
7264662 Dodge et al. Sep 2007 B2
7294183 Tyvoll Nov 2007 B2
7294185 Belmont et al. Nov 2007 B2
7297202 Ichinose et al. Nov 2007 B2
7314273 Robertson et al. Jan 2008 B2
7355044 Vanmaele et al. Apr 2008 B2
7390441 Bollepalli Jun 2008 B2
7393403 Lee et al. Jul 2008 B2
7413683 Bollepalli Aug 2008 B2
7416587 Kondo Aug 2008 B2
7416594 Moffatt Aug 2008 B2
7416597 Rehman Aug 2008 B2
7497563 Rehman Mar 2009 B2
7927416 Sujeeth et al. Apr 2011 B2
7964033 Sujeeth et al. Jun 2011 B2
20010018472 Parazak et al. Aug 2001 A1
20010031422 Iwasaki Oct 2001 A1
20020005146 Palumbo et al. Jan 2002 A1
20020088375 Komatsu et al. Jul 2002 A1
20020130938 Kowalski Sep 2002 A1
20020144626 Schut Oct 2002 A1
20020158952 Adachi et al. Oct 2002 A1
20020195022 Moffatt et al. Dec 2002 A1
20030019398 Komatsu et al. Jan 2003 A1
20030019529 Reinelt Jan 2003 A1
20030024434 Butler et al. Feb 2003 A1
20030038869 Kaneko et al. Feb 2003 A1
20030164114 Kitayama et al. Sep 2003 A1
20030205171 Adams et al. Nov 2003 A1
20030209166 Vanmaele et al. Nov 2003 A1
20040006157 Gloster et al. Jan 2004 A1
20040020407 Kato et al. Feb 2004 A1
20040035323 Suzuki et al. Feb 2004 A1
20040074018 Wuzik et al. Apr 2004 A1
20040092647 Chauvin May 2004 A1
20040103822 Champlin Jun 2004 A1
20040169165 Srinivas Sep 2004 A1
20040201658 Jackson et al. Oct 2004 A1
20040229974 Miyabayashi Nov 2004 A1
20040252162 Gondek et al. Dec 2004 A1
20050020728 Nagasawa et al. Jan 2005 A1
20050129015 Jamieson et al. Jun 2005 A1
20050171238 Bauer et al. Aug 2005 A1
20050171239 Bauer et al. Aug 2005 A1
20050171240 Bauer et al. Aug 2005 A1
20050183629 McCain Aug 2005 A1
20050187312 Akers, Jr. et al. Aug 2005 A1
20050190244 Tyrell Sep 2005 A1
20050199152 Hale et al. Sep 2005 A1
20050199155 Lauw et al. Sep 2005 A1
20050204957 Momose et al. Sep 2005 A1
20050223938 Tyvoll Oct 2005 A1
20060004790 Brown et al. Jan 2006 A1
20060070549 Jung et al. Apr 2006 A1
20060071992 Sarkisian et al. Apr 2006 A1
20060135361 Markel et al. Jun 2006 A1
20060150345 Mazza Jul 2006 A1
20060162612 Kabalnov et al. Jul 2006 A1
20060176349 Nagai et al. Aug 2006 A1
20060189717 Johnson et al. Aug 2006 A1
20060201380 Kowalski Sep 2006 A1
20060211791 Burns et al. Sep 2006 A1
20070154821 Galloway et al. Jul 2007 A1
20070277699 Bauer Dec 2007 A1
20070289072 Mazza Dec 2007 A1
20080047462 Klein et al. Feb 2008 A1
20080119613 Klein et al. May 2008 A1
20080121138 Kennedy et al. May 2008 A1
20080152808 Kabalnov et al. Jun 2008 A1
20080308002 Moffatt Dec 2008 A1
20090111917 Bonora Apr 2009 A1
20090192248 Palumbo et al. Jul 2009 A1
20100061951 Sujeeth et al. Mar 2010 A1
20100251932 Sujeeth et al. Oct 2010 A1
Foreign Referenced Citations (110)
Number Date Country
768805 Jan 2004 AU
2198750 Mar 1996 CA
2207414 Jun 1996 CA
2258188 Dec 1997 CA
4215367 Nov 1993 DE
19618564 Nov 1997 DE
19823866 Feb 1999 DE
19831869 Jan 2000 DE
102005010468 Sep 2006 DE
0475075 Mar 1992 EP
0688836 Dec 1995 EP
0761783 Mar 1997 EP
0778798 Jun 1997 EP
0834537 Apr 1998 EP
0894835 Mar 1999 EP
0960911 Dec 1999 EP
1045014 Oct 2000 EP
1061107 Dec 2000 EP
1132439 Sep 2001 EP
1243625 Sep 2002 EP
1418209 May 2004 EP
1469042 Oct 2004 EP
1533347 May 2005 EP
1616913 Jan 2006 EP
1616915 Jan 2006 EP
1681320 Jul 2006 EP
2672307 Aug 1992 FR
668724 Mar 1948 GB
688776 Mar 1953 GB
788195 Dec 1957 GB
916132 Jan 1963 GB
1348850 Mar 1974 GB
1386543 Mar 1975 GB
1527396 Oct 1978 GB
1537379 Dec 1978 GB
59122555 Jul 1984 JP
59184161 Oct 1984 JP
60115665 Jun 1985 JP
3279369 Dec 1991 JP
5255607 Oct 1993 JP
6128517 May 1994 JP
7258578 Oct 1995 JP
8003498 Jan 1996 JP
8283596 Oct 1996 JP
10036726 Feb 1998 JP
10036727 Feb 1998 JP
10067957 Mar 1998 JP
10110110 Apr 1998 JP
10110111 Apr 1998 JP
10110112 Apr 1998 JP
10110114 Apr 1998 JP
10120958 May 1998 JP
10195331 Jul 1998 JP
10195360 Jul 1998 JP
10237349 Sep 1998 JP
10330665 Dec 1998 JP
11246806 Sep 1999 JP
11323175 Nov 1999 JP
11349312 Dec 1999 JP
2000053902 Feb 2000 JP
2000345085 Dec 2000 JP
2000345086 Dec 2000 JP
2000345094 Dec 2000 JP
2000345095 Dec 2000 JP
2002097236 Apr 2002 JP
2002220557 Aug 2002 JP
2003105235 Apr 2003 JP
2003117995 Apr 2003 JP
2004010632 Jan 2004 JP
2005048114 Feb 2005 JP
2005097491 Apr 2005 JP
2005132985 May 2005 JP
2005349827 Dec 2005 JP
2006265379 Oct 2006 JP
WO 9213983 Aug 1992 WO
WO 9308237 Apr 1993 WO
WO 9312939 Jul 1993 WO
WO 9405732 Mar 1994 WO
WO 9606729 Mar 1996 WO
WO 9618688 Jun 1996 WO
WO 9624636 Aug 1996 WO
WO 9961529 Dec 1999 WO
WO 9963007 Dec 1999 WO
WO 0003609 Jan 2000 WO
WO 0075246 Dec 2000 WO
WO 0151566 Jul 2001 WO
WO 0162862 Aug 2001 WO
WO 02090448 Nov 2002 WO
WO 02092680 Nov 2002 WO
WO 03100884 Dec 2003 WO
WO 2004011558 Feb 2004 WO
WO 2004012515 Feb 2004 WO
WO 2004094537 Nov 2004 WO
WO 2005028576 Mar 2005 WO
WO 2005113677 Dec 2005 WO
WO 2006039034 Apr 2006 WO
WO 2006066132 Jun 2006 WO
WO 2006069165 Jun 2006 WO
WO 2006081299 Aug 2006 WO
WO 2006086660 Aug 2006 WO
WO 2007021731 Feb 2007 WO
WO 2007057111 May 2007 WO
WO 2007136540 Nov 2007 WO
WO 2008018873 Feb 2008 WO
WO 2008049735 May 2008 WO
WO 2008055244 May 2008 WO
WO 2008055245 May 2008 WO
WO 2009026552 Feb 2009 WO
WO 2009075802 Jun 2009 WO
WO 2010022377 Feb 2010 WO
Related Publications (1)
Number Date Country
20110308430 A1 Dec 2011 US
Provisional Applications (1)
Number Date Country
60957596 Aug 2007 US
Divisions (1)
Number Date Country
Parent 12197087 Aug 2008 US
Child 13109865 US