This invention relates to endovascular devices such as stents for the treatment of tissue defects such as aneurysms.
Tissue defects involve an absence of healthy tissue in a body area where such tissue would normally be present. For example, a common tissue defect includes aneurysms, in which there is a defect in a blood vessel wall that causes an outpouching of the vessel tissue. Aneurysm may form in disparate locations such as the aorta, iliac arteries, renal arteries, popliteal arteries, splenic arteries, femoral arteries, tibial arteries, and throughout the neurovasculature. Other common tissue defects include arteriovenous fistulas, intestinal fistulas, colonic fistulas, anal fistulas, hernias and traumatic wounds. Aneurysms and other tissue defects may be treated using surgical methods, such as clipping, or endovascular methods, such as flow diversion techniques using a flow diverter (e.g., a covered stent) or coil embolization techniques using coils or a combination of coils and a stent.
In coil embolization techniques, small metallic coils are delivered to the sac of an aneurysm. The coils pack the sac densely to limit blood flow in the sac, thereby inducing clotting of the blood inside the sac and, eventually, healing of the aneurysm. However, such coil embolization techniques can be used only with aneurysms with a narrow neck region to hold the coil in place. Further, such coil embolization techniques suffer from complications, including the risk of recanalization in which blood flow returns to the sac and further swells the sac.
In coil embolization techniques using a combination of coils and a stent, the stent is used as a device that acts as a scaffolding structure to keep the coil inside the aneurysm volume, as shown in
A significant problem with coil embolization techniques is that during the process of filling the aneurysm volume, the coils or blood clots at the embolization site sometimes herniate into the parent artery if the stent fails to provide adequate scaffolding. Coils or blood clots herniating into the parent artery may escape from the aneurysm volume and travel downstream into the blood vessel and cause a stroke or other life threatening complications.
Another technique for treating aneurysms is with the use of a flow diverting stent. A flow diverter is placed in a blood vessel such that it spans the neck region of an aneurysm, thereby diverting blood flow away from the aneurysm sac. The stagnant blood inside the aneurysm sac may then clot and the aneurysm may heal.
Flow diverters, however, also suffer from complications. Braided devices used in the neurovasculature are bulky and often cannot access distal aneurysms. Use of these devices may also result in incomplete or delayed aneurysm occlusion, which can lead to delayed aneurysm rupture and stroke. In other vascular beds, such as the aorta or arteries of the lower extremities, covered stents are used to treat aneurysms. The most commonly used materials for covered stents include polytetrafluorethylene (PTFE) and polyethylene terephthalate (PET). Both of these materials add substantial bulk, making the stent unsuitable for use in certain vascular beds, such as the neurovasculature. In addition, these materials tend to be impermeable or only semi-permeable. This limits tissue in-growth into the stent covering and leaves a foreign body that is continuously exposed to blood. Because of this, there is a long-term risk of acute thrombosis and stenosis inside the stent. Moreover, because these stents are impermeable to blood flow they will cut-off blood flow to any vessels adjacent to the aneurysm that are covered with the stent. This can lead to ischemia of critical tissues such as the intestine. Further, blood clots formed at the covered stent implanted site may dislodge and cause a heart attack, stroke, or other life threatening complications.
A significant problem with stents, whether used to provide scaffolding to coils in coil embolization techniques or as a covered stent in flow diversion techniques, is their tendency to kink and failing to achieve good wall apposition when placed in torturous vascular beds. Accordingly, there is a need in the art for improved stents that are more kink resistant and achieve improved wall apposition, while simultaneously serving as a good scaffold for coil-based aneurysm treatment techniques.
In one or more embodiments, a stent includes a first longitudinally extended cylinder having a C-shaped cross-section, the first cylinder including a plurality of first longitudinal struts and an array of first radial struts extending between the first longitudinal struts, and a second longitudinally extended cylinder having a C-shaped cross-section, the second cylinder including a plurality of second longitudinal struts and an array of second radial struts extending between the second longitudinal struts. The first cylinder and the second cylinder are configured to form a dense mesh when assembled.
In some embodiments, the first cylinder and the second cylinder are assembled, and a part of the first cylinder and a part of the second cylinder overlap to form the dense mesh. In some embodiments, more than half of the first cylinder and more than half of the second cylinder overlap to form the dense mesh.
In some embodiments, the second cylinder is disposed within the first cylinder. In some embodiments, the first cylinder and the second cylinder are aligned such that an opening of the first cylinder and an opening of the second cylinder are on opposing sides of the stent radially.
In some embodiments, the first cylinder and the second cylinder are attached at a joining location including a part of the first longitudinal struts and a part of the second longitudinal struts. In some embodiments, the first cylinder and the second cylinder are attached at the joining location by winding a tube or a coil around the part of the first longitudinal struts and the part of the second longitudinal struts. In some embodiments, the first cylinder and the second cylinder are attached at the joining location further by a solder disposed within the wounded tube or coil. In some embodiments, the tube or coil includes a radiopaque marker.
In some embodiments, the first and second radial struts include straight struts, sinusoidal-shaped struts, or both. In some embodiments, the first and second longitudinal struts each include a central strut and two edge struts. In some embodiments, the first and second longitudinal struts include S-shaped struts that connect to and extend from a corresponding central strut towards a corresponding edge strut, curve around to extend towards the corresponding central strut, and curve around to extend to and connect to the corresponding edge strut. In some embodiments, a take-off angle of the first radial struts from a corresponding one of the first longitudinal struts is between 15° to 90°, and a take-off angle of the second radial struts from a corresponding one of the second longitudinal struts is between 15° to 90°. In some embodiments, the first cylinder and the second cylinder are same in shape.
In one or more embodiments, a stent includes a first longitudinally extended cylindrical-shaped member, the first member including a plurality of first longitudinal struts and an array of first radial struts extending between the first longitudinal struts. The stent includes an overlapping region to form a dense mesh.
In some embodiments, the overlapping region includes a part of the first member overlapping around another part of the first member. In some embodiments, the overlapping region includes more than half of an outer surface of the stent.
In some embodiments, the first member has a C-shaped cross-section, and the stent further includes a second longitudinally extended cylindrical-shaped member having a C-shaped cross-section, the second member including a plurality of second longitudinal struts and an array of second radial struts extending between the second longitudinal struts. The overlapping region is formed by overlapping at least a part of the first member and at least a part of the second member when assembled.
In some embodiments, the first member and the second member are assembled, and the second member is disposed within the first member. In some embodiments, the first member and the second member are aligned such that an opening of the first member and an opening of the second member are on opposing sides of the stent radially.
Embodiments of the present disclosure and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures, in which the showings therein are for purposes of illustrating the embodiments and not for purposes of limiting them.
By design, a stent is a cylindrical shape device that should be compactable so it can be delivered via a small delivery catheter and should be flexible so it can be tracked through tortuous blood vessels in the brain. A self-expandable stent is a type of stent that expands to the diameter of the blood vessel after it has been deployed from the delivery catheter. A self-expandable stent is made from a superelastic alloy such as an alloy of Nickel and Titanium, also called nitinol.
A self-expandable stent is made from a hypotube made with superelastic alloy material. The stent design is first drawn as a flat pattern (how a stent would look like if sliced longitudinally and pressed flat) on a Computer-Aided-Design (CAD) software. The same design pattern of the stent is then created on the hypotube by cutting it on to the hypotube using a powerful laser beam. After performing a series of post-processing work (which removes much of material from the laser-cut stent to soften) on the laser-cut part, a final stent device with its final specifications is produced. In order to deliver the stent device to its target location in the blood vessel, the stent must have a delivery system.
A stent delivery system can be a long wire with variable flexibility profile having some mechanism for attaching and detaching the stent. There are several mechanisms of detachment used in the market such as electrolytic detachment, twist-type detachment or mechanical detachment.
A typical self-expandable stent is a one piece cylindrical device cut from a cylindrical hypotube of a superelastic alloy. In one or more embodiments, a stent 100 is constructed with two parts 102, 104, each part representing one half of the stent and the design of one part 102 being the mirror image of the other 104 as shown in
After aligning the two parts 102, 104 together in the manner shown in
In one embodiment, the strut design of the first half 102 and the second half 104 may be as shown in
Due to the complexity associated with the 3-dimensional drawing of the stent 100 constructed of two halves 102, 104, the resulting strut structures of the final assembled stent 100 is illustrated by overlapping the two flat patterns (as if the stent has been flattened) of both parts 102, 104 on top of each other as shown in
In other embodiments, the stent 100 can be constructed with struts of various geometries. Examples of few such variations are shown in
In another embodiment, the stent 100 can be constructed using only one half (instead of two halves 102, 104 as above). An example of such stent 500 using only one half is shown in
To construct this stent 100, first the flat patterns of each halves 102, 1074 of the stent 100 are drawn using a CAD software, for example AutoCAD. The strut width in the flat pattern can be anywhere between 0.0030″ to 0.0050″. The specification of the strut width depends upon the wall thickness of the nickel-titanium hypotube that the stent 100 is cut from. The electronic flat patterns are then programmed into a computerized laser-cutting equipment. After the equipment has been programmed, it drives a powerful laser beam along the edges of the design pattern and thereby cuts the exact same pattern from the nickel-titanium hypotube. The laser-cut stent 100 goes through a sequence of subsequent processes. Some of those include: stress-relief heat treatment at 500° C. to remove stresses from the laser-cut parts, microblasting to remove the outside oxide layer, expansion to a larger diameter by shape setting at 500° C., chemical etching and electro-polishing to remove much of material to obtain the final strut width.
The overlapping of nitinol stents 100 to get a dense mesh has been demonstrated before but only by deploying two finished stents separately, second stent inside the first one. The process of stenting an aneurysm in two separate deployments not only increases the clinical risks associated with the deployment but also requires the catheter access through the first deployed stent.
One or more embodiments of the present disclosure facilitate the features of two overlapped-stents in one stent. Advantageous features of one or more embodiments of the present disclosure are the process of assembling the stent 100 using two parts 102, 104 and the process of joining the two parts together at a location such as location 112 as described herein. The stent 100 described in one or more embodiments of the present disclosure facilitate a dense mesh across the neck of an aneurysm using only a single deployment hence reducing the clinical risk. Since there is no second deployment involved with this stent 100, it eliminates the requirement of catheter access through the deployed stent.
In one embodiment of a process of joining the two parts 102, 104, the longitudinal struts of the respective parts are aligned and wrapped (e.g., using a radiopaque marker) that could be in the form of a tube such as a platinum marker band as shown in
In the final set of processes, additional radiopaque markers (platinum or gold material) may be added at desired locations of the stent 100 using the method of crimping or soldering. In the final assembly the stent is then mounted on a delivery system and loaded inside an introducer sheath.
Advantageously, since the two parts 102, 104 of an assembled stent 100 are free to slide inside one another, the stent 100 exhibits excellent resistance to kinking when deployed inside a tight curve. Another advantageous feature of one or more embodiments of the present disclosure is the ease of manufacturability of the stent 100.
Embodiments described herein illustrate but do not limit the disclosure. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present disclosure. Accordingly, the scope of the disclosure is best defined only by the following claims.
This application is continuation application of U.S. patent application Ser. No. 15/655,674, filed on Jul. 20, 2017, now U.S. Pat. No. 10,507,123, which is a continuation of International Application No. PCT/US2016/014191, filed Jan. 20, 2016, which claims the benefit of U.S. Provisional Application No. 62/105,432, filed Jan. 20, 2015, the contents of all of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4877030 | Beck et al. | Oct 1989 | A |
5007926 | Derbyshire | Apr 1991 | A |
5735871 | Sgro | Apr 1998 | A |
7815674 | Ragazzo | Oct 2010 | B1 |
10507123 | Gupta | Dec 2019 | B2 |
20020052648 | McGuckin, Jr. et al. | May 2002 | A1 |
20020173839 | Leopold | Nov 2002 | A1 |
20070239261 | Bose et al. | Oct 2007 | A1 |
20080140172 | Carpenter et al. | Jun 2008 | A1 |
20090105806 | Benjamin et al. | Apr 2009 | A1 |
20090210049 | Thielen | Aug 2009 | A1 |
20100262216 | Xue | Oct 2010 | A1 |
20110276125 | Walker | Nov 2011 | A1 |
20130204343 | Shalev | Aug 2013 | A1 |
20130218254 | Cattaneo et al. | Aug 2013 | A1 |
20140052162 | Cattaneo | Feb 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140180377 | Bose et al. | Jun 2014 | A1 |
20140180397 | Gerberding | Jun 2014 | A1 |
20160067071 | Jose | Mar 2016 | A1 |
20190269533 | Vong | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
WO2013191005 | Dec 2013 | WO |
Entry |
---|
Extended European Search Report dated Dec. 17, 2018; Application No. 16 74 0711.3; 10 pages. |
PCT International Search Report and Written Opinion of International Application No. PCT/US2016/014191, 8 pages, dated Mar. 29, 2016. |
Number | Date | Country | |
---|---|---|---|
20200253755 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
62105432 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15655674 | Jul 2017 | US |
Child | 16716373 | US | |
Parent | PCT/US2016/014191 | Jan 2016 | US |
Child | 15655674 | US |