The present invention relates to the field of body modification and more particularly relates to a plug designed to stretch, or gauge, a cartilaginous part of the body.
Body modification encompasses any procedure that permanently changes the outward appearance of a body part and is an ancient art and practice. Body modification includes such things as tattoos, piercings and stretching, or gauging. The arts of tattooing and piercings have advanced greatly in recent years as methods and procedures have increased hygiene and stigma associated with such modifications have lessened. However, the practice of gauging is still rather primitive. The procedure dates from ancient times where a piercing, usually in the lips or ears, is gradually made larger so as to accommodate a disk or plug. Ideally, this practice takes time as a series of gradually larger plugs is placed in the piercing. This places an amount of stress on the surrounding body tissue and forces cellular growth in a manner to accommodate the plug. The process is repeated until the desired hole size is achieved.
In modern times, gauging is accomplished through using the use of a series of elongate tapers, which have a point at one size, or gauge, and a shaft of a larger gauge, and a transition between the two. In practice, the tip of the taper is positioned in the hole and the taper is forced through until the main shaft is in the hole. The taper is then left in the hole for a period of about 2 weeks and the procedure repeated as desired with larger tapers. Gauging is relatively safe when performed by a skilled practitioner. It does, however, have some risk of tearing the flesh around the hole, pain, and other complications. These risks are compounded when the process is performed by untrained individuals on themselves and friends. The process also leaves the individual with a relatively large taper in their ear, lip or other body part until the stretch is completed. This can cause a drastic change in lifestyle as the taper projects out from the hole and may catch other objects, causing further risk of injury to the gauged body part.
The present invention is a plug, insertable in a hole, which expands under spring pressure so as to gradually increase the size of the hole. By applying gentle pressure over time, the risks of tearing and trauma are drastically reduced. The plug will also present less of a profile outside the hole, thus reducing the lifestyle interference created by tapers
The present invention represents a departure from the prior art in that the self-expanding dilation plug of the present invention allows for the gentle stretching of a body part without much of the trauma and difficulty associated with current gauging practices.
In view of the foregoing disadvantages inherent in the known types of gauging tools, this invention provides a self-expanding plug for the purpose of gauging. As such, the present invention's general purpose is to provide a new and improved plug that is expandable by spring pressure balanced with the natural resistance of body tissue.
To accomplish these objectives, the self-expanding dilation plug comprises a central body and a plurality of arms radiating therefrom. The each arm is biased outward by a spring positioned between the arm and the body. The outer surface of each arm presents an arcuate cradle that distributes pressure around the tissue surrounding the plug.
The more important features of the invention have thus been outlined in order that the more detailed description that follows may be better understood and in order that the present contribution to the art may better be appreciated. Additional features of the invention will be described hereinafter and will form the subject matter of the claims that follow.
Many objects of this invention will appear from the following description and appended claims, reference being made to the accompanying drawings forming a part of this specification wherein like reference characters designate corresponding parts in the several views.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
With reference now to the drawings, the preferred embodiment of the self-expanding dilation plug is herein described. It should be noted that the articles “a”, “an”, and “the”, as used in this specification, include plural referents unless the content clearly dictates otherwise.
With reference to
In detailed construction, shown in
The plugs are assembled by each spring 14 being positioned in a spring bore 18 and having an arm 16 snapped into place over the spring 14. The end of the spring 14 not in the bore 18 then resides in the detent 28 on the underside of the cradle 30. Prongs 24 each reside in one channel 20 in a manner that tooth 26 interfaces with facial wall 22 to keep the spring 14 from forcing the arm 16 out of position.
In use, shown in
The construction of the plug is simple and should be made of non-reactive materials, such as plastic and stainless steel. However, it may be made of any material suitable for conditions. The spring force applied to the body tissue should be between 900 and 1500 grams, the recommended range of pressure to gently stretch body tissue. Ideally, the plugs are designed for a gradual increase in size of about one gauge measurement, though a larger or smaller size difference may be designed so long as upper and lower limits of the applied pressure are maintained within safe limits. In the preferred embodiment, the plug comprises three arms 16 each having an arc length of 120° and biased by three corresponding springs 14 residing in underlying equidistant spring bores 18. Easily conceivable modifications would include altering the number of arms and the number of springs biasing each arm.
Although the present invention has been described with reference to a preferred embodiment, numerous modifications and variations can be made and still the result will come within the scope of the invention. No limitation with respect to the specific embodiments disclosed herein is intended or should be inferred.
The present invention claims priority as a non-provisional perfection of prior filed U.S. Provisional Application No. 61/499,320, filed Jun. 21, 2011, and incorporates the same by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3710799 | Caballero | Jan 1973 | A |
4759365 | Askinazy | Jul 1988 | A |
6003333 | Stevens | Dec 1999 | A |
6743204 | Christenson et al. | Jun 2004 | B2 |
6896689 | Gedebou | May 2005 | B2 |
7238193 | Gedebou | Jul 2007 | B2 |
20040059368 | Maryanka | Mar 2004 | A1 |
20050149098 | Gedebou | Jul 2005 | A1 |
20050209627 | Kick et al. | Sep 2005 | A1 |
20080021496 | Narvaez | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120324949 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
61499320 | Jun 2011 | US |