The present invention relates to temperature packs. Specifically, the present invention relates to temperature packs adapted to enclose an appendage.
Temperature packs have many medical applications, among them is to reduce swelling and pain to a body part by subjecting the swollen body part to either hot or cold temperature. However, temperature packs are commonly rectangular in shape, or have a shape which does not allow the cold pack to remain fixed to a specific location without the aid of some other device such as medical tape.
The conventional rectangular shape of the temperature pack is thereby limiting because the shape will only apply direct temperature to the part of the appendage that the temperature pack is in contact with. Thus a portion of the appendage is without temperature treatment. For example, a broken finger would require at least two temperature packs so that the entire finger would be able to receive an equal treatment of temperature. Accordingly, it is desirable to have a temperature pack that can subject the entire appendage to temperature treatment at the same time without having the use of a fastening device, or an additional temperature pack.
A temperature pack adapted to enclose an appendage, and a method of forming such a temperature pack is provided. The temperature pack is a tubular pouch with an inner wall spaced apart from an outer wall. The inner wall defines an opening extending through the tubular pouch and is twisted relative to the outer wall. The temperature pack is formed by rolling a tube onto itself such that the distal ends of the tube are aligned to each other. The distal ends are twisted with respect to each other, and the temperature pack is filled with an gelatinous solution. The distal ends are then sealed together.
The temperature pack my further include a frangible pouch disposed in the tubular pouch. The frangible pouch contains a liquid solvent. The tubular pouch is also is filled with particulate material that produces an exothermic or endothermic reaction with the contents of the frangible pouch. Accordingly, the frangible pouch is configured to rupture under a predetermined load so that the liquid solvent mixes with the particulate material so as to produce either an endothermic or exothermic reaction.
A better understanding of the present invention will be had upon reference to the following detailed description when read in conjunction with the accompanying drawing, wherein like reference characters refer to like parts throughout the several views, and in which:
a is a view looking into the opening of
a-5d show the steps for forming a temperature pack with a mobius strip; and
With reference to
The temperature pack 10 is formed from a tube 26. The tube 26 may be made of an elastomer having non-permeable qualities that can withstand a change in temperature without rupture. The tube 26 must also have elastic properties so as to better adapt to varying sizes of an appendage. A suitable elastomer may be synthetic or natural latex.
The body of the tube 26 has a first distal free end 28 and a second distal free end 30. The temperature pack 10 is formed by pulling one of the distal free ends 28, 30 over the body of the tube 26 and towards the other distal free end. Thus the tube 26 is placed in an overlapping relationship with itself so as to form a pocket 32. The pocket 32 can then be filled with the gelatinous solution 14. Alternatively, the pocket 32 may contain a particulate material 34 segregated from a liquid solvent 36 such that when the particulate material 34 comes into contact with the liquid solvent 36 an endothermic or exothermic reaction occurs.
The body of the tube 26 may be uniform in diameter. Alternatively, it is anticipated that the body of the tube 26 may be bow shaped so as to provide for a better pocket 32 for receiving material. The tube 26 further includes a mid-point 38 disposed between the first and second distal free ends 28, 30. The first and second distal free ends 28, 30 have generally the same diameter, while the diameter of the mid-point 38 is larger than that of the first and second distal free ends 28, 30. Thus, the body of the tube 26 widens as it extends from the first and second distal free ends 28, 30 to the mid-point 38 giving the tube 26 a bow shape.
The gelatinous solution 14 is capable of retaining heat at a relatively high temperature, or maintaining a relatively cold temperature. Such technology is known and is incorporated by reference herein. For example, U.S. Pat. No. 4,462,224 to Dunshee et al. discloses a cold pack having a gelatinous solution 14 being 70% water, 25% propylene glycol, and 5% hydroxypropyl methylcellulose. Other gelatinous solutions 14 are also known and generally contain a mixture of methylcellulose, alcohol, salt, or a water absorbent filler such as polyacrylamide. The gelatinous solution 14 may also contain a bactericide to help prevent mold. The gelatinous solution 14 is poured into the pocket 32, and the distal ends 28, 30 are twisted oppositely with respect to each other. The distal ends 28, 30 are then sealed together using a heat, adhesive, or the like. Thus a self forming temperature pack 10 with a mobius interior wall and only one seal 40 is formed. The self forming temperature pack 10 may be heated or cooled to a desired temperature and rolled onto an appendage. Furthermore, the temperature pack 10 may be reusable.
The temperature pack 10 is easily applied onto an appendage because the inner wall 16 of the temperature pack 10 may be rolled onto the appendage. Further, the mobius interior wall helps retain the temperature pack 10 onto an appendage because of the twisting and gripping action of the mobius interior wall on the appendage.
With reference now to
The frangible pouch 42 may include a line of weakening 52 configured to break upon a predetermined load. The frangible pouch 42 serves to segregate the liquid solvent 36 from the particulate material 34. The frangible pouch 42 is configured to rupture upon experiencing a predetermined load. Any polypropylene known to those skilled in the art may be suitable for use in forming the frangible pouch 42, and the line of weakening 52 without deviating from the scope and spirit of the present invention.
It is also anticipated that the frangible pouch 42 may be made of two different polypropylene sealed together, wherein one polypropylene has a greater material strength than the other. Thus a line of weakening 52 is formed along the seal so as to rupture the frangible pouch 42 upon a predetermined load.
Alternatively, the temperature pack 10 may include a second frangible pouch 44 such that the liquid solvent 36 and particulate material 34 are each contained in a separate pouch. Thus it should be inherent that the strength of the material of the tube 26 should be greater than that of the material of the frangible pouch 42.
In operation, the temperature pack 10 is initially at room temperature. The user merely exerts a predetermined load onto the temperature so as to rupture the frangible pouch 42 therein. The pouch will then begin to get hot or cold as the particulate material 34 and solvent come into contact with each other.
Instant hot/cold technology is currently known and used and is incorporated by reference herein. For instance, U.S. Pat. No. 4,081,256 to Donnelly discloses a particulate material 34 producing an endothermic reaction when mixed with water. The particulate material 34 disclosed in Donnelly consists of, in parts by weight, about 65 to about 130 parts urea, about 35 to about 80 parts hydrated sodium acetate (Na C2H3O2 3H2O), about 18 to about 40 parts potassium chloride, potassium nitrate, or mixtures thereof, about 18 to about 30 parts ammonium chloride, and about 6 to about 10 parts quar gum. It is anticipated that other heat-absorbing particulate material 34 such as ammonium nitrate crystals may be used. It is common knowledge that ammonium nitrate crystals produce an endothermic chemical reaction when mixed with a liquid solvent 36.
Alternatively, the particulate material 34 may be a heat-producing particulate material 34 such as dry salt, anhydrous magnesium sulfate, calcium chloride, or the like. For instance, U.S. Pat. No. 4,067,313 to Donnelly discloses a heat-producing particulate material 34 consisting of, in parts by weight, about 40 to about 90 parts anhydrous calcium chloride, about 12 to about 25 parts anhydrous sodium acetate, and about 5 to parts 15 calcium oxide. The heat-producing particulate material 34 produces an exothermic reaction when it comes into contact with a liquid solvent 36 such as water. It is commonly understood by those in the art that the liquid solvent 36 may contain other ingredients such as coloring, or an inorganic salt, such as sodium chloride.
It is anticipated that the temperature pack 10 may include a liner 46. The liner 46 may be formed from any material that helps promote the therapeutic values of temperature treatment. For instance, the temperature pack 10 may be lined with cloth or felt in order to provide moist heat application to the treated appendage, or to prevent a cold treatment from causing frost bite on the treated appendage.
Furthermore, the temperature pack 10 may come in different sizes to accommodate different body appendages. Naturally, a temperature pack 10 for treating a finger is going to be smaller than a temperature pack 10 for treating a foot. The temperature pack 10 may also come with different features such as a neck support for use on the shoulder. In such an embodiment, an inflatable pouch may be attached to the temperature pack 10 so as to support a neck.
The temperature pack 10 may also include a weakening point 48, as shown in
With reference now to
A method of forming a temperature pack 10 capable rolling onto and engaging an appendage as well as producing an exothermic or endothermic reaction is also provided. The method includes providing a tube 26. The tube 26 has a first distal free end 28 opposite a second distal free end 30. In the next step of the method, the tube 26 is rolled over itself such that the first distal free end 28 is aligned with the second distal free end 30. The body of the tube 26 is now placed in an overlapping relationship with itself so as to form a tubular pouch 12 with an opening extending therethrough A frangible pouch 42 configured to rupture upon experiencing the predetermined load is also provided. The frangible pouch 42 is filled with either a liquid solvent 36 or a particulate material 34. The tubular pouch 12 is filled with the other of a liquid solvent 36 or particulate material 34. The frangible pouch 42 is inserted into the filled tubular pouch 12 and the distal free ends 28, 30 are sealed together. Thus a temperature pack 10 having only one seal 40 and capable of producing either an endothermic or exothermic reaction is provided, wherein the temperature pack 10 is configured to roll onto an engage an appendage.
Obviously many modifications and variations of the temperature pack 10 disclosed are possible in light of the above description and may be practiced otherwise than as specifically described while within the scope of the above described temperature pack 10.
This application claims priority of U.S. Provisional Patent Application Ser. No. 60/988,115 filed Nov. 15, 2007, entitled “Self Forming Temperature Treatment Pack” which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60988115 | Nov 2007 | US |