Self furling umbrella frame for carotid filter

Information

  • Patent Grant
  • 7306619
  • Patent Number
    7,306,619
  • Date Filed
    Friday, October 24, 2003
    21 years ago
  • Date Issued
    Tuesday, December 11, 2007
    17 years ago
Abstract
A capture device for removal of clots and foreign bodies from vasculature or filtering of particulate from blood flow. The parachute-like capture device is connected to an elongate wire located within a longitudinally elongated tubular member. The capture device is radially expandable and is refolded to a reduced profile during contraction.
Description
BACKGROUND OF THE INVENTION

This invention relates generally to medical devices used during vascular intervention, and more particularly, concerns medical devices that are useful in treating thromboembolic disorders and for removal of foreign bodies in the vascular system.


Thromboembolic disorders, such as stroke, pulmonary embolism, peripheral thrombosis, atherosclerosis, and the like, affect many people. These disorders are a major cause of morbidity and mortality in the United States and throughout the world. Thromboembolic events are characterized by an occlusion of a blood vessel. The occlusion can be caused by a clot which is viscoelastic (jelly-like) and is comprised of platelets, fibrinogen, and other clotting proteins.


When an artery is occluded by a clot, tissue ischemia (lack of oxygen and nutrients) develops. The ischemia will progress to tissue infarction (cell death) if the occlusion persists. Infarction does not develop or is greatly limited if the flow of blood is reestablished rapidly. Failure to reestablish blood-flow can lead to the loss of limb, angina pectoris, myocardial infarction, stroke, or even death.


Occlusion of the venous circulation by thrombi leads to blood stasis which can cause numerous problems. The majority of pulmonary embolisms are caused by emboli that originate in the peripheral venous system. Reestablishing blood flow and removal of the thrombus is highly desirable.


There are many existing techniques employed to reestablish blood flow in an occluded vessel. One common surgical technique, an embolectomy, involves incising a blood vessel and introducing a balloon-tipped device (such as a Fogarty catheter) to the location of the occlusion. The balloon is then inflated at a point beyond the clot and used to translate the obstructing material back to the point of incision. The obstructing material is then removed by the surgeon. While such surgical techniques have been useful, exposing a patient to surgery may be traumatic and is best avoided when possible. Additionally, the use of a Fogarty catheter may be problematic due to the possible risk of damaging the interior lining of the vessel as the catheter is being withdrawn.


Percutaneous methods are also utilized for reestablishing blood flow. A common percutaneous technique is referred to as balloon angioplasty where a balloon-tipped catheter is introduced into a blood vessel, typically through an introducing catheter. The balloon-tipped catheter is then advanced to the point of the occlusion and inflated in order to dilate the stenosis. Balloon angioplasty is appropriate for treating vessel stenosis but is generally not effective for treating acute thromboembolisms.


Another percutaneous technique is to place a microcatheter near the clot and infuse Streptokinase, Urokinase, or other thrombolytic agents to dissolve the clot. Unfortunately, thrombolysis typically takes hours to days to be successful. Additionally, thrombolytic agents can cause hemorrhage and in many patients the agents cannot be used at all.


Another problematic area is the removal of foreign bodies. Foreign bodies introduced into the circulation can be fragments of catheters, pace-maker electrodes, guide wires, and erroneously placed embolic material such as thrombogenic coils. There exists retrieval devices for the removal of foreign bodies, certain of such devices form a loop that can ensnare the foreign material by decreasing the size of the diameter of the loop around the foreign body. The use of such removal devices can be difficult and sometimes unsuccessful.


Moreover, systems heretofore disclosed in the art are generally limited by size compatibility and the increase in vessel size as the emboli is drawn out from the distal vascular occlusion location to a more proximal location near the heart. If the embolectomy device is too large for the vessel it will not deploy correctly to capture the clot or foreign body, and if too small in diameter it cannot capture clots or foreign bodies across the entire cross section of the blood vessel. Additionally, if the embolectomy device is too small in retaining volume then as the device is retracted the excess material being removed can spill out and be carried by flow back to occlude another distal vessel.


Various thrombectomy and foreign matter removal devices have been disclosed in the art. However, such devices have been found to have structures which are either highly complex or lacking in sufficient retaining structure. Disadvantages associated with the devices having highly complex structure include difficulty in manufacturability as well as difficulty in use in conjunction with microcatheters. Recent developments in the removal device art features umbrella filter devices having self folding capabilities. Typically, these filters fold into a pleated condition, wherein the pleats extend radially and can obstruct retraction of the device into the microcatheter sheathing.


What has been needed and heretofore unavailable is an extraction device that can be easily and controllably deployed into and retracted from the circulatory system for the effective removal of clots and foreign bodies. There is also a need for a system that can be used as a temporary arterial or venous filter to capture and remove thromboemboli generated during endovascular procedures. Moreover, due to difficult-to-access anatomy such as the cerebral vasculature and the neurovasculature, the invention should possess a small collapsed profile and preferably be expandable to allow the device to be delivered through the lumen of commercially available catheters. The present invention satisfies these needs.


SUMMARY OF THE INVENTION

Briefly, and in general terms, the present invention is directed to an improvement in devices for removing embolic or foreign material from a vessel. In one aspect, the present invention is a medical device which includes an elongate member having a proximal end portion for manipulation by an operator and a distal end portion which is attached to a filter or capture device. This filter or capture device includes a body having a plurality of struts extending from the elongate member to a basket or cage structure. The basket or cage structure includes a proximally directed opening and a generally conical shape in an expanded configuration. When the basket or cage is placed in a compressed or closed configuration pleats are formed in the basket or cage and certain of the struts operate to fold the pleats to thereby define a relatively sleek profile.


In another aspect of the invention, the struts include a first set of arms and a second set of arms, single members of which are interspaced between adjacent pairs of arms of the first set when the medical device is in an expanded configuration. Each of the arms of the second set include a proximal portion defining a slight helix so that when the medical device is compressed radially, the arms of the second set rotate with respect to the arms of the first set. Such action accomplishes the folding or furling of the pleats of the basket or cage. It is contemplated that the medical device of the present invention can further include an atramatic distal end portion projecting distally from the cage or basket. Additionally, the cage or basket is defined by various structures including weaved fabrics or interconnected metal struts with or without a membrane extending thereacross.


Other features and advantages of the invention will be come apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 (prior art) is a partial cross-sectional view depicting an extraction device depicting a collapsed filter device.



FIG. 2 is a end view of the extraction device depicted in FIG. 1.



FIG. 3 is a side partial cutaway view of a parachute-like extraction device in an expanded condition.



FIG. 4 is a cross-sectional view of the expanded extraction device depicted in FIG. 3.



FIG. 5 is a side, cutaway view of the parachute-like extraction device in a collapsed self folded condition within a catheter.



FIG. 6 is a cross-sectional view of a first stage in collapsing the parachute-like extraction device shown in FIG. 4, depicting the helix rotation of the outer structural members relative to the inner structural members.



FIG. 7 is a cross-sectional view of a second stage in collapsing the parachute-like extraction device shown in FIG. 4.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is useful for the removal of embolic or foreign material from vasculature. The present invention is intended to be used in various sized vessels and in vessels having varying degrees of tortuosity. Of particular significance is the contemplated use of the preferred embodiment in the highly tortuous cerebral vasculature or neurovasculature. Moreover, the disclosed capture device is characterized by having an expanded structure that is useful as a filter device, and a contracted structure having a low profile folded condition to facilitate an atraumatic delivery and retraction of the system.


Referring to FIGS. 1-2, a collapsed and folded capture device 10 existing in the art is depicted having pleats 12 which extend radially when the capture device 10 is in a folded position. As seen in FIG. 1, the radially extended, folded pleats may be problematic when the capture device is retracted within a catheter sheath 14. That is, the pleats may get in the way when retracting the capture device 10 within the sheath 14. This obstruction may result in the re-release of any captured embolic or foreign material back into the vasculature. The present invention solves this problem by improving the folding technique and reducing the cross-sectional profile of the collapsed capture device.


Referring to FIG. 3, there is shown an embodiment of the present invention, in an expanded condition, which is adapted to capture embolic or foreign material found within a vessel. In a presently preferred first embodiment, a parachute-like capture device 32 includes an elongate wire 24 having a basket or cage 25 attached to a distal end thereof. The cage includes a plurality of struts or structural members 38, 40 extending longitudinally from the elongate wire 24. The elongate wire 24 is configured longitudinally within a delivery catheter 50. The elongate wire 24 can additionally define a tubular structure having an internal lumen. The distal end 60 of the capture device 32 can be defined by an atraumatic tip extending longitudinally and having a generally helical substructure. Alternatively, the tip can be omitted so that the device can be routed over a guidewire.


The capture device 32 includes a frame having a plurality of structural members 38, 40. The plurality of structural members 38, 40 embody a plurality of inner structural members 38 and a plurality of outer structural members 40 each being configured to expand the capture device 32 into a parachute-like structure 32, and to collapse the capture device 32 into a contracted condition (See FIG. 5). Configured between or across the struts may be mesh, knitted, or perforated material 66 to thereby define a parachute-like capture assembly. The mesh or knitted portion 66 is connected to the struts 38, 40 by conventional means, such as by sewing or gluing. The knitted or mesh portion 66 may form a cone-like configuration with its most distal end 68 defining the apex of the cone. It is to be recognized, however, that other basket configurations may also be employed. The parachute-like capture device 32 is characterized by providing structure which may be particularly useful in collecting matter in its hollow interior.


The mesh or knitted portion 66 can include micropores which permit blood flow or can be replaced with other materials such as impermeable or permeable elastomers. Additionally, the entire basket portion can be made of the same material which is laser cut to a desired configuration. The thinner walled material could be used to span the area between struts.


In a preferred embodiment of the present invention, the capture device 32 expands radially with respect to the elongate wire 24 into a generally parachute-like member having a proximal end and a distal end. As the elongate wire is distally advanced with respect to the catheter 50, the plurality of inner struts 38 and outer struts 40 expand to project the capture device 32 into a parachute-like frame.


As shown in FIGS. 4-7, in an expanded condition, the inner struts 38 and the outer struts 40 are configured in an alternative pattern where one inner strut 38 is interspersed between two outer struts 40. As the capture device 32 is collapsed by retracting the elongate wire 24 proximally within a catheter 50, the outer struts 40 having a slight helix configuration at a proximal region 70, rotate relative to the inner struts 38. The rotation of the outer struts 38 operates to fold the capture device 32, wherein the pleats 72 of the parachute are furled into a contracted condition. The relatively reduced cross-section of the folded capture device 32 allows the capture device to be more easily retracted into the delivery catheter 50 sheath without intrusion from the pleated folds 72.


It is to be recognized that all struts can include a slight helix configuration so that all struts shift radial position when the device is collapsed. In such a design, certain struts (e.g., outer struts) can be configured to shift a greater amount than other struts so that the desired furling of the pleats is accomplished.


The elongate wire 24 may include a conventional guidewire or other wire structure having similar properties. One material of choice may be Nitinol. The elongate wire outer diameter is such that it can easily slide within a lumen 78 of the catheter 50. Generally, the elongate wire 24 has a length greater than that of the catheter 50 so that its proximal end can be grasped by an operator and so that the elongate wire 24 can be advanced and withdrawn independently of the catheter 50.


The delivery catheter 50 can be any commercially available catheter that is made from any appropriate biologically compatible material. Typically, the catheter will have a single lumen 28 as constructed out of a flexible polymer material such as silicone, rubber, polyvinylchloride, polyeurothanes, polyesters, polytetrafluoro-ethylene and the like. The catheter has to be flexible enough and long enough to navigate through blood vessels to the occluded vessel where clots or other foreign bodies are located. Typically, the catheter will range in length from about 20 to about 175 centimeters. The outer diameter of the catheter can also vary. That is, the outer diameter will range from about 2 to about 10 F (1 F equals 0.013 inch). The inner diameter will range from about 1 to about 9 F.


The struts 38, 40 can also be made from any biologically compatible material, such as Nitinol. Although the device is intended to be self-expanding, structure can be provided to accomplish expansion in a device that is not self-expanding. In an embodiment where the elongate wire 24 defines a tubular structure, for example, an elongate member can be configured through the elongate wire (tube) 24 and places into engagement with the distal end 68 if the capture device 32. Relative movement between the elongate member and elongate wire (tube) can accomplish the opening and closing of the capture device 50.


In use, the capture device 32 and catheter 50 are inserted into a patient's vasculature using conventional techniques, fluoroscopy or other conventional means. The elongate capture device 32 and catheter 50 are then advanced within a patient's vasculature to a location near the clot or foreign body to be extracted. Through relative movement between the catheter 50 and capture device 32, the capture device 32 is deployed beyond the catheter 50 and allowed to assume an expanded configuration. The capture device 32 is then placed or manipulated to gather the unwanted material and is retracted back within the catheter 50. Retraction of the device back within the catheter 50 is made easy due to the folding action accomplished by the interaction between the second set of struts 40 and the catheter 50. That is, when retracted, the second set of struts 40 engage a lumen defined by the catheter 40 to thereby compress the device into a small profile.


It is also contemplated that the present invention can be used as a filter in a blood vessel. In such a situation, the above-described capture device is deployed within a blood vessel and held stationary for a period of time sufficient for the extractor to filter unwanted material from a patient's bloodstream.


Thus, a capture system is disclosed which allows for the removal of thromboembolic material and foreign bodies from a blood vessel. While several particular forms and applications of the invention have been illustrated and described, it will be apparent to those skilled in the art that many more modifications are possible without departing from the spirit and scope of the invention. The invention, therefore, is not to be restricted except in the spirit of claims appended hereto.

Claims
  • 1. A system for capturing embolic or foreign material in a vessel, comprising: an elongate wire having a proximal end and a distal end;a capturing device operatively connected to the elongate wire, having an expanded condition and a contracted position, the capturing device further having an inner surface and an outer surface;a plurality of first struts attached to the capturing device inner surface and a plurality of second struts attached to the capturing structure outer surface;the first and second struts further comprising at least a portion of a helical configuration; andthe capturing device assuming a self folding position in the contracted condition as both the first and second struts rotate with respect to the other struts.
  • 2. The system of claim 1, wherein the capturing device expands radially with respect to the elongate wire into a generally parachute-like member having a proximal end and a distal end, the proximal end further comprising an orifice or plurality of orifices through which blood can flow.
  • 3. The system of claim 1, wherein the first and second struts further comprising a proximal and distal end, the helix being configured at the proximal end thereof.
  • 4. The system of claim 1, wherein the first and second struts are configured in an alternating pattern when in an expanded configuration.
  • 5. The system of claim 1, wherein the first and second struts are biased radially outward.
  • 6. The system of claim 1, wherein the first struts are attached to the elongate wire.
  • 7. The system of claim 1, wherein the second struts are attached to the elongate wire.
  • 8. The system of claim 1, the first struts and the second struts further comprising nitinol.
  • 9. The system of claim 1, wherein the first and second struts move relative to each other during contraction.
  • 10. The system of claim 1, wherein the first and second struts move in the same direction during contraction.
  • 11. The system of claim 1, further comprising an elongate tubular member having a proximal end and a distal end.
  • 12. The system of claim 11, the capturing device further comprises an orifice, wherein the orifice can be made to contract by retracting the distal end of the elongate wire member with respect to the elongate tubular member.
  • 13. The system of claim 1, the capturing device further comprising a semi-permeable membrane.
  • 14. The system of claim 1, the capturing device comprising a mesh structure.
  • 15. The system of claim 1, the capturing device further comprising at least one pore that is sized to allow the substantially unimpeded flow of blood therethrough.
  • 16. The system of claim 11, wherein the elongate tubular member is a microcatheter.
  • 17. The system of claim 1, the capturing device further comprising a knitted structure.
Parent Case Info

This application is a continuation of U.S. application Ser. No. 09/944,953, filed Aug. 30, 2001 U.S. Pat. No. 6,638,294.

US Referenced Citations (747)
Number Name Date Kind
3952747 Kimmell, Jr. Apr 1976 A
4425908 Simon Jan 1984 A
4494531 Gianturco Jan 1985 A
4612931 Dormia Sep 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4643184 Mobin-Uddin Feb 1987 A
4650466 Luther Mar 1987 A
4662885 DiPisa, Jr. May 1987 A
4688553 Metals Aug 1987 A
4706671 Weinrib Nov 1987 A
4723549 Wholey et al. Feb 1988 A
4727873 Mobin-Uddin Mar 1988 A
4781177 Lebigot Nov 1988 A
4790812 Hawkins et al. Dec 1988 A
4790813 Kensey Dec 1988 A
4794928 Kletschka Jan 1989 A
4832055 Palestrant May 1989 A
4873978 Ginsburg Oct 1989 A
4921478 Solano et al. May 1990 A
4921484 Hillstead May 1990 A
4969891 Gewertz Nov 1990 A
4990156 Lefebvre Feb 1991 A
4997435 Demeter Mar 1991 A
4998539 Delsanti Mar 1991 A
5053008 Bajaj Oct 1991 A
5064428 Cope et al. Nov 1991 A
5071407 Termin et al. Dec 1991 A
5092839 Kipperman Mar 1992 A
5100423 Fearnot Mar 1992 A
5100425 Fischell et al. Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5108419 Reger et al. Apr 1992 A
5152777 Goldberg et al. Oct 1992 A
5158548 Lau Oct 1992 A
5160342 Reger et al. Nov 1992 A
5192286 Phan et al. Mar 1993 A
5324304 Rasmussen Jun 1994 A
5329942 Gunther et al. Jul 1994 A
5330482 Gibbs et al. Jul 1994 A
5350398 Pavcnik et al. Sep 1994 A
5370657 Irie Dec 1994 A
5375612 Cottenceau et al. Dec 1994 A
5383887 Nadal Jan 1995 A
5421832 Lefebvre Jun 1995 A
5490859 Mische et al. Feb 1996 A
5496277 Termin et al. Mar 1996 A
5496330 Bates et al. Mar 1996 A
5501694 Ressemann et al. Mar 1996 A
5549626 Miller et al. Aug 1996 A
5601595 Smith Feb 1997 A
5613981 Boyle et al. Mar 1997 A
5626605 Irie et al. May 1997 A
5634942 Chevillon et al. Jun 1997 A
5649953 Lefebvre Jul 1997 A
5658296 Bates et al. Aug 1997 A
5662671 Barbut et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5681347 Cathcart et al. Oct 1997 A
5695518 Laerum Dec 1997 A
5695519 Summers et al. Dec 1997 A
5720764 Naderlinger Feb 1998 A
5725550 Nadal Mar 1998 A
5746767 Smith May 1998 A
5755790 Chevillon et al. May 1998 A
5769816 Barbut et al. Jun 1998 A
5772674 Nakhjavan Jun 1998 A
5776162 Kleshinski Jul 1998 A
5779716 Cano et al. Jul 1998 A
5792145 Bates et al. Aug 1998 A
5792156 Perouse Aug 1998 A
5792157 Mische et al. Aug 1998 A
5795322 Boudewijn Aug 1998 A
5800457 Gelbfish Sep 1998 A
5800525 Bachinski et al. Sep 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827324 Cassell et al. Oct 1998 A
5833650 Imran Nov 1998 A
5836868 Ressemann et al. Nov 1998 A
5846251 Hart Dec 1998 A
5846260 Maas Dec 1998 A
5848964 Samuels Dec 1998 A
5868708 Hart et al. Feb 1999 A
5876367 Kaganov et al. Mar 1999 A
5897567 Ressemann et al. Apr 1999 A
5910154 Tsugita et al. Jun 1999 A
5911734 Tsugita et al. Jun 1999 A
5935139 Bates Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5941896 Kerr Aug 1999 A
5944728 Bates Aug 1999 A
5954745 Gertler et al. Sep 1999 A
5968071 Chevillon et al. Oct 1999 A
5976172 Homsma et al. Nov 1999 A
5980555 Barbut et al. Nov 1999 A
5989281 Barbut et al. Nov 1999 A
6001118 Daniel et al. Dec 1999 A
6007557 Ambrisco et al. Dec 1999 A
6013093 Nott et al. Jan 2000 A
6022336 Zadno-Azizi et al. Feb 2000 A
6027520 Tsugita et al. Feb 2000 A
6042598 Tsugita et al. Mar 2000 A
6051015 Maahs Apr 2000 A
6053932 Daniel et al. Apr 2000 A
6059814 Ladd May 2000 A
6066158 Engelson et al. May 2000 A
6074357 Kaganov et al. Jun 2000 A
6086605 Barbut et al. Jul 2000 A
6090097 Barbut et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates et al. Aug 2000 A
6099549 Bosma et al. Aug 2000 A
6117154 Barbut et al. Sep 2000 A
6129739 Khosravi Oct 2000 A
6136015 Kurz Oct 2000 A
6136016 Barbut et al. Oct 2000 A
6142987 Tsugita Nov 2000 A
6152946 Broome et al. Nov 2000 A
6152947 Ambrisco et al. Nov 2000 A
6165198 McGurk et al. Dec 2000 A
6165200 Tsugita et al. Dec 2000 A
6168579 Tsugita et al. Jan 2001 B1
6168604 Cano Jan 2001 B1
6171327 Daniel et al. Jan 2001 B1
6171328 Addis Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6176849 Yang et al. Jan 2001 B1
6179859 Bates et al. Jan 2001 B1
6179860 Fulton, III et al. Jan 2001 B1
6179861 Khosravi et al. Jan 2001 B1
6187025 Machek Feb 2001 B1
6203561 Ramee et al. Mar 2001 B1
6206868 Parodi Mar 2001 B1
6214026 Lepak et al. Apr 2001 B1
6214040 Jayaraman Apr 2001 B1
6224620 Maahs May 2001 B1
6235044 Root et al. May 2001 B1
6235045 Barbut et al. May 2001 B1
6238412 Dubrul et al. May 2001 B1
6241746 Bosma et al. Jun 2001 B1
6245012 Kleshinski Jun 2001 B1
6245087 Addis Jun 2001 B1
6245088 Lowery Jun 2001 B1
6245089 Daniel et al. Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254633 Pinchuk et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258120 McKenzie et al. Jul 2001 B1
6264663 Cano Jul 2001 B1
6264672 Fisher Jul 2001 B1
6267776 O'Connell Jul 2001 B1
6267777 Bosma et al. Jul 2001 B1
6270477 Bagaoisan Aug 2001 B1
6270513 Tsugita et al. Aug 2001 B1
6273901 Whitcher et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6280451 Bates et al. Aug 2001 B1
6287321 Jang Sep 2001 B1
6290656 Boyle et al. Sep 2001 B1
6290710 Cryer et al. Sep 2001 B1
6295989 Connors, III Oct 2001 B1
6306163 Fitz Oct 2001 B1
6319242 Patterson et al. Nov 2001 B1
6319268 Ambrisco et al. Nov 2001 B1
6325815 Kusleika et al. Dec 2001 B1
6336934 Gilson et al. Jan 2002 B1
6340364 Kanesaka Jan 2002 B2
6340465 Hsu et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348056 Bates et al. Feb 2002 B1
6355051 Sisskind et al. Mar 2002 B1
6361545 Macoviak et al. Mar 2002 B1
6361546 Khosravi Mar 2002 B1
6364895 Greenhalgh Apr 2002 B1
6364896 Addis Apr 2002 B1
6371969 Tsguita et al. Apr 2002 B1
6371970 Khosravi et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6375670 Greenhalgh Apr 2002 B1
6383206 Gillick et al. May 2002 B1
6384062 Ikeda et al. May 2002 B1
6391044 Yadav et al. May 2002 B1
6394978 Boyle et al. May 2002 B1
6395014 Macoviak et al. May 2002 B1
6398756 Peterson et al. Jun 2002 B2
6402771 Palmer et al. Jun 2002 B1
6406471 Jang et al. Jun 2002 B1
6423032 Parodi Jul 2002 B2
6423086 Barbut et al. Jul 2002 B1
6425909 Dieck et al. Jul 2002 B1
6428559 Johnson Aug 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436121 Blom Aug 2002 B1
6443926 Kletschka Sep 2002 B1
6443971 Boylan et al. Sep 2002 B1
6443972 Bosma Sep 2002 B1
6443979 Stalker et al. Sep 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6447531 Amplatz Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6458139 Palmer et al. Oct 2002 B1
6461370 Gray et al. Oct 2002 B1
6468291 Bates et al. Oct 2002 B2
6482222 Bruckheimer et al. Nov 2002 B1
6485456 Kletschka Nov 2002 B1
6485497 Wensel et al. Nov 2002 B2
6485500 Kokish et al. Nov 2002 B1
6485501 Green Nov 2002 B1
6485502 Don Michael et al. Nov 2002 B2
6485507 Walak et al. Nov 2002 B1
6494895 Addis Dec 2002 B2
6499487 McKenzie et al. Dec 2002 B1
6500166 Zadno Azizi et al. Dec 2002 B1
6506203 Boyle et al. Jan 2003 B1
6506205 Goldberg et al. Jan 2003 B2
6511492 Rosenbluth Jan 2003 B1
6511496 Huter et al. Jan 2003 B1
6511497 Braun et al. Jan 2003 B1
6511503 Burkett et al. Jan 2003 B1
6514273 Voss et al. Feb 2003 B1
6517550 Konya et al. Feb 2003 B1
6517559 O'Connell Feb 2003 B1
6520978 Blackledge et al. Feb 2003 B1
6527746 Oslund et al. Mar 2003 B1
6527791 Fisher Mar 2003 B2
6530939 Hopkins et al. Mar 2003 B1
6530940 Fisher Mar 2003 B2
6533800 Barbut Mar 2003 B1
6537294 Boyle et al. Mar 2003 B1
6537295 Peterson Mar 2003 B2
6537296 Levinson et al. Mar 2003 B2
6537297 Tsugita et al. Mar 2003 B2
6540722 Boyle et al. Apr 2003 B1
6540767 Walak et al. Apr 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544276 Azizi Apr 2003 B1
6544279 Hopkins et al. Apr 2003 B1
6544280 Daniel et al. Apr 2003 B1
6547759 Fisher Apr 2003 B1
6551268 Kaganov et al. Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6558401 Azizi May 2003 B1
6558405 McInnes May 2003 B1
6562058 Seguin May 2003 B2
6565591 Kelly et al. May 2003 B2
6569184 Huter May 2003 B2
6575995 Huter et al. Jun 2003 B1
6575996 Denison et al. Jun 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582447 Patel et al. Jun 2003 B1
6582448 Boyle et al. Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589263 Hopkins et al. Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592546 Barbut et al. Jul 2003 B1
6592606 Huter et al. Jul 2003 B2
6592607 Palmer et al. Jul 2003 B1
6592616 Stack et al. Jul 2003 B1
6596011 Johnson et al. Jul 2003 B2
6599307 Huter et al. Jul 2003 B1
6599308 Amplatz Jul 2003 B2
6602269 Wallace et al. Aug 2003 B2
6602271 Adams et al. Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6602273 Marshall Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6605111 Bose et al. Aug 2003 B2
6607506 Kletschka Aug 2003 B2
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi et al. Sep 2003 B1
6616680 Thielen Sep 2003 B1
6616681 Hanson et al. Sep 2003 B2
6616682 Joergensen et al. Sep 2003 B2
6620148 Tsugita et al. Sep 2003 B1
6620182 Khosravi Sep 2003 B1
6623450 Dutta Sep 2003 B1
6629953 Boyd Oct 2003 B1
6632236 Hogendijk Oct 2003 B2
6632241 Hancock et al. Oct 2003 B1
6635068 Dubrul et al. Oct 2003 B1
6635070 Leeflang et al. Oct 2003 B2
6638293 Makowner et al. Oct 2003 B1
6638294 Palmer Oct 2003 B1
6645220 Huter et al. Nov 2003 B1
6645221 Richter Nov 2003 B1
6645223 Boyle et al. Nov 2003 B2
6645224 Gilson et al. Nov 2003 B2
6652480 Imran et al. Nov 2003 B1
6652505 Tsugita et al. Nov 2003 B1
6652554 Wholey et al. Nov 2003 B1
6652557 MacDonald et al. Nov 2003 B1
6656202 Papp et al. Dec 2003 B2
6656203 Roth et al. Dec 2003 B2
6656204 Ambrisco et al. Dec 2003 B2
6656351 Boyle Dec 2003 B2
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka et al. Dec 2003 B2
6663651 Krolik et al. Dec 2003 B2
6663652 Daniel et al. Dec 2003 B2
6673090 Root et al. Jan 2004 B2
6676666 Vrba et al. Jan 2004 B2
6676682 Tsugita et al. Jan 2004 B1
6676683 Addis Jan 2004 B1
6679902 Boyle et al. Jan 2004 B1
6679903 Kurz Jan 2004 B2
6682546 Amplatz Jan 2004 B2
6685722 Rosenbluth et al. Feb 2004 B1
6689151 Becker et al. Feb 2004 B2
6692513 Streeter et al. Feb 2004 B2
6695813 Boyle et al. Feb 2004 B1
6695858 Dubrul et al. Feb 2004 B1
6695864 Macoviak et al. Feb 2004 B2
6696666 Merdan et al. Feb 2004 B2
6699260 Dubrul et al. Mar 2004 B2
6702834 Boyle et al. Mar 2004 B1
6706055 Douk et al. Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6712835 Mazzocchi et al. Mar 2004 B2
6716231 Rafiee et al. Apr 2004 B1
6723085 Jang et al. Apr 2004 B2
6726701 Gilson Apr 2004 B2
6726702 Khosravi Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6740061 Oslund et al. May 2004 B1
6743247 Levinson et al. Jun 2004 B1
6746469 Mouw Jun 2004 B2
6752819 Brady et al. Jun 2004 B1
6755846 Yadav Jun 2004 B1
6758855 Fulton, III et al. Jul 2004 B2
6761727 Ladd Jul 2004 B1
6773448 Kusleika et al. Aug 2004 B2
6790219 Murphy Sep 2004 B1
6793666 Hansen et al. Sep 2004 B2
6793668 Fisher Sep 2004 B1
6800080 Bates Oct 2004 B1
6814739 Secrest et al. Nov 2004 B2
6818006 Douk et al. Nov 2004 B2
6837898 Boyle et al. Jan 2005 B2
6840950 Stanford et al. Jan 2005 B2
6843798 Kusleika et al. Jan 2005 B2
6846316 Abrams Jan 2005 B2
6846317 Nigon Jan 2005 B1
6863696 Kantsevitcha et al. Mar 2005 B2
6866677 Douk et al. Mar 2005 B2
6872216 Daniel et al. Mar 2005 B2
6878151 Carrison et al. Apr 2005 B2
6878153 Linder et al. Apr 2005 B2
6887256 Gilson et al. May 2005 B2
6887257 Salaheih et al. May 2005 B2
6887258 Denison May 2005 B2
6888098 Merdan et al. May 2005 B1
6890340 Duane May 2005 B2
6890341 Dieck et al. May 2005 B2
6893450 Foster May 2005 B2
6893451 Cano et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6896691 Boylan May 2005 B2
6902540 Dorros et al. Jun 2005 B2
6908474 Hogenkijk et al. Jun 2005 B2
6911036 Douk et al. Jun 2005 B2
6913612 Palmer et al. Jul 2005 B2
6918921 Brady et al. Jul 2005 B2
6929652 Andrews Aug 2005 B1
6932830 Ungs Aug 2005 B2
6932831 Forber Aug 2005 B2
6936058 Forde et al. Aug 2005 B2
6936059 Belef Aug 2005 B2
6939361 Kleshinski Sep 2005 B1
6939362 Boyle et al. Sep 2005 B2
6942673 Bates et al. Sep 2005 B2
6949103 Mazzocchi et al. Sep 2005 B2
6951570 Linder et al. Oct 2005 B2
6953471 Lilly et al. Oct 2005 B1
6953472 Palmer et al. Oct 2005 B2
6958074 Russell Oct 2005 B2
6960370 Monni et al. Nov 2005 B2
6962598 Linder et al. Nov 2005 B2
6964670 Shah Nov 2005 B1
6964672 Brady Nov 2005 B2
6964673 Tsugita et al. Nov 2005 B2
6969395 Eskuri Nov 2005 B2
6969396 Krolik et al. Nov 2005 B2
6969402 Bales et al. Nov 2005 B2
6970730 Fuimaono et al. Nov 2005 B2
6972025 WasDyke Dec 2005 B2
6973340 Fuimaono et al. Dec 2005 B2
6974468 DoBrava et al. Dec 2005 B2
6974469 Broome et al. Dec 2005 B2
6979343 Russo Dec 2005 B2
6979344 Jones et al. Dec 2005 B2
6986778 Zadno-Azizi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6989027 Allen et al. Jan 2006 B2
6991641 Diaz et al. Jan 2006 B2
6991642 Peterson Jan 2006 B2
9989019 Mazzocchi Jan 2006
RE38972 Purdy Feb 2006 E
6994718 Groothuis et al. Feb 2006 B2
6997938 Wang et al. Feb 2006 B2
6997939 Linder et al. Feb 2006 B2
7001406 Eskuri et al. Feb 2006 B2
7001407 Hansen et al. Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen et al. Feb 2006 B2
7004956 Palmer et al. Feb 2006 B2
7004964 Thompson et al. Feb 2006 B2
7011671 Welch Mar 2006 B2
7011672 Barbut et al. Mar 2006 B2
7014647 Brady et al. Mar 2006 B2
7018372 Casey Mar 2006 B2
7018385 Bates et al. Mar 2006 B2
7018393 Boyle et al. Mar 2006 B1
7029440 Broome et al. Apr 2006 B2
7033375 Mazocchi et al. Apr 2006 B2
7037320 Brady et al. May 2006 B2
7041116 Goto et al. May 2006 B2
7044958 Douk et al. May 2006 B2
7048752 Mazzocchi May 2006 B2
7048758 Boyle et al. May 2006 B2
7056328 Arnott Jun 2006 B2
7060082 Goll et al. Jun 2006 B2
7077854 Khosravi Jul 2006 B2
7094243 Mulholland Aug 2006 B2
7094249 Broome et al. Aug 2006 B1
7097651 Harrison et al. Aug 2006 B2
7097834 Boyle et al. Aug 2006 B1
7101379 Gregory, Jr. et al. Sep 2006 B2
7101380 Khachin et al. Sep 2006 B2
7108707 Huter et al. Sep 2006 B2
20020091408 Sutton et al. Jul 2002 A1
20020091409 Sutton et al. Jul 2002 A1
20020095141 Belef et al. Jul 2002 A1
20020099407 Becker et al. Jul 2002 A1
20020103501 Diaz et al. Aug 2002 A1
20020107541 Vale et al. Aug 2002 A1
20020111648 Kusleika et al. Aug 2002 A1
20020111659 Russo et al. Aug 2002 A1
20020115942 Stanford et al. Aug 2002 A1
20020120286 Dobrava et al. Aug 2002 A1
20020120287 Huter Aug 2002 A1
20020121472 Garner et al. Sep 2002 A1
20020123720 Kusleika et al. Sep 2002 A1
20020123755 Lowe et al. Sep 2002 A1
20020128679 Turovskiy et al. Sep 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020128681 Broome et al. Sep 2002 A1
20020133092 Oslund et al. Sep 2002 A1
20020138094 Borillo et al. Sep 2002 A1
20020138095 Mazzocchi et al. Sep 2002 A1
20020143360 Douk et al. Oct 2002 A1
20020143361 Douk et al. Oct 2002 A1
20020151927 Douk et al. Oct 2002 A1
20020156456 Fisher Oct 2002 A1
20020156457 Fisher Oct 2002 A1
20020161390 Mouw Oct 2002 A1
20020161392 Dubrul Oct 2002 A1
20020161393 Demond et al. Oct 2002 A1
20020161395 Douk et al. Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020169414 Kletschka Nov 2002 A1
20020169458 Connors, III Nov 2002 A1
20020169472 Douk et al. Nov 2002 A1
20020169474 Kusleika et al. Nov 2002 A1
20020173815 Hogendijk et al. Nov 2002 A1
20020173817 Kletschka et al. Nov 2002 A1
20020188313 Johnson et al. Dec 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20020193825 McGuckin et al. Dec 2002 A1
20020193826 McGuckin et al. Dec 2002 A1
20020193827 McGuckin et al. Dec 2002 A1
20020193828 Griffin et al. Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004537 Boyle et al. Jan 2003 A1
20030004539 Linder et al. Jan 2003 A1
20030004540 Linder et al. Jan 2003 A1
20030004541 Linder et al. Jan 2003 A1
20030009188 Linder et al. Jan 2003 A1
20030009189 Gilson et al. Jan 2003 A1
20030015206 Roth et al. Jan 2003 A1
20030018354 Roth et al. Jan 2003 A1
20030023265 Forber Jan 2003 A1
20030028238 Burkett et al. Feb 2003 A1
20030032941 Boyle et al. Feb 2003 A1
20030032977 Brady et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030042186 Boyle et al. Mar 2003 A1
20030045898 Harrison et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030060782 Bose et al. Mar 2003 A1
20030060843 Boucher Mar 2003 A1
20030060844 Borillo et al. Mar 2003 A1
20030065354 Boyle et al. Apr 2003 A1
20030069596 Eskuri Apr 2003 A1
20030069597 Petersen Apr 2003 A1
20030078519 Salahieh et al. Apr 2003 A1
20030078614 Satahieh et al. Apr 2003 A1
20030083692 Vrba et al. May 2003 A1
20030083693 Daniel et al. May 2003 A1
20030100917 Boyle et al. May 2003 A1
20030100918 Duane May 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030109824 Anderson et al. Jun 2003 A1
20030114879 Euteneuer et al. Jun 2003 A1
20030114880 Hansen et al. Jun 2003 A1
20030120303 Boyle et al. Jun 2003 A1
20030130680 Russell Jul 2003 A1
20030130681 Ungs Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030130684 Brady et al. Jul 2003 A1
20030130685 Daniel et al. Jul 2003 A1
20030130686 Daniel et al. Jul 2003 A1
20030130687 Daniel et al. Jul 2003 A1
20030130688 Daniel et al. Jul 2003 A1
20030135162 Deyette, Jr. et al. Jul 2003 A1
20030135232 Douk et al. Jul 2003 A1
20030139764 Levinson et al. Jul 2003 A1
20030144685 Boyle et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030150821 Bates et al. Aug 2003 A1
20030153935 Mialhe Aug 2003 A1
20030153942 Wang et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030158574 Esch et al. Aug 2003 A1
20030163064 Vrba et al. Aug 2003 A1
20030171770 Anderson et al. Sep 2003 A1
20030171771 Shimon Sep 2003 A1
20030171803 Berrada et al. Sep 2003 A1
20030176884 Broome et al. Sep 2003 A1
20030176885 Wholey et al. Sep 2003 A1
20030176886 Sutton et al. Sep 2003 A1
20030176889 Boyle et al. Sep 2003 A1
20030181942 Daniel et al. Sep 2003 A1
20030181943 Daniel et al. Sep 2003 A1
20030187474 Keegan et al. Oct 2003 A1
20030187475 Tsugita et al. Oct 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030191493 Epstein et al. Oct 2003 A1
20030195554 Shen et al. Oct 2003 A1
20030195555 Khairkhahan et al. Oct 2003 A1
20030195556 Stack et al. Oct 2003 A1
20030199819 Beck Oct 2003 A1
20030199921 Palmer et al. Oct 2003 A1
20030204168 Bosme et al. Oct 2003 A1
20030204202 Palmer et al. Oct 2003 A1
20030208222 Zadno-Azizi Nov 2003 A1
20030208224 Broome Nov 2003 A1
20030208225 Goll et al. Nov 2003 A1
20030208226 Bruckheimer et al. Nov 2003 A1
20030208227 Thomas Nov 2003 A1
20030208228 Gilson et al. Nov 2003 A1
20030208229 Kletschka Nov 2003 A1
20030212361 Boyle et al. Nov 2003 A1
20030212429 Keegan et al. Nov 2003 A1
20030212431 Brady et al. Nov 2003 A1
20030212434 Thielen Nov 2003 A1
20030216774 Larson Nov 2003 A1
20030220665 Eskuri et al. Nov 2003 A1
20030225418 Eskuri et al. Dec 2003 A1
20030225435 Huter et al. Dec 2003 A1
20030229295 Houde et al. Dec 2003 A1
20030229374 Brady et al. Dec 2003 A1
20030233117 Adams et al. Dec 2003 A1
20030236545 Gilson Dec 2003 A1
20040002730 Denison et al. Jan 2004 A1
20040006361 Boyle et al. Jan 2004 A1
20040006364 Ladd Jan 2004 A1
20040006365 Brady et al. Jan 2004 A1
20040006366 Huter et al. Jan 2004 A1
20040006367 Johnson et al. Jan 2004 A1
20040006368 Mazzocchi et al. Jan 2004 A1
20040015184 Boyle et al. Jan 2004 A1
20040019363 Hanson et al. Jan 2004 A1
20040034385 Gilson et al. Feb 2004 A1
20040039411 Gilson et al. Feb 2004 A1
20040044359 Renati et al. Mar 2004 A1
20040044360 Lowe Mar 2004 A1
20040049226 Keegan et al. Mar 2004 A1
20040059372 Tsugita Mar 2004 A1
20040059373 Shapiro et al. Mar 2004 A1
20040082697 Broome et al. Apr 2004 A1
20040082968 Krolik et al. Apr 2004 A1
20040088000 Muller May 2004 A1
20040088002 Boyle et al. May 2004 A1
20040093009 Denison et al. May 2004 A1
20040093010 Gesswein et al. May 2004 A1
20040093011 Vrba May 2004 A1
20040093012 Cully et al. May 2004 A1
20040093013 Brady et al. May 2004 A1
20040098022 Barone May 2004 A1
20040098026 Joergensen et al. May 2004 A1
20040098032 Papp et al. May 2004 A1
20040098033 Leeflang et al. May 2004 A1
20040102807 Kusleika et al. May 2004 A1
20040106944 Daniel et al. Jun 2004 A1
20040111111 Lin Jun 2004 A1
20040116960 Demond et al. Jun 2004 A1
20040122466 Bales Jun 2004 A1
20040127933 Demond et al. Jul 2004 A1
20040127934 Gilson et al. Jul 2004 A1
20040127936 Salaheih et al. Jul 2004 A1
20040138693 Eskuri et al. Jul 2004 A1
20040138694 Tran et al. Jul 2004 A1
20040138696 Drasler et al. Jul 2004 A1
20040147955 Beulke et al. Jul 2004 A1
20040153118 Clubb et al. Aug 2004 A1
20040153119 Kusleika et al. Aug 2004 A1
20040158275 Crank et al. Aug 2004 A1
20040158277 Lowe et al. Aug 2004 A1
20040158278 Becker et al. Aug 2004 A1
20040158279 Petersen Aug 2004 A1
20040158280 Morris et al. Aug 2004 A1
20040158281 Boylan et al. Aug 2004 A1
20040167564 Fedie Aug 2004 A1
20040167565 Beulke et al. Aug 2004 A1
20040167566 Beulke et al. Aug 2004 A1
20040167567 Cano et al. Aug 2004 A1
20040167568 Boylan et al. Aug 2004 A1
20040172055 Huter et al. Sep 2004 A1
20040176794 Khosravi Sep 2004 A1
20040193208 Talpade et al. Sep 2004 A1
20040199198 Beulke et al. Oct 2004 A1
20040199199 Krolik et al. Oct 2004 A1
20040199203 Oslund et al. Oct 2004 A1
20040204737 Boismier et al. Oct 2004 A1
20040210250 Eskuri Oct 2004 A1
20040220608 D'Aquanni et al. Nov 2004 A1
20040220609 Douk et al. Nov 2004 A1
20040220611 Ogle Nov 2004 A1
20040225322 Garrison et al. Nov 2004 A1
20040236368 McGucklin, Jr. et al. Nov 2004 A1
20040236369 Dubrul Nov 2004 A1
20040249409 Krolik et al. Dec 2004 A1
20040254601 Eskuri Dec 2004 A1
20040254602 Lehe et al. Dec 2004 A1
20040260308 Gilson et al. Dec 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20040267301 Boylan et al. Dec 2004 A1
20040267302 Gilson et al. Dec 2004 A1
20050004594 Nool et al. Jan 2005 A1
20050004595 Boyle et al. Jan 2005 A1
20050004597 McGuckin, Jr. et al. Jan 2005 A1
20050010245 Wasicek Jan 2005 A1
20050010246 Steeter et al. Jan 2005 A1
20050010247 Kusleika et al. Jan 2005 A1
20050021075 Bonnette et al. Jan 2005 A1
20050021076 Mazzocchi et al. Jan 2005 A1
20050055048 Dieck et al. Mar 2005 A1
20050070953 Riley Mar 2005 A1
20050075663 Boyle et al. Apr 2005 A1
20050080446 Gilson et al. Apr 2005 A1
20050085842 Eversull et al. Apr 2005 A1
20050090845 Boyd Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050090858 Pavlovic Apr 2005 A1
20050096691 Groothuis et al. May 2005 A1
20050096692 Linder et al. May 2005 A1
20050101986 Daniel et al. May 2005 A1
20050101987 Salahich May 2005 A1
20050101988 Stanford et al. May 2005 A1
20050101989 Cully et al. May 2005 A1
20050113865 Daniel et al. May 2005 A1
20050119688 Bergheim Jun 2005 A1
20050119689 Mazzocchi et al. Jun 2005 A1
20050119690 Mazzocchi et al. Jun 2005 A1
20050119691 Daniel et al. Jun 2005 A1
20050124931 Fulton et al. Jun 2005 A1
20050125023 Bates et al. Jun 2005 A1
20050131450 Nicholson et al. Jun 2005 A1
20050131453 Parodi Jun 2005 A1
20050149110 Wholey et al. Jul 2005 A1
20050149112 Barbut Jul 2005 A1
20050149113 Douk et al. Jul 2005 A1
20050159772 Lowe et al. Jul 2005 A1
20050159773 Broome et al. Jul 2005 A1
20050159774 Belef Jul 2005 A1
20050171573 Salahieh et al. Aug 2005 A1
20050177187 Gray et al. Aug 2005 A1
20050182440 Bates et al. Aug 2005 A1
20050182441 Denison et al. Aug 2005 A1
20050192623 Mazzocchi et al. Sep 2005 A1
20050192624 Mazzocchi et al. Sep 2005 A1
20050203567 Linder et al. Sep 2005 A1
20050203568 Burg et al. Sep 2005 A1
20050203569 Kusleika et al. Sep 2005 A1
20050203570 Mazzocchi et al. Sep 2005 A1
20050203571 Mazzocchi et al. Sep 2005 A1
20050209634 Brady et al. Sep 2005 A1
20050209635 Gilson et al. Sep 2005 A1
20050216051 Mazzocchi et al. Sep 2005 A1
20050216052 Mazzocchi et al. Sep 2005 A1
20050216053 Douk et al. Sep 2005 A1
20050222583 Cano et al. Oct 2005 A1
20050222604 Schaeffer et al. Oct 2005 A1
20050222607 Palmer et al. Oct 2005 A1
20050228437 Gilson et al. Oct 2005 A1
20050228438 Sachar et al. Oct 2005 A1
20050228439 Andrews et al. Oct 2005 A1
20050234502 Gilson et al. Oct 2005 A1
20050240215 Ellis Oct 2005 A1
20050245866 Azizi Nov 2005 A1
20050267517 Ungs Dec 2005 A1
20050283184 Gilson et al. Dec 2005 A1
20050283185 Linder et al. Dec 2005 A1
20050283186 Berrada et al. Dec 2005 A1
20050288705 Gilson et al. Dec 2005 A1
20060004403 Gilson et al. Jan 2006 A1
20060004405 Salaheih et al. Jan 2006 A1
20060015138 Gertner et al. Jan 2006 A1
20060015139 Tsugita et al. Jan 2006 A1
20060015140 Tsugita et al. Jan 2006 A1
20060015141 Linder et al. Jan 2006 A1
20060020285 Niermann Jan 2006 A1
20060020286 Niermann Jan 2006 A1
20060025803 Mitelberg et al. Feb 2006 A1
20060025804 Krolik et al. Feb 2006 A1
20060025805 DoBrava et al. Feb 2006 A1
20060030876 Peacock, III et al. Feb 2006 A1
20060030877 Martinez et al. Feb 2006 A1
20060030878 Anderson et al. Feb 2006 A1
20060052817 Russo et al. Mar 2006 A1
20060074446 Gilson et al. Apr 2006 A1
20060095069 Shah et al. May 2006 A1
20060100659 Dinh et al. May 2006 A1
20060100662 Daniel et al. May 2006 A1
20060100663 Palmer et al. May 2006 A1
20060116715 Khosravi et al. Jun 2006 A1
20060122643 Wasicek Jun 2006 A1
20060122644 Brady et al. Jun 2006 A1
20060122645 Brady et al. Jun 2006 A1
20060129181 Callol et al. Jun 2006 A1
20060129182 Gilson et al. Jun 2006 A1
20060129183 Boyle et al. Jun 2006 A1
20060149312 Arguello et al. Jul 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060149314 Borillo et al. Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161198 Sakai et al. Jul 2006 A1
20060167491 Wholey et al. Jul 2006 A1
20060184194 Pal et al. Aug 2006 A1
20060190025 Lehe et al. Aug 2006 A1
20060195137 Sepetka et al. Aug 2006 A1
20060195138 Goll et al. Aug 2006 A1
20060200047 Galdonik et al. Sep 2006 A1
20060200191 Zadno-Azizi Sep 2006 A1
20060206139 Tekulve Sep 2006 A1
Foreign Referenced Citations (16)
Number Date Country
0427429 Sep 1991 EP
0 472 334 Feb 1992 EP
0533511 Mar 1993 EP
2580504 Oct 1986 FR
2020557 Nov 1979 GB
WO9203097 Mar 1992 WO
WO9601591 Jan 1996 WO
WO9717100 May 1997 WO
WO9802084 Jan 1998 WO
WO9833443 Aug 1998 WO
WO9923976 May 1999 WO
WO9944510 Sep 1999 WO
WO0067667 Nov 2000 WO
WO0110346 Feb 2001 WO
WO0145592 Jun 2001 WO
WO0187183 Nov 2001 WO
Continuations (1)
Number Date Country
Parent 09944953 Aug 2001 US
Child 10693050 US