Self-gripping hernia prosthesis

Information

  • Patent Grant
  • 11458004
  • Patent Number
    11,458,004
  • Date Filed
    Friday, October 19, 2018
    6 years ago
  • Date Issued
    Tuesday, October 4, 2022
    2 years ago
Abstract
A self-gripping hernia prosthesis including a layer of repair fabric and a plurality of tissue grips protruding from a surface of the repair fabric. The grip may be fabricated independent of the repair fabric and subsequently attached to the layer of fabric. A backing layer may be employed to secure each grip to the repair fabric. Each base may include a base that is located between the repair fabric and the backing layer. Alternatively, the base may be attached directly to the backing layer. The tissue grips may be configured to minimize entanglement with the repair fabric.
Description
FIELD

The present invention relates to an implantable prosthesis, and more particularly to a prosthesis for mending defects and weaknesses of soft tissue and muscle walls.


BACKGROUND

A defect in a muscle or tissue wall, such as a hernia, is commonly repaired with an implantable prosthesis that is configured to cover and/or fill the defect.


For some procedures, an implantable repair fabric, such as a mesh fabric, is sutured, stapled, tacked, or otherwise provisionally anchored in place over, under or within the defect. Tissue integration with the fabric, such as tissue ingrowth into and/or along the mesh fabric, eventually completes the repair.


Various repair fabrics are known and used for repairing soft tissue and muscle wall defects. Examples of implantable fabrics that have been successfully used in soft tissue and muscle wall repair include BARD Soft Mesh, BARD Mesh and VISILEX, available from C.R. Bard. Such fabrics are fabricated from polypropylene monofilaments that are knitted into a mesh having pores or interstices that promote tissue ingrowth and integration with the fabric.


For some procedures, it may be desirable to employ an implantable prosthesis configured to fit the shape of the anatomical region of the defect. In some instances, such a prosthesis can be positioned and maintain its position relative to the defect with little or no provisional fixation. Examples of implantable prostheses that have been successfully used in soft tissue and muscle wall repair include 3DMAX Light Mesh and 3DMAX Mesh, available from C.R. Bard. Such prostheses are fabricated from a mesh fabric formed into a curved, 3-dimensional shape that fits the anatomical shape of the defect region, such as the inguinal anatomy. These prostheses have proven useful and have become established in the practice of muscle or tissue wall repair in the inguinofemoral region.


It is an object of the invention to provide a prosthesis for mending defects in soft tissue and muscle walls.


SUMMARY

The present invention relates to an implantable prosthesis for mending an anatomical defect, such as a tissue or muscle wall defect, including a groin defect.


According to one aspect, an implantable prosthesis comprises a first layer of biologically compatible repair fabric, a second layer of biologically compatible repair fabric attached to the first layer, and a plurality of tissue grips protruding from a first surface of the first layer. The plurality of grips are independent of the first layer and secured to the first layer with the second layer.


According to another aspect, an implantable prosthesis comprises a first layer of biologically compatible repair fabric and a plurality of tissue grips protruding from a first surface of the first layer. The plurality of grips are configured to penetrate and grip tissue. Each tissue grip includes a grip body protruding from the first layer and a grip head located at an end of the grip body spaced away from the first surface of the first layer. The grip head includes a first pair of barbs located along a first axis oriented in a first radial direction and a second pair of barbs located along a second axis oriented in a second radial direction that is different from the first radial direction.


According to another aspect, an implantable prosthesis comprises a first layer of biologically compatible repair fabric and a plurality of tissue grips protruding from a first surface of the first layer. The plurality of grips are configured to penetrate and grip tissue. Each tissue grip includes a grip body protruding from the first layer and a grip head located at an end of the grip body spaced away from the first surface of the first layer. The grip head includes a plurality of primary barbs and a plurality of secondary barbs with the primary barbs being different from the secondary barbs. The primary barbs are configured to minimize entanglement of the grip head with the repair fabric. The primary barbs may be positioned to shield the secondary barbs from entanglement.


According to another aspect, a method is provided for fabricating an implantable prosthesis. The method comprises acts of: (a) providing a first layer of biologically compatible repair fabric including a first surface and a second surface opposite the first surface, and (b) attaching a plurality of tissue grips to the first layer of repair fabric. The plurality of grips are fabricated independent of the first layer. Each tissue grip includes a grip base and a grip body extending from the grip base. The grips are attached to the first layer by passing the grip body through the first layer to protrude beyond the first surface and positioning the grip base adjacent the second surface.


The foregoing is a non-limiting summary of the invention, which is defined by the attached claims. Other aspects, embodiments and/or features will become apparent from the following description.


Various embodiments of the present invention may provide certain advantages and may overcome certain drawbacks of prior prostheses. Embodiments of the invention may not share the same advantages, and those that do may not share them under all circumstances.





BRIEF DESCRIPTION OF DRAWINGS

Aspects of the invention are described below, by way of example, with reference to the accompanying drawings in which like numerals reference like elements, and wherein:



FIG. 1 is an end perspective view of an implantable prosthesis according to one embodiment;



FIG. 2 is a side perspective view of the implantable prosthesis of FIG. 1;



FIG. 3 is a top view of the implantable prosthesis of FIG. 1;



FIG. 4 is a bottom view of the implantable prosthesis of FIG. 1;



FIG. 5 is a sectional view taken along section line 5-5 of FIG. 4 illustrating a tissue grip being attached to the prosthesis according to one embodiment;



FIG. 6 is a sectional view taken along section line 5-5 of FIG. 4 illustrating a tissue grip being attached to the prosthesis according to another embodiment;



FIG. 7 is a perspective view of a tissue grip of FIGS. 5-6 according to one illustrative embodiment;



FIG. 8 is a perspective view of a tissue grip according to another illustrative embodiment;



FIG. 9 is a side elevational view of the tissue grip of FIG. 8;



FIG. 10 is a side elevational view of the tissue grip of FIG. 7;



FIG. 11 is a side elevational view of the tissue grip of FIG. 10 rotated 90°;



FIG. 12 is a top view of a grip assembly according to one illustrative embodiment;



FIG. 13 is a perspective view of a tissue grip according to another illustrative embodiment;



FIG. 14 is an enlarged side view of the grip head of FIG. 13 according to one embodiment;



FIG. 15 is a side elevational view of a tissue grip according to another illustrative embodiment;



FIG. 16 is an enlarged side view of the grip head of FIG. 15 according to one embodiment;



FIG. 17 is an enlarged bottom view of the grip head of FIGS. 15-16 according to one embodiment;



FIG. 18 is a perspective view of a tissue grip with a V-shaped configuration according to another illustrative embodiment;



FIG. 19 is a perspective view of a tissue grip with a crescent shaped configuration according to another illustrative embodiment;



FIG. 20 is a perspective view of a tissue grip with a claw-like configuration according to another illustrative embodiment;



FIG. 21 is a side elevational view of a tissue grip with an arrowhead configuration according to another illustrative embodiment;



FIG. 22 is a top view of an implantable prosthesis with a grip arrangement according to one embodiment;



FIG. 23 is a top view of an implantable prosthesis with a grip arrangement according to one embodiment;



FIG. 24 is a top view of an implantable prosthesis with a grip arrangement according to one embodiment;



FIG. 25 is an illustration of a grip arrangement according to another embodiment;



FIG. 26 is an illustration of a grip arrangement according to another embodiment;



FIG. 27 is an illustration of a grip arrangement according to another embodiment;



FIG. 28 is an illustration of a grip arrangement according to another embodiment;



FIG. 29 is an illustration of a grip arrangement according to another embodiment



FIG. 30 is an illustration of a grip arrangement according to another embodiment;



FIG. 31 is an illustration of a grip arrangement according to another embodiment; and



FIG. 32 is an illustration of a grip arrangement according to another embodiment.





DETAILED DESCRIPTION

It should be understood that aspects of the invention are described herein with reference to the figures, which show illustrative embodiments in accordance with aspects of the invention. The illustrative embodiments described herein are not necessarily intended to show all aspects of the invention, but rather are used to describe a few illustrative embodiments. Thus, aspects of the invention are not intended to be construed narrowly in view of the illustrative embodiments. It should be appreciated, then, that the various concepts and embodiments discussed herein may be implemented in any of numerous ways, as the disclosed concepts and embodiments are not limited to any particular manner of implementation. In addition, it should be understood that aspects of the invention may be used alone or in any suitable combination with other aspects of the invention.


The invention is directed to an implantable prosthesis for mending an anatomical defect, and is particularly suitable for mending defects in, and weaknesses of, soft tissue and muscle walls or other anatomical regions. The phrase “mending a defect” includes acts of repairing, augmenting, and/or reconstructing a defect and/or a potential defect. For ease of understanding, and without limiting the scope of the invention, the prosthesis is described below particularly in connection with mending a groin defect including, but not limited to, one or more of an indirect inguinal hernia, a direct inguinal hernia, a femoral hernia and/or other weakness or rupture of the groin anatomy. It should be understood, however, that the prosthesis is not so limited and may be employed in other anatomical procedures, as should be apparent to one of skill in the art. For example, and without limitation, the prosthesis may be employed for ventral hernias, chest or abdominal wall reconstruction, or large defects, such as those that may occur in obese patients. The prosthesis may include one or more features, each independently or in combination, contributing to such attributes.


The invention is more particularly directed to a prosthesis which includes a repair fabric having a body portion that is configured to cover or extend across the defect opening or weakness when the body portion is placed against the defect. The prosthesis may be in the form of a patch, although the prosthesis may employ other configurations as should be apparent to one of skill in the art. The patch may have a planar or non-planar configuration suitable for a particular procedure employed for mending a defect.


The prosthesis may be configured with a self-grip arrangement having features that help maintain the position of the prosthesis relative to the defect. The self-grip arrangement may reduce, if not eliminate, separation, sliding, twisting, folding and/or other movement, as may be desired, between the prosthesis and adjacent tissue. Such an arrangement may also reduce, if not eliminate, the need for a surgeon to suture, staple, tack, or otherwise provisionally anchor the prosthesis in place pending tissue integration.


The prosthesis may include a plurality of grips protruding from the body portion. More particularly, the grips may protrude from a surface of the body portion that is configured to engage adjacent tissue. The grips may be configured to penetrate and grip the tissue when the prosthesis is placed and/or pressed against it. In this manner, the grips may be configured to protrude a defined distance from the surface of the body portion to penetrate a depth of tissue sufficient to provide the desired amount of grip.


The grips may be arranged on the body portion in any suitable configuration to provide a desired amount of grip as should be apparent to one of skill in the art. For example, and without limitation, the grips may be distributed across the body portion in a uniform, non-uniform or random array, and/or any suitable combination of arrays. The grips may be distributed across the entire body portion or located at one or more select regions of the body portion. For example, and without limitation, the grips may be located at one or more select regions adjacent one or more segments of the outer periphery of the body portion, and/or one or more select regions located within the inner region of the body portion inwardly away from the outer periphery. Each select region may include one or more grips arranged in any suitable pattern within the region. One or more of the select regions may employ the same or different arrangements of grips relative to one or more other select regions of grips.


According to one aspect, the grips may be fabricated independent of and mounted to the body portion of the prosthesis. In this manner, the grips may be formed from a material that is different from the body portion. For example, and without limitation, the grips may be formed of a bioabsorbable material, while the body portion may be formed of a non-absorbable material. Such an arrangement may provide the prosthesis with temporary grip properties during the period of tissue integration, while reducing the amount of foreign material that remains present in a patient's body and maintaining long-term strength of the prosthesis.


Independent fabrication of the grips may also provide flexibility for configuring the prosthesis. For example, and without limitation, the prosthesis may include grips having the same or different grip configurations and/or arrangements depending on a particular application of the prosthesis. For example, and without limitation, the prosthesis may include grips having the same shape, but mounted in different orientations relative to each other on the body portion. The prosthesis may include grips with one or more different shapes in one or more regions of the body portion. In this manner, the prosthesis may be provided with various grip characteristics based on the particular orientations and/or shapes of the grips individually and as a whole.


The grips may be directly or indirectly mounted to the body portion of the prosthesis. Each grip may include a base and a grip body extending from the base. The base may be mounted to the body portion with the grip body protruding from the body portion and configured to penetrate and grip tissue.


In one aspect, the grips may be molded or welded directly to the body portion. For example, and without limitation, each grip may be insert molded to prefabricated mesh fabric placed within a mold that receives grip material and forms the desired shape of the grip directly onto the body portion.


In one aspect, each grip may be mechanically mounted to the body portion. For example, and without limitation, each grip may be mounted using a mechanical component or arrangement that is attached to the body portion. For example, and without limitation, the body portion may include a first layer of repair fabric and a second layer of repair fabric attached to the first layer to secure the grips to the first layer. The base of each grip may be retained between the first and second layers of repair fabric. Alternatively, each grip may be mounted directly to the second layer which is subsequently attached to the first layer. Such indirect mounting arrangements may reduce the likelihood of potential degradation of the strength and/or tissue infiltration characteristics of the first layer. In another non-limiting example, the base of each grip may be configured to mechanically connect with the repair fabric of the body portion.


The grip may include a grip head located at the end of the grip body opposite the base that is configured for insertion into tissue while providing a sufficient amount of tissue grip to reduce, if not eliminate, inadvertent release from the tissue. The grip head may also be configured to minimize, if not eliminate, potential entanglement with the prosthesis, such as a mesh repair fabric, while providing desired tissue grip. For example, and without limitation, the grip head may include one or more barbs of any suitable configuration as should be apparent to one of skill in the art. The grip head may include barbs having different configuration relative to each other. For example, and without limitation, a first barb configuration may be suitable for tissue grip while minimizing entanglement and a second barb configuration may be suitable for just gripping tissue. The grip head configurations may include, but are not be limited to, an arrowhead shape, a crescent shape, multiple prongs arranged in a V-shape, and a claw shape. Other grip head configurations are also contemplated.


The prosthesis may be used for mending soft tissue and muscle wall defects using various surgical techniques, including open, laparoscopic, hybrid (e.g., Kugel procedure), and robotic techniques. During open procedures, the prosthesis may be placed through a relatively large incision made in the abdominal wall and layers of tissue and then the defect is filled or covered with the repair fabric. During laparoscopic and hybrid procedures, the prosthesis may be collapsed, such as by rolling or folding, into a reduced configuration for entry into a subject, either directly through a comparatively smaller incision or through a slender laparoscopic cannula that is placed through the incision. The prosthesis may have particular application with robotic procedures in which placement of the prosthesis is achieved using surgical robotic tools which may involve passage of the prosthesis through a relatively small cannula (e.g., 8 mm) as compared to a cannula (e.g., 10-12 mm) typically employed for more conventional laparoscopic techniques.



FIGS. 1-4 illustrate one embodiment of a prosthesis for mending tissue and muscle wall defects, such as a hernia defect. The prosthesis includes a repair fabric of implantable, biologically compatible material. In one embodiment, the repair fabric may comprise a mesh fabric that is relatively flexible, thin and light weight and meets the performance and physical characteristics for mending soft tissue and muscle wall defects.


The prosthesis 20 may include a body portion 22 configured with a size and/or shape suitable to cover or extend across the defect opening or weakness when the body portion is placed against the defect. The prosthesis may also include a plurality of grips 24 protruding from the body portion to provide a self-grip arrangement for maintaining the position of the prosthesis relative to the defect. The grips 24 are configured to protrude from a surface 25 of the body portion for engaging adjacent tissue.


The grips 24 may be configured to penetrate and grip the tissue when the prosthesis is placed and/or pressed against it. In this manner, the grips may be configured to protrude a defined distance from the surface of the body portion to penetrate a depth of tissue sufficient to provide the desired amount of grip. In one embodiment, the grips 24 may be configured to protrude 0.05 inches to 0.15 inches from the surface. However, the grips may be configured to protrude other distances sufficient to provide a desired amount of grip as should be apparent to one of skill in the art.


In one illustrative embodiment, the grips 24 may be located at one or more grip regions 26 of the body portion. Such an arrangement may be suitable for placing grips in selected regions of the body portion to accommodate a particular anatomical region. For example, it may be desirable to avoid providing grips on regions of the body portion that may potentially contact vessels, nerves or other portions of the anatomy at the defect site as should be apparent to one of skill in the art.


As shown in FIGS. 1-4, the grip regions 26 may be located adjacent one or more segments of the outer periphery 28 of the body portion 22 and extend inwardly toward the inner region of the body portion. Each grip region 26 may include a plurality of grips 24 arranged in any suitable pattern within the region, for example, to facilitate rolling and/or folding of the prosthesis to the site of the soft tissue repair. In one illustrative embodiment, the prosthesis 20 may be provided with three grip regions 26 including grips 24 arranged in multiple rows and/or columns with the number of grips in each row and/or column decreasing in a direction away from the outer periphery. As shown, each grip region 26 may include ten grips 24 arranged in four rows and/or columns of decreasing grips. In this manner, the grips may be viewed as having a generally triangular arrangement.


It is to be appreciated that any suitable grip arrangement may be provided on the prosthesis to provide a desired amount of grip as should be apparent to one of skill in the art. For example, and without limitation, a single row of grips may be located along one or more select segments of the outer periphery. In other embodiments, one or more of the select regions may employ the same or different arrangements of grips relative to one or more other select regions of grips. The grips may be arranged in a uniform, non-uniform or random array, and/or any suitable combination of arrays. Rather than limited to one or more select grip regions, the grips may be distributed across the entire body portion.


The grips may be fabricated independent of and mounted to the body portion of the prosthesis. Independent fabrication of the grips may provide flexibility for configuring the prosthesis.


In one embodiment, the grips may be formed of a bioabsorbable material, while the body portion may be formed of a non-absorbable material. Such an arrangement may provide the prosthesis with temporary grip properties during the period of tissue integration, while reducing the amount of foreign material that remains present in a patient's body and maintaining long-term strength of the prosthesis.


In other embodiments, the prosthesis may include grips having the same or different grip configurations and/or arrangements depending on a particular application of the prosthesis. For example, and without limitation, the prosthesis may include grips having the same shape, but mounted in different orientations relative to each other on the body portion. The prosthesis may include grips with one or more different shapes in one or more regions of the body portion. In this manner, the prosthesis may be provided with various grip characteristics based on the particular orientations and/or shapes of the grips individually and as a whole.


In one illustrative embodiment shown in FIG. 5, each grip 24 may include a base 30 and a grip body 32 extending from the grip base. The grip base 30 may be mounted to the body portion 22 of the prosthesis with the grip body 32 protruding from the body portion to penetrate and grip tissue. The body portion 22 of the prosthesis may include a first layer 34 of repair fabric configured to extend across and cover the defect and a second layer 36 of repair fabric attached to the first layer to secure each grip to the first layer. As shown, the base 30 of each grip may be retained between the first and second layers 34, 36 of repair fabric with the second layer 36 acting as a backing layer. The grip body 32 may extend through a pore 38 of the first layer 34 of fabric, although the prosthesis is not so limited.


In one embodiment, each backing layer 36 may be configured to correspond with the shape of each grip region 26 of the prosthesis. However, the shape of the backing layer is not so limited and may have any suitable configuration apparent to one of skill in the art.


Each backing layer 36 may be attached to the first layer 34 using any suitable fastening arrangement as should be apparent to one of skill in the art. In one embodiment, the backing layers 36 may be attached to the first layer 34 using stitches 40 extending about the outer periphery 42 of the backing layer. Additional stitches may be placed between rows and/or columns of the grips to reduce billowing of the backing layer and maintain the grips in position between the layers. It is to be appreciated that other attachment techniques may be employed including, but not limited to, bonding and ultrasonic welding.


Rather than securing the grips between layers of repair fabric, it may be desirable to directly mount the grips to a second layer for subsequent attachment to the first layer. Such an arrangement may be desirable to allow one or more grip regions of any desired configuration be trimmed from a relatively large layer of fabric having pre-attached grips. Such an indirect mounting arrangement may also reduce the incidence of potential degradation of the strength and/or tissue infiltration characteristics of the first layer.


In one illustrative embodiment shown in FIG. 6, each grip 24 may be mounted directly to the second layer 36 of fabric which is subsequently attached to the first layer 34 of fabric. As shown, the grip base 30 may be secured to the second layer 36 with the grip body 32 extending through the second layer. The grip base may be attached to the second layer using any suitable technique including, but not limited to, bonding or ultrasonic welding 44. The second layer may be attached to the first layer using any suitable fastening technique as described above.


It is to be understood that other techniques may be employed to attach tissue grips to the body portion of the prosthesis. In one embodiment, the grips may be molded or welded directly to the body portion. For example, and without limitation, each grip may be insert molded to prefabricated mesh fabric placed within a mold that receives grip material and forms the desired shape of the grip directly onto the mesh fabric. The mesh fabric may be used as the first layer 34 of the body portion or as the second layer 36 of the body portion that is attached to the first layer. In another non-limiting example, the base 30 of each grip 24 may be configured to mechanically connect with the repair fabric of the body portion.


As indicated above, the prosthesis may include grips 24 having the same or different grip configurations and/or arrangements depending on a particular application of the prosthesis.


In one embodiment illustrated in FIGS. 5-7, the grip 24 may include a grip head 50 located at the end of the grip body 32 opposite the base 30. The grip head 50 may be configured for insertion into tissue while providing a sufficient amount of tissue grip to reduce, if not eliminate, inadvertent release from the tissue. The grip head may include one or more barbs configured to penetrate tissue and resist withdrawal of the grip from the tissue. In one embodiment, the grip head 50 may include four barbs 52a, 52b located at 90° positions about the end of the grip body. In this manner, the grip head may employ a cruciform configuration with a first pair of barbs 52a located along a first axis Y and a second pair of barbs 52b located along a second axis X. Such an arrangement may provide omnidirectional sliding resistance. However, the grip may include any number and location of barbs as should be apparent to one of skill in the art.


For some applications, it may be desirable to vary the location of the barbs along the length L1 of the grip body. For example, it may be desirable to grip the tissue at different depths of penetration. In one embodiment, the grip head may include a first pair of barbs 52a located at a first distance L2 along the grip body and a second pair of barbs 52b located at a second distance L3 along the grip body which is different from the first distance. As should be appreciated, any number of barbs may be located at different locations along the barb body as should be apparent to one of skill in the art.


To facilitate locating and/or holding a tissue grip in position on the body portion, it may be desirable to provide the grip with a self-locating feature. In one embodiment illustrated in FIGS. 5-7, the grip may include a grip locator 54 configured for insertion into a pore 38 or other opening in the first or second layer of repair fabric. The size and/or shape of the grip locator may be selected to correspond to the pores of the repair fabric. As illustrated, the grip locator 54 may be configured as a boss protruding from the grip base 30 with the grip body extending from the locator. The grip locator 54 may protrude from a central region of the grip base, although other arrangements are contemplated.


In one embodiment shown in FIG. 7, the grip locator 54 may have a cylindrical shape, although other shapes are contemplated. For example, in one embodiment illustrated in FIGS. 8-9, the grip locator 54 may have a conical or frusto-conical shape. As shown, the grip locator 54 may be tapered to decrease in size in a direction from the grip base 30 toward the grip body 32. Such an arrangement may facilitate insertion of the tissue grip into a pore 38 or other opening of the repair fabric. It should be understood, however, that the grip locator, if provided, may employ any suitable configuration as should be apparent to one of skill in the art.


In one illustrative embodiment shown in FIGS. 10-11, the grip base 30 may have a diameter D1 of about 0.125 inches with a thickness T1 of about 0.01 inches. The grip locator may have a diameter D2 of about 0.05 inches with a thickness T2 of about 0.01 inches. The grip body may have a length L1 of about 0.08 inches extending from the surface of the grip base and a diameter D3 of about 0.02 inches to about 0.035 inches. The grip head may include a first pair of barbs 52a with a grip surface 56a located a distance L2 of about 0.06 inches from the grip base and a second pair of barbs 52b with a grip surface 56b located a distance L3 of about 0.047 to about 0.05 inches from the grip base. The first pair of barbs 52a may have an outer diameter D4 of about 0.04 inches and the second pair of barbs 52b may have an outer diameter D5 of about 0.044 inches. The first pair of barbs 52a may have a width W1 of about 0.006 inches and the second pair of barbs 52b may have a width W2 about 0.01 inches.


In the embodiments described above, each grip may be fabricated as a single grip that is attached to the body portion of the prosthesis. For some applications, it may be desirable to fabricate and provide multiple interconnected grips for attachment to the body portion. For example, a grip arrangement including multiple grips may facilitate handling and assembly of the grips to the body portion in contrast to the smaller size of a single grip.


In one embodiment illustrated in FIG. 12, a grip assembly 60 may include two (as shown) or more grips 24 connected together with an elongated coupling 62 extending therebetween. In one embodiment, the grip assembly may be fabricated as a unitary component. For example, the grip assembly may be a molded component fabricated from the same material. However, the grip assembly may be fabricated using any suitable process and may include multiple materials depending on the particular characteristics desired for the grips.


The coupling may be configured to provide a desired amount of support for handling the grips while also having a sufficient amount of flexibility to minimize any potential increase in the stiffness of the body portion. In one embodiment, the coupling 62 may have a thickness that corresponds to the thickness of the grip base 30 of the grips. The coupling 62 may be configured with a width W3 of about 0.04 inches. The grips 24 may be configured with a center-to-center spacing L4 of about 0.38 inches. It is to be understood that any suitable coupling arrangement and grip spacing may be utilized as should be apparent to one of skill in the art.


For some applications, it may be desirable to employ a grip head 50 with a cruciform shape including barbs 52a, 52b having the same size and a grip surface 56 located the same distance from the grip base 30. FIGS. 13-14 illustrate one embodiment of such an arrangement. The grip head 50 may be utilized for a single grip, as illustrated in FIG. 13, or on each grip of a grip assembly, such as the grip assembly described above.


For some applications, it may be desirable to employ a grip head configured to reduce, if not eliminate, potential mesh entanglement during handling and/or delivery of the prosthesis. For example, and without limitation, it may be desirable to fold, roll, or otherwise collapse the prosthesis to facilitate delivery of the prosthesis during some surgical procedures. When collapsed, at least some of the grips may be placed into engagement with other portions of the prosthesis which could potentially lead to a grip becoming entangled with the prosthesis, particularly when the prosthesis is fabricated from a mesh fabric. Such entanglement may make it more difficult and require additional time for a surgeon to open the collapsed prosthesis after delivery to the surgical site.


In one embodiment illustrated in FIGS. 15-17, the prosthesis may include grips 24 having a grip head 50 configured to grip tissue while also minimizing potential entanglement with the prosthesis. The grip head may include one or more primary barbs 52a configured to both grip tissue and minimize, if not eliminate, potential entanglement with the prosthesis. The grip head may also include one or more secondary barbs 52b configured solely to grip tissue. In this manner, the secondary barbs may enhance the grip of the barbs by providing additional traction while the primary barbs minimize potential entanglement.


The primary barbs 52a may be configured and arranged to shield the secondary barbs 52b from entanglement with the prosthesis while allowing the secondary barbs to grip tissue. In one embodiment, the secondary barbs 52b may be smaller in size as compared to the primary barbs 52a. As shown in FIG. 17, the grip head 50 may include four primary barbs 52a located along axes X, Y positioned 90° apart and four secondary barbs 52b located along axes X′, Y′ positioned 90° apart with the primary barbs being offset from the secondary barbs by about 45°. In this manner, each secondary barb 52b may be located between a pair of primary barbs 52a to minimize, if not prevent, engagement between the secondary barbs and the prosthesis, such as the filaments of a mesh prosthesis. However, it is to be appreciated that the grip head 50 may employ any number of primary barbs and/or secondary barbs positioned in any suitable arrangement as should be apparent to one of skill in the art.


The primary grip 52a may include a first grip surface 56a to grip tissue when placed against tissue while allowing the grip head 50 to release from the prosthetic material, such as mesh fabric, when placed against the prosthesis. In one embodiment, the first grip surface 56a may be configured with a ramp-like structure from which filaments of the prosthesis may be slid off and away from the grip head as the grip is being pulled away from the prosthesis. As shown, the first grip surface may be angled to slope inwardly from the outer tip 58a of the primary barb toward the grip body 32 and in a direction toward the grip base 30. In this manner, the first grip surface 56a may be oriented at an angle A so that filaments of the prosthesis located along the length of the grip body may be guided along the grip surface and off the grip head as the grip is pulled from the prosthesis.


In one embodiment, the first grip surface 56a may be oriented at an angle A of 30° relative to a plane P perpendicular to the longitudinal axis Z of the grip. However, other angles suitable for tissue grip and grip head release from the prosthesis may be employed as should be apparent to one of skill in the art. In this manner, varying the first grip surface angle may adjust the amount of tissue grip and grip head release. For example, a relatively large grip surface angle may enhance grip head release while reducing the amount of tissue grip, while a relatively small grip surface angle may reduce grip head release while increasing the amount of tissue grip.


The secondary grip 52b may include a second grip surface 56b configured to grip tissue when placed against tissue. In contrast to the angled configuration of the first grip surface 56a, the second grip surface may have a relatively flat configuration. In one embodiment, the second grip surface 56b may be oriented perpendicular to the longitudinal axis Z of the grip to provide a relatively higher degree of tissue grip as compared to the first grip surface 56a. If desired, other angles suitable for tissue grip may be employed as should be apparent to one of skill in the art. In this manner, varying the angle of the secondary grip surface may adjust the amount of tissue grip desired for the grip head.


In one embodiment as shown, the first grip surface 56a may be angled from the plane P of the second grip surface 56b. In this manner, the outer tips 58a of the primary grips 52a and the outer tips 58b of the secondary grips 52b may be coplanar. However, it is to be appreciated that the outer tip 58a of the primary grip 52a may be located in a plane offset from the tip 58b of the secondary grip 52b.


As indicated above, the primary grips 52a may be configured to shield the secondary grips 52b in a manner to minimize entanglement of the secondary grips with the prosthesis. In one embodiment shown in FIGS. 15-17, the first grip surface 56a may be located between the second grip surface 56b and the grip base 30. Additionally, the tips 58a of the primary grips 52a may extend in an outward radial direction from the grip body 32 a distance which is greater than the tips 58b of the secondary grips 52b. In this manner, features of the prosthesis, such as filaments of a mesh fabric, may be guided by the first grip surface in the outward radial direction away from the grip body and beyond the tip 58b of the secondary grip so that the filaments are guided around the secondary grips as the grip is pulled from the prosthesis. In one embodiment, the outer tips 58a of the first grips may be positioned along a circular diameter D6 of 0.042 in and the outer tips 58b of the secondary tips may be positioned along a circular diameter D7 of 0.031 in. However, it is to be appreciated that other arrangements of the outer tips of the barbs of the grip head may be employed as should be appreciated by one of skill in the art.


The grip head 50 may be utilized for a single grip, as illustrated in FIG. 15, or on each grip of a grip assembly, such as the grip assembly described above.


As indicated above, the tissue grip may employ various configurations to provide a desired amount of grip for holding the prosthesis in place against tissue. The grip described above may be considered as having a cruciform configuration. Examples of other non-limiting grip configurations are described below in connection with FIGS. 18-21.



FIG. 18 illustrates an embodiment of a grip having a multi-prong configuration. As shown, the grip body 32 may include a pair of prongs 70 extending from the grip base 30. The prongs 70 may be arranged in a V-shaped configuration for penetration into tissue.



FIG. 19 illustrates an embodiment of a grip having a crescent configuration. As shown, the grip body 32 may have a crescent shape extending from the grip base 30. The grip body 32 decreases in size in a direction from the base 30 toward its tip 72 for penetration into tissue.



FIG. 20 illustrates an embodiment of a grip having a claw-like configuration. As shown, the grip body 32 employ a C-shaped configuration with a pair of tips 74 for penetrating tissue. As shown, the grip body 32 may be oriented relative to the grip base 30 with the tips extending in a direction away from the grip base.



FIG. 21 illustrates an embodiment of a grip having an arrowhead configuration. As shown, the grip body 32 extends from the grip base 30. The grip body 32 include an arrowhead with a pair of oppositely extending barbs for penetrating and gripping tissue.


As illustrated in FIGS. 1-4, the body portion 22 may be a preformed, non-planar patch with a 3-dimensional curved shape. In one embodiment, the body portion 22 may have a shape corresponding to the 3DMAX Light Mesh or 3DMAX Mesh, available from C.R. Bard, and described in one or more of U.S. Pat. Nos. 6,723,133, 6,740,122 and 6,740,122. In this manner, the prosthesis may be particularly suited for fitting and mending defects to the inguinal anatomy. However, it is to be understood that the prosthesis may employ other configurations as should be apparent to one of skill in the art. For example, and without limitation, the patch may have planar or other non-planar configurations suitable for a particular procedure employed for mending a defect. Moreover, the prosthesis may be provided as a planar sheet of self-gripping repair fabric that may be selectively trimmed by a surgeon to any desired size and shape for the particular procedure.


As indicated above, the prosthesis may employ any arrangement of grips to provide a desired amount of grip and traction for a particular application.



FIG. 22 illustrates an embodiment of a 3D curved prosthesis 20 including four separate grip regions 26, as compared to three grip regions as shown in FIGS. 1-4, located in proximity to the outer periphery 28 of the body portion 22. As shown, each group or grip region 26 may include multiple rows and/or columns of grips 24.



FIG. 23 illustrates an embodiment of a 3D curved prosthesis 20 including three separate grip regions 26 located in proximity to the outer periphery 28 of the body portion 22. A pair of grip regions may be located on upper medial and lateral portions of the prosthesis, and a grip region may be located on a lower medial portion of the prosthesis. As shown, each group or grip region 26 may include multiple rows and/or columns of grips 24. Each grip region on the upper medial and lateral portions may have a semi-annular periphery. The grip region on the lower medial portion may have a triangular periphery.



FIG. 24 illustrates an embodiment of a 3D curved prosthesis 20 including separate groups of grips 24 located along the outer periphery 28 of the body portion 22. As shown, each group or grip region 26 may include a single row of grips 24.



FIG. 25 illustrates an embodiment of a layer of repair fabric including grips 24 uniformly distributed across the fabric. The fabric may be preformed into a configuration for use as a prosthesis or may be selectively trimmed into a desirable configuration for use as a prosthesis or a portion of a prosthesis, such as a second layer described above. As shown, the grips may be mounted to the fabric in at least two different orientations to provide a desired grip or traction properties for the prosthesis. For example, and without limitation, the prosthesis may include grips, such as the grips illustrated in FIGS. 18-21, which individually provide bidirectional traction. Mounting the grips in alternating 90° orientations may provide omnidirectional traction for the prosthesis. The particular spacing and orientation may be selected to provide the desired grip and/or traction.


The repair fabric may employ a knit construction that provides openings or pores to allow tissue infiltration to incorporate the prosthesis. The repair fabric may also have sufficient flexibility to promote an easy reduction in size for entry into the subject. In this manner, the flexible fabric may be collapsed into a slender configuration, such as a roll, which can be supported in, and advanced through, a narrow laparoscopic cannula for use in laparoscopic or robotic procedures.


In one embodiment, the prosthesis 20 may be formed from one or more layers of knitted mesh fabric. When implanted, the mesh promotes rapid tissue or muscle ingrowth into and around the mesh structure. Examples of surgical materials which may be utilized for the layers and are suitable for tissue or muscle reinforcement and defect correction include, but are limited to, BARD Mesh (available from C.R. Bard, Inc.), BARD Soft Mesh (available from C.R. Bard, Inc.), SOFT TISSUE PATCH (microporous ePTFE—available from W.L. Gore & Associates, Inc.); SURGIPRO (available from US Surgical, Inc.); TRELEX (available from Meadox Medical); PROLENE and MERSILENE (available from Ethicon, Inc.); and other mesh materials (e.g., available from Atrium Medical Corporation). Absorbable or resorbable materials, including PHASIX Mesh (available from C.R. Bard, Inc.), polyglactin (VICRYL—available from Ethicon, Inc.) and polyglycolic acid (DEXON—available from US Surgical, Inc.), may be suitable for applications involving temporary correction of tissue or muscle defects. Collagen materials such as COOK SURGISIS, available from Cook Biomedical, Inc. may also be used. It also is contemplated that the mesh fabric may be formed from multifilament yarns and that any suitable method, such as knitting, weaving, braiding, molding and the like, may be employed to form the mesh material.


In one embodiment, the grips may be formed of a resorbable material. In this manner, the grips provide a desired level of tissue grip for initial placement and positioning of the prosthesis. The grips eventually become rebsorbed by the body at which time the prosthesis has become sufficiently integrated with the tissue. Examples of rebsorbable materials which may be utilized for the grips include, but are not limited to, PLG (L-lactide/glycolide) or PLA (polylactic acid) polymers. For some applications, it may be desirable to utilize non-resorbable grips. An example of non-rebsorbable material which may be utilized for the grips includes, but is not limited to, polypropylene. It is to be appreciated that other suitable biocompatible materials, resorbable or non-resorbable, may be used for the grips as should be apparent to one of skill in the art.


In one embodiment, the grips may be fabricated using an injection molding process. However, any suitable manufacturing process may be used to fabricate the grips as should be apparent to one of skill in the art. For example, and without limitation, the grips may be fabricated using 3D printing and machining processes.


EXAMPLES

The following examples are illustrative only and are not intended to limit the scope of the present invention.


Traction force was evaluated for various grip arrangements and compared to a known mesh fabric. Testing methodology is described below with results provided in Table 1. The average results are reported from testing ten samples of each configuration.


A fresh, square coupon of porcine tissue, kept at room temperature, was prepared and placed in a test fixture. The porcine tissue coupon measured 2.7 inches×3.5 inches with a minimum thickness of 0.25 inches. An approximately 1 inch×1 inch test sample (unless indicated otherwise below) of a self-gripping mesh configuration was placed, barb side down, on top of and centered on the porcine tissue sample. A free weight was set on top of the mesh sample for about 3 seconds and then removed. The free weight was approximately 1 lb to 3 lb. The mesh sample was allowed to rest/settle on the porcine tissue sample, at room temperature, undisturbed for 1 minute before initiating the test.


Using a force gauge, such as a Mark-10 tensiometer gauge, with a gripping attachment to secure a portion of the mesh sample, a traction force was applied to the mesh in a single direction along the plane defined by the contact area between the mesh sample and the porcine tissue sample. The mesh was oriented so that the grips were pulled in the direction of the barbs or other grip features. The procedure was repeated for ten mesh samples of the same configuration.


Test samples were provided with different grip configurations and arrangements of grips. The grip arrangements of the test samples are illustrated in FIGS. 26-31. The direction of applied force is shown as arrow F.



FIG. 26 illustrates a grip arrangement including grips located every other space and every other row. This arrangement was tested for grip configurations illustrated in FIGS. 18-21.



FIG. 27 illustrates a grip arrangement including grips located every other space and every row. This arrangement was tested for grip configurations illustrated in FIGS. 18-21.



FIG. 28 illustrates a grip arrangement including grips positioned in a 5×5 square. This arrangement was tested for grip configurations illustrated in FIGS. 18-21.



FIG. 29 illustrates a grip arrangement including grips positioned in a 4×4 square. This arrangement was tested for the grip configuration illustrated in FIG. 21.



FIG. 30 illustrates a grip arrangement including grips located in two rows with four grips provided in one row and three grips provided in the other row. This arrangement was tested for the grip configuration illustrated in FIG. 21.



FIG. 31 illustrates a grip arrangement including grips located in two rows with eight grips provided in each row. This arrangement was tested for grip configurations illustrated in FIGS. 18-21.



FIG. 32 illustrates a grip arrangement including seven grip arrays located in three rows with three arrays provided in a center row flanked by rows with two arrays. The grip arrays were located within a test sample area of approximately 1.7 inches×0.8 inches. Each array includes three grips for a total of twenty-one grips with nine grips located along the central row and six grips located along each row flanking the center row. This arrangement was tested for the grip configuration illustrated in FIGS. 15-17. This arrangement provided an average traction force of 0.68 lbf.


For ease of presenting the test results for the other arrangements, the grip configurations are referred to as Grip A (FIG. 18), Grip B (FIG. 19), Grip C (FIG. 20) and Grip D (FIG. 21). Similarly, the grip arrangements are referred to as Arrangement 1 (FIG. 26), Arrangement 2 (FIG. 27), Arrangement 3 (FIG. 28), Arrangement 4 (FIG. 29), Arrangement 5 (FIG. 30), and Arrangement 6 (FIG. 31).












TABLE 1







Test Sample
Average Traction Force (psi)



















Covidien ProGrip Mesh
0.275



Grip A, Arrangement 1
0.285



Grip A, Arrangement 2
0.335



Grip B, Arrangement 1
0.3



Grip B, Arrangement 2
0.26



Grip C, Arrangement 1
0.285



Grip C, Arrangement 2
0.39



Grip A, Arrangement 3
0.335



Grip B, Arrangement 3
0.21



Grip C, Arrangement 3
0.315



Grip D, Arrangement 4
0.49



Grip D, Arrangement 5
0.32



Grip A, Arrangement 6
0.335



Grip B, Arrangement 6
0.365



Grip C, Arrangement 6
0.415



Grip D, Arrangement 6
0.365










For purposes of this patent application and any patent issuing thereon, the indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.” The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified.


The use of “including,” “comprising,” “having,” “containing,” “involving,” and/or variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.


The foregoing description of various embodiments are intended merely to be illustrative thereof and that other embodiments, modifications, and equivalents are within the scope of the invention recited in the claims appended hereto.

Claims
  • 1. An implantable prosthesis comprising: a first layer of biologically compatible repair mesh fabric;a second layer of biologically compatible repair mesh fabric attached to the first layer, the second layer including a plurality of individual layer segments which are separate from and independent of each other; anda plurality of tissue grips pre-attached to the prosthesis and protruding from a first surface of the first layer, the plurality of tissue grips being separate from the first layer, the first layer being free of integrated tissue grips, the plurality of tissue grips being arranged into a plurality of separate grip regions with each grip region including multiple tissue grips,each grip region including one of the individual layer segments securing the multiple tissue grips associated with the grip region to the first layer independent of the other grip regions, each individual layer segment being attached directly to a second surface of the first layer opposite the first surface independent of the plurality of tissue grips, the plurality of tissue grips extending through the first layer from the second surface toward and beyond the first surface.
  • 2. The implantable prosthesis according to claim 1, wherein the plurality of tissue grips are independent of the first and second layers.
  • 3. The implantable prosthesis according to claim 2, wherein each of the plurality of the tissue grips includes a base located between the first and second layers.
  • 4. The implantable prosthesis according to claim 1, wherein the plurality of tissue grips are integrated with the second layer.
  • 5. The implantable prosthesis according to claim 4, wherein the plurality of tissue grips are molded to the second layer.
  • 6. The implantable prosthesis according to claim 1, wherein each of the plurality of tissue grips includes a grip head protruding beyond the first surface, the grip head configured to penetrate and grip tissue.
  • 7. The implantable prosthesis according to claim 6, wherein the grip head has a cruciform configuration.
  • 8. The implantable prosthesis according to claim 1, wherein the plurality of tissue grips are resorbable.
  • 9. The implantable prosthesis according to claim 1, wherein the first layer is non-resorbable.
  • 10. The implantable prosthesis according to claim 1, wherein the plurality of tissue grips are arranged in a triangular configuration in at least one of the grip regions.
  • 11. The implantable prosthesis according to claim 10, wherein the plurality of tissue grips are arranged in a triangular configuration in each grip region.
  • 12. The implantable prosthesis according to claim 1, wherein the first layer has a preformed 3-dimensional curvature with the first surface having a convex shape and the second surface having a concave shape.
  • 13. The implantable prosthesis according to claim 12, wherein the first layer is configured to fit the inguinofemoral anatomy of a person.
  • 14. An implantable prosthesis comprising: a first layer of biologically compatible repair mesh;a second layer of biologically compatible repair mesh fabric attached to the first layer; anda plurality of tissue grips pre-attached to the prosthesis and protruding from a first surface of the first layer, the plurality of tissue grips being separate from the first layer, the second layer securing the plurality of tissue grips to the first layer, wherein the plurality of tissue grips include a grip assembly having at least a pair of tissue grips connected together with a coupling, each of the tissue grips of the grip assembly including a grip body extending through the first layer at spaced apart locations and protruding from the first surface thereof and a grip head located at an end of the grip body spaced away from the first surface, the grip head configured to penetrate and grip tissue, the coupling connecting the grip body of each the tissue grips of the grip assembly, the coupling located between the first and second layers to secure the grip assembly to the first layer.
  • 15. The implantable prosthesis according to claim 14, wherein the grip assembly is formed as a unitary structure.
  • 16. An implantable prosthesis comprising: a first layer of biologically compatible repair fabric;a second layer of biologically compatible repair fabric attached to the first layer; anda plurality of tissue grips secured to the first layer and protruding a fixed length from a first surface of the first layer prior to implantation of the prosthesis, the plurality of tissue grips configured to penetrate and grip tissue to secure the prosthesis, each tissue grip including a grip body protruding from the first layer and a solid grip head located at an end of the grip body spaced away from the first surface of the first layer, the grip body having a constant cross-sectional size from the first surface of the first layer to the grip head, the grip head including a first pair of barbs located along a first axis oriented in a first radial direction and a second pair of barbs located along a second axis oriented in a second radial direction that is different from the first radial direction, each tissue grip includes a grip base located at an end of the grip body opposite the grip head, the grip base being located between the first and second layers to secure the tissue grip.
  • 17. The implantable prosthesis according to claim 16, wherein each of the first pair of barbs has a first configuration and each of the second pair of barbs has a second configuration, the first configuration being different from the second configuration.
  • 18. The implantable prosthesis according to claim 16, wherein each of the second pair of barbs is smaller than each of the first pair of barbs.
  • 19. The implantable prosthesis according to claim 16, wherein each of the first pair of barbs is configured to minimize entanglement of the grip head with the repair fabric.
  • 20. The implantable prosthesis according to claim 19, wherein the first pair of tissue barbs is configured to shield the second pair of barbs from entanglement with the repair fabric.
  • 21. The implantable prosthesis according to claim 16, wherein the first axis is perpendicular to the second axis.
  • 22. The implantable prosthesis according to claim 16, wherein each of the first pair of barbs includes a first grip surface located a first distance from the first surface of the first layer and each of the second pair of barbs includes a second grip surface located a second distance from the first surface of the first layer which is different than the first distance.
  • 23. The implantable prosthesis according to claim 22, wherein each of the first pair of barbs includes a first width and each of the second pair of barbs includes a second width which is different than the first width.
  • 24. The implantable prosthesis according to claim 23, wherein the first distance is greater than the second distance and the first width is less than the second width.
  • 25. The implantable prosthesis according to claim 16, wherein the plurality of tissue grips are arranged into a plurality of grip regions separated from each other.
  • 26. The implantable prosthesis according to claim 25, wherein the tissue grips are arranged in a triangular configuration or a semi-annular configuration in at least one of the grip regions.
  • 27. The implantable prosthesis according to claim 26, wherein the tissue grips are arranged in a triangular configuration in at least one of the grip regions and a semi-annular configuration in at least one of the grip regions.
  • 28. The implantable prosthesis according to claim 25, wherein the tissue grips are arranged in a triangular configuration in each grip region.
  • 29. The implantable prosthesis according to claim 16, wherein the first layer has a preformed 3-dimensional curvature.
  • 30. The implantable prosthesis according to claim 29, wherein the first layer is configured to fit the inguinofemoral anatomy of a person.
RELATED APPLICATIONS

This Application claims the benefit of U.S. Provisional Application No. 62/574,525, filed Oct. 19, 2017, the entire content of which is incorporated herein by reference in its entirety.

US Referenced Citations (296)
Number Name Date Kind
3054406 Usher Sep 1962 A
3124136 Usher Mar 1964 A
3320649 Naimer May 1967 A
3494006 Brumlik Feb 1970 A
3629930 Brumlik Dec 1971 A
RE27725 Brumlik Aug 1973 E
3981051 Brumlik Sep 1976 A
4169303 Lemelson Oct 1979 A
4338800 Matsuda Jul 1982 A
4347847 Usher Sep 1982 A
4452245 Usher Jun 1984 A
4463486 Matsuda Aug 1984 A
4520821 Schmidt et al. Jun 1985 A
4653486 Coker Mar 1987 A
4854136 Coslovi et al. Aug 1989 A
4976728 Willert et al. Dec 1990 A
5019096 Fox, Jr. et al. May 1991 A
5032122 Noel et al. Jul 1991 A
5116357 Eberbach May 1992 A
5147374 Fernandez Sep 1992 A
5176692 Wilk et al. Jan 1993 A
5234488 Wholey et al. Aug 1993 A
5254127 Wholey et al. Oct 1993 A
5254133 Seid Oct 1993 A
5258000 Gianturco Nov 1993 A
5330445 Haaga Jul 1994 A
5356432 Rutkow et al. Oct 1994 A
5378522 Lagomarsino Jan 1995 A
5383897 Wholey Jan 1995 A
5569273 Titone et al. Oct 1996 A
5634931 Kugel Jun 1997 A
5643295 Yoon Jul 1997 A
5716408 Eldridge et al. Feb 1998 A
5716409 Debbas Feb 1998 A
5761775 Legome et al. Jun 1998 A
5769864 Kugel Jun 1998 A
5836961 Kieturakis et al. Nov 1998 A
5906617 Meislin May 1999 A
5916225 Kugel Jun 1999 A
6042534 Gellman et al. Mar 2000 A
6090116 D'Aversa et al. Jul 2000 A
6176863 Kugel et al. Jan 2001 B1
6224616 Kugel May 2001 B1
6241747 Ruff Jun 2001 B1
6280453 Kugel et al. Aug 2001 B1
6287316 Agarwal et al. Sep 2001 B1
6290708 Kugel et al. Sep 2001 B1
6312442 Kieturakis et al. Nov 2001 B1
6319264 Törmälä et al. Nov 2001 B1
6383201 Dong May 2002 B1
6425924 Rousseau Jul 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6530933 Yeung et al. Mar 2003 B1
6565590 Kieturakis et al. May 2003 B2
6592515 Thierfelder et al. Jul 2003 B2
6596002 Therin et al. Jul 2003 B2
6596304 Bayon et al. Jul 2003 B1
6599318 Gabbay Jul 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6679900 Kieturakis et al. Jan 2004 B2
6695856 Kieturakis et al. Feb 2004 B2
6746458 Cloud Jun 2004 B1
6758853 Kieturakis et al. Jul 2004 B2
6790213 Cherok et al. Sep 2004 B2
6837078 Rock et al. Jan 2005 B1
6884212 Thierfelder et al. Apr 2005 B2
6893452 Jacobs May 2005 B2
6991643 Saadat Jan 2006 B2
7060103 Carr, Jr. et al. Jun 2006 B2
7083648 Yu et al. Aug 2006 B2
7094261 Zotti et al. Aug 2006 B2
7112209 Ramshaw et al. Sep 2006 B2
7156862 Jacobs et al. Jan 2007 B2
7172615 Morriss et al. Feb 2007 B2
7214236 Kieturakis et al. May 2007 B2
7255675 Gertner et al. Aug 2007 B2
7273497 Ferree Sep 2007 B2
7331199 Ory et al. Feb 2008 B2
7351250 Zamierowski Apr 2008 B2
7381211 Zamierowski Jun 2008 B2
7404819 Darios et al. Jul 2008 B1
7410495 Zamierowski Aug 2008 B2
7413569 Sogaard-Andersen Aug 2008 B2
7413570 Zamierowski Aug 2008 B2
7413571 Zamierowski Aug 2008 B2
7497864 Bonutti Mar 2009 B2
7510566 Jacobs et al. Mar 2009 B2
7517313 Thierfelder et al. Apr 2009 B2
7544213 Adams Jun 2009 B2
7566337 Søgaard-Andersen et al. Jul 2009 B2
7658749 Wittmann Feb 2010 B2
7662169 Wittmann Feb 2010 B2
7722528 Arnal et al. May 2010 B2
7905825 Arnal et al. Mar 2011 B2
8047981 Rao et al. Nov 2011 B2
8062331 Zamierowski Nov 2011 B2
8070773 Zamierowski Dec 2011 B2
8123781 Zamierowski Feb 2012 B2
8188834 Goraltchouk et al. Feb 2012 B2
8128655 Wittmann Mar 2012 B2
8157722 Arnal et al. Apr 2012 B2
8216273 Goraltchouk et al. Jul 2012 B1
8273105 Cohen et al. Sep 2012 B2
8435307 Paul May 2013 B2
8454653 Hadba et al. Jun 2013 B2
8460338 Goraltchouk et al. Jun 2013 B2
8469996 Wittmann Jun 2013 B2
8500759 Koyfman et al. Aug 2013 B2
8562644 Yuan et al. Oct 2013 B2
8579924 Stopek et al. Nov 2013 B2
8585576 Arnal et al. Nov 2013 B2
8585721 Kirsch Nov 2013 B2
8615856 Gelbart Dec 2013 B1
8618096 Renslo et al. Dec 2013 B2
8632567 Cohen et al. Jan 2014 B2
8632839 Stopek et al. Jan 2014 B2
8690960 Hotter et al. Apr 2014 B2
8739389 Cohen et al. Jun 2014 B2
8747436 Nawrocki et al. Jun 2014 B2
8793863 Hunter et al. Aug 2014 B2
8821539 Rousseau Sep 2014 B2
8888810 Hadba et al. Nov 2014 B2
8906046 Anderson Dec 2014 B2
8932327 Kosa et al. Jan 2015 B2
8932329 Hadba et al. Jan 2015 B2
8961850 Wood et al. Feb 2015 B2
8968418 Paul Mar 2015 B2
9034011 Kirsch et al. May 2015 B2
9050082 Cohen et al. Jun 2015 B2
9060767 Bonutti Jun 2015 B2
9186235 Ory et al. Nov 2015 B2
9186236 Paul Nov 2015 B2
9295538 Koyfman et al. Mar 2016 B2
9308068 Spinnler et al. Apr 2016 B2
9358002 Kirsch et al. Jun 2016 B2
9398943 Criscuolo et al. Jul 2016 B2
9452038 Amal et al. Jul 2016 B2
9439749 Lecuivre et al. Sep 2016 B2
9445883 Lecuivre et al. Sep 2016 B2
9480547 Paul Nov 2016 B2
9510927 Simons Dec 2016 B2
9510931 Hotter et al. Dec 2016 B2
9598801 Lecuivre Mar 2017 B2
9629703 Paul Apr 2017 B2
9677208 Meneghin Jun 2017 B2
9713467 Cohen et al. Jul 2017 B2
9744019 Montanari et al. Aug 2017 B2
9744919 Schütz Aug 2017 B2
9750595 Thomas et al. Sep 2017 B2
9788832 Hadba et al. Oct 2017 B2
9801703 Rao et al. Oct 2017 B2
9949815 Priewe Apr 2018 B2
9962162 Bonutti May 2018 B2
9962250 Priewe et al. May 2018 B2
10052184 Deichmann et al. Aug 2018 B2
10058326 Kirsch et al. Aug 2018 B2
20010010023 Schwartz Jul 2001 A1
20020022861 Jacobs et al. Feb 2002 A1
20020058966 Tormala May 2002 A1
20020103494 Pacey Aug 2002 A1
20020169452 Tormala Nov 2002 A1
20020188170 Santamore Dec 2002 A1
20030036801 Schwartz Feb 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030074021 Morriss et al. Apr 2003 A1
20030105477 Schwartz Jun 2003 A1
20040059356 Gingras Mar 2004 A1
20040138683 Shelton Jul 2004 A1
20040138705 Heino Jul 2004 A1
20040204723 Kayan Oct 2004 A1
20040215219 Eldridge et al. Oct 2004 A1
20040260340 Jacobs et al. Dec 2004 A1
20050021058 Negro Jan 2005 A1
20050085924 Darois Apr 2005 A1
20050113858 Deutsch May 2005 A1
20050119694 Jacobs et al. Jun 2005 A1
20050216042 Gertner Sep 2005 A1
20050222591 Gingras et al. Oct 2005 A1
20050228408 Fricke et al. Oct 2005 A1
20060089672 Martinek Apr 2006 A1
20060141012 Gingras Jun 2006 A1
20060173471 Carr, Jr. et al. Aug 2006 A1
20060200062 Saadat Sep 2006 A1
20060205995 Browning Sep 2006 A1
20060253132 Evans et al. Nov 2006 A1
20060253203 Alvarado Nov 2006 A1
20060282103 Fricke et al. Dec 2006 A1
20070027358 Gertner et al. Feb 2007 A1
20070068538 Anderson et al. Mar 2007 A1
20070083229 Deutsch Apr 2007 A1
20070123936 Goldin et al. May 2007 A1
20070260268 Bartee et al. Nov 2007 A1
20070265704 Mayer Nov 2007 A1
20080009902 Hunter et al. Jan 2008 A1
20080033461 Koeckerling et al. Feb 2008 A1
20080195231 Ory et al. Aug 2008 A1
20080200950 Wohlert Aug 2008 A1
20080206305 Herweck Aug 2008 A1
20080208079 Hein et al. Aug 2008 A1
20080255593 St-Germain Oct 2008 A1
20080281357 Sung et al. Nov 2008 A1
20090024147 Ralph et al. Jan 2009 A1
20090163938 Bonutti Jan 2009 A1
20090082792 Koyfman et al. Mar 2009 A1
20090112236 Stopek Apr 2009 A1
20090187197 Roeber et al. Jul 2009 A1
20090192532 Spinnler et al. Jul 2009 A1
20090204129 Fronio Aug 2009 A1
20090216075 Bell et al. Aug 2009 A1
20090216338 Gingras et al. Aug 2009 A1
20090228021 Leung Sep 2009 A1
20090240267 Crawley et al. Sep 2009 A1
20090240343 Adams Sep 2009 A1
20090248067 Maiorino Oct 2009 A1
20090248070 Kosa et al. Oct 2009 A1
20090299407 Yuan et al. Dec 2009 A1
20090306681 Del Nido et al. Dec 2009 A1
20100191044 Gobron Jul 2010 A1
20100211097 Hadba et al. Aug 2010 A1
20100255447 Biris et al. Oct 2010 A1
20100268272 Kirsch et al. Oct 2010 A1
20100274283 Kirsch et al. Oct 2010 A1
20100292719 Ducharme Nov 2010 A1
20110028995 Miraki et al. Feb 2011 A1
20110082478 Glick Apr 2011 A1
20110130774 Criscuolo et al. Jun 2011 A1
20110160527 Khamis Jun 2011 A1
20110172760 Anderson Jul 2011 A1
20110238094 Thomas et al. Sep 2011 A1
20110276090 Berndt et al. Nov 2011 A1
20110282365 Hadba et al. Nov 2011 A1
20110282386 Friedrich et al. Nov 2011 A1
20110288565 Kubiak et al. Nov 2011 A1
20110288566 Kubiak Nov 2011 A1
20120010637 Stopek et al. Jan 2012 A1
20120027804 Odermatt et al. Feb 2012 A1
20120029538 Reeser Feb 2012 A1
20120053399 Rao et al. Mar 2012 A1
20120082712 Stopek et al. Apr 2012 A1
20120094004 Stopek et al. Apr 2012 A1
20120094005 Stopek et al. Apr 2012 A1
20120165937 Montanari et al. Jun 2012 A1
20120172926 Hotter et al. Jul 2012 A1
20120179175 Hammell Jul 2012 A1
20120197415 Montanari et al. Aug 2012 A1
20120310278 Marczyk et al. Dec 2012 A1
20120330093 Odermatt et al. Dec 2012 A1
20130018393 Bengtson Jan 2013 A1
20130102959 Stopek et al. Apr 2013 A1
20130103060 Stopek et al. Apr 2013 A1
20130138124 Criscuolo et al. May 2013 A1
20130158571 Meneghin et al. Jun 2013 A1
20130158572 Meneghin et al. Jun 2013 A1
20130172915 Thomas et al. Jul 2013 A1
20130184722 Stopek et al. Jul 2013 A1
20130190785 Koyfman et al. Jul 2013 A1
20130204277 Fabry et al. Aug 2013 A1
20130218125 Stopek et al. Aug 2013 A1
20130231688 Paul Sep 2013 A1
20130231702 Hadba et al. Sep 2013 A1
20130261542 Elachchabi et al. Oct 2013 A1
20130261594 Stopek et al. Oct 2013 A1
20130331792 Karp et al. Dec 2013 A1
20140046348 Soltanian Feb 2014 A1
20140066958 Priewe Mar 2014 A1
20140081295 Lau et al. Mar 2014 A1
20140094829 Kostrezewski Apr 2014 A1
20140094830 Sargeant Apr 2014 A1
20140094831 Thomas et al. Apr 2014 A1
20140142368 Arnal et al. May 2014 A1
20140142520 Stopek et al. May 2014 A1
20140222164 Hotter et al. Aug 2014 A1
20140224094 Cohen et al. Aug 2014 A1
20140228867 Thomas et al. Aug 2014 A1
20144228867 Thomas et al. Aug 2014
20140257348 Priewe et al. Sep 2014 A1
20140257517 Deichmann et al. Sep 2014 A1
20150012089 Shetty Jan 2015 A1
20150040534 Hadba et al. Feb 2015 A1
20150119933 Kosa et al. Apr 2015 A1
20150133998 Cohen et al. May 2015 A1
20150245837 Bonutti Sep 2015 A1
20150313700 Rizk Nov 2015 A1
20160022405 Spinnler et al. Jan 2016 A1
20160262749 Kirsch et al. Sep 2016 A1
20160374791 Lecuivre Dec 2016 A1
20160374792 Lecuivre et al. Dec 2016 A1
20170189158 Lecuivre Jul 2017 A1
20170202654 Paul Jul 2017 A1
20170209251 Francois Jul 2017 A1
20170231740 Peery Aug 2017 A1
20170319203 Cohen et al. Nov 2017 A1
20180008390 Montanari et al. Jan 2018 A1
20180161141 Priewe et al. Jun 2018 A1
20180235740 Deichmann et al. Aug 2018 A1
20180250007 Bonutti Sep 2018 A1
Foreign Referenced Citations (31)
Number Date Country
103705276 Apr 2014 CN
103874465 Jun 2014 CN
198 32 634 Jan 2000 DE
0 276 890 Aug 1988 EP
1 274 892 Nov 2009 EP
2 143 836 Jan 2010 EP
2 229 918 Sep 2010 EP
2 567 715 Sep 2011 EP
2 798 105 Dec 2011 EP
2 514 862 Oct 2012 EP
2 712 577 Apr 2014 EP
2 753 370 Jul 2014 EP
2 744 934 Oct 2018 EP
2 798 106 Oct 2018 EP
2 712 177 May 1995 FR
WO 2006116000 Nov 2006 WO
WO 2007120138 Oct 2007 WO
WO 2009132284 Oct 2009 WO
WO 2012007579 Jan 2012 WO
WO 2013026682 Feb 2013 WO
WO 2013034641 Mar 2013 WO
WO 2013049799 Apr 2013 WO
WO 2013098343 Jul 2013 WO
WO 2013098345 Jul 2013 WO
WO 2013098347 Jul 2013 WO
WO 2013139482 Sep 2013 WO
WO 2014001432 Jan 2014 WO
WO 2014048922 Apr 2014 WO
WO 2014139633 Sep 2014 WO
WO 2014139635 Sep 2014 WO
WO 2016141183 Sep 2016 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion for International Application No. PCT/US2018/056696, dated Feb. 11, 2019.
International Preliminary Report on Patentability for International Application No. PCT/US2018/056696, dated Apr. 30, 2020.
Chinese Office Action dated Feb. 16, 2022, in connection with Chinese Application No. 201880074867.8.
Related Publications (1)
Number Date Country
20190117363 A1 Apr 2019 US
Provisional Applications (1)
Number Date Country
62574525 Oct 2017 US