The present invention generally relates to beds, and more particularly to mattresses, particularly self-inflating mattresses, which may be inflated without using external tools.
Individuals who lack mobility may spend hours in a single position. This may cause high point pressure contact at bony prominences, which are areas of the body, such as, the shoulder blades, sacrum, and heels, that have a relatively thin layer of skin over bone. This, in turn, may cause a reduction of blood flow and skin breakdown, leading to decubitus ulcers.
Inflatable mattresses may distribute a user's weight over an area to reduce high point pressure contact. There are generally two types of inflatable mattresses: these are low air loss mattresses and alternating pressure mattresses.
Low air loss mattresses may be made up of air cells having a surface through which air is constantly lost. These mattresses are supported by the provision of a continuous air supply. Low air loss mattresses often include a plurality of zones, typically head, seat, and foot zones. Optimally, the mattress surface conforms to the user's anatomy to reduce high point pressure contact.
Alternating pressure mattresses are made up of air cells arranged so that adjacent air cells are alternately inflated and deflated so that areas of the user's body in contact with the cells are alternately at high and low pressures.
This invention relates to a mattress that includes a plurality of air cells. Each cell has a low air permeability envelope and a foam inflation structure that defines one or more voids inside the low air permeability envelope. The foam inflation structures expand when unloaded to cause inflation of the one or more voids. When unloaded, the ratio of the volume of the foam inflation structure to the volume of the one or more voids within the low air permeability envelope is not the same in all the cells.
This invention also relates to a mattress that includes a plurality of air cells. Each air cell has a low air permeability envelope and a foam inflation structure that defines one or more voids inside the low air permeability envelope. The foam inflation structures expand when unloaded to cause inflation of the one or more voids. When unloaded, the ratio of the volume of the foam inflation structure to the volume of the one or more voids within the low air permeability envelope is not the same in all the cells. The mattress also includes a plurality of zones, with each zone including at least one air cell. The mattress also includes a plurality of check valves, and each zone has a check valve that permits air flow into the air cells in the zone and prevents air flow from the air cells in the zone.
This invention also relates to a mattress that includes a plurality of air cells. Each air cell has a low air permeability envelope and a foam inflation structure that defines one or more voids inside the low air permeability envelope. Each inflation structure expands when unloaded to cause inflation of the one or more voids. When unloaded, the ratio of the volume of the foam inflation structure to the volume of the one or more voids within the low air permeability envelope is not the same in all the cells. The mattress also includes a plurality of zones, and each zone includes at least one air cell. The mattress includes a plurality of groups of air cells, each of the groups of air cells comprising alternating air cells in one zone, and each zone includes air cells in two different groups of air cells. The mattress includes a plurality of check valves, with each of the check valves permitting air flow into the air cells in one of the group of air cells and preventing air flow from the air cells in the same group of air cells.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Referring now to the drawings, there is illustrated in
The mattress 10 shown has three different zones, namely a head zone 12, a seat zone 14, and a foot zone 16. Each zone 12, 14, 16 may include one or more air cells 18, 20, 22. The cells 18, 20, 22 may be connected to other cells in the same zones 12, 14, 16 but not to cells in other zones each other via hoses 23 to check valves 24, which allow one way air flow to permit air to enter but not exit the cells 18, 20, 22. A surround 26 and topper 28 are preferably formed from a resilient material that provides improved pressure relief and support to increase user comfort. The surround 26 and topper 28 may be covered by an anti-bacterial, anti-fungal top cover 30 that may be formed from a material that is fluid, stain and odor resistant. The cover 30 may include one or more ties 32, as shown in
In
It should be appreciated that the cells 18, 20, 22 may be tuned, for example, by varying the amount of foam in the cells 18, 20, 22. By varying the amount of foam in the cells 18, 20, 22, differential volumes of air may be established in each of the zones 12, 14, 16. For example, the cells 20 in the seat zone 16 may have the least amount of foam, the cells 18 in the head zone 18 may have more foam than the cells 20 in the seat zone 16 (i.e., a medium amount of foam), and the cells 22 in the foot zone 16 may have the most foam. These cell configurations are represented in
Tuning of the cells 18, 20, 22 may be done in any suitable manner. For example, measurements may by taken using a conventional low air loss mattress to determine the amount of air in corresponding head, seat and foot zones with an average user resting on the mattress. In doing so, it was found that the air cells in the seat zone, which supports the user's main torso, which makes up most of the user's total body mass, have the least volume of air. The head zone air cells have a greater volume of air than the seat zone air cells because the head zone air cells support the user's upper torso, which is made up of the user's upper chest, shoulders, and head, which are lighter than the user's main torso. The air cells in the foot zone have the greatest volume of air because the user's legs are lighter than the main and upper torsos and thus form the least amount of the user's total body mass.
The aforementioned measurements may be used to determine the amount of air needed in each cell 18, 20, 22 of the exemplary mattress 10 so as to simulate the feel of a conventional low air loss mattress. A corresponding relationship may be established between the amount of air needed in each cell 18, 20, 22 and the amount of foam in each cell 18, 20, 22. The foam in the cells 18, 20, 22 in each zone 12, 14, 16 may be varied in any suitable manner. For example, the cells 18, 20, 22 shown in
To aid in assembly of the mattress 10, the foam inserts 34, 36, 38 may be differentiated from one another, for example, by the absence or presence of one or more identifiers, such as the minor marking notches shown but not referenced in the drawings. The absence or presence of identifiers functions as coding for the foam elements 34, 36, 38.
Referring back to
As further shown in
In
It should be appreciated that, as the mattress 10 supports a user over a period of time, air in the cells 18, 20, 22 may diffuse through the walls 40, 42, 44, causing the cells 18, 20, 22 to deflate, just like a balloon, resulting in compression of the foam inserts 34, 36, 38 in the cells 18, 20, 22, as graphically depicted in
When in use, the inflated mattress 10 exhibits slow leakage of air. The air loss may be caused by diffusion, pinhole leaks, leaks through valves and tubing or hose connections, and the like. The leakage is compensated for by an automated refill function, without requiring an external tool.
The automated refill function is provided by the foam inserts 34, 36, 38. The foam inserts 34, 36, 38 function as an internal rebound or inflation structure, which causes inflation of the cells 18, 20, 22 by drawing air through the check valves 24 when the mattress 10 is not in use. The inserts 34, 36, 38 are preferably formed from any suitable memory material that provides sufficient resiliency to restore the cells 18, 20, 22 to their nominal shape.
The pressure in each cell 18, 20, 22 may increase to equal the pressure required to support the user. That is, the average pressure on the user may equal the weight of the user divided by the mattress surface area contacted. By controlling the initial volume of air within a cell 18, 20, 22 via the shape of the foam inserts 34, 36, 38, the compliance of the cell 18, 20, 22 may be determined, and when the user lies on the mattress 10, the area contacted may be correspondingly determined, allowing the controlled distribution of pressure over the body of the user.
The major support properties of the cells 18, 20, 22 are defined by the volume of air in the cells 18, 20, 22 and the cell walls 40, 42, 44. The cell walls 40, 42, 44 are relatively flaccid when the mattress 10 is not in use. Although the cell wall 40, 42, 44 of each cell 18, 20, 22 is preferably similar, regardless of the foam insert size and shape, under various conditions, different cell wall configurations may be employed.
Although the air inside the cells 18, 20, 22 is preferably the most significant factor in determining the support characteristics of the cells 18, 20, 22, the foam inserts 34, 36, 38 may make some contribution to the support characteristics and feel of the mattress 10. However, the inserts 34, 36, 38 are principally provided to inflate the mattress 10. Since the foam inserts 34, 36, 38 expand the cells 18, 20, 22 when unloaded, it is possible to keep the pressure contribution of the foam inserts 34, 36, 38 to a low level.
Each cell 18, 20, 22 is preferably individually tuned to a particular air volume so that regional control over support provided by the mattress 10 can be achieved. The air cells 18, 20, 22 are aligned transversely to the longitudinal axis of the mattress 10 and arranged in zones to provide regionally varying properties. By arranging the cells 18, 20, 22 transversely, various pressure zones may be defined along the length of the user's body. Although head, seat and foot zones are described, various numbers of zones and zone geographies may be provided.
The different zones may differ in the amount of foam in the cells, and generally the ratio of foam volume to void volume within the cells. Although the foam may generally make some contribution to the support surface characteristics, by controlling the mechanical characteristics and configuration of the foam, this contribution may be as desired, which is preferably as minimal as possible while assuring reliable inflation of the cells when the mattress is unloaded.
It should be appreciated that cells 18, 20, 22 within each zone 12, 14, 16 may be linked to the other cells 18, 20, 22 in the same zone 12, 14, 16. This permits a plurality of cells within each zone to be controlled together by a single check valve 24.
The foregoing mattress configuration may function as a conventional powered low air loss mattress, while permitting passive and automated inflation of the cells 18, 20, 22.
Now with reference to
As shown in
In
In
The inner walls 59, 60, 61 of alternating cells 48, 50, 52 in each zone 64, 66, 68 are subject to alternating pressure inflation phases. As shown in
In
In
In
In
In use, the inner walls 59, 60, 61 within the foam inserts 54, 56, 58 of each cell 48, 50, 52 may provide an alternating pressure surface. The inner walls 59, 60, 61 may be actively controlled, for example, to provide a cyclic inflation and deflation. The optionally powered mattress 46 shown has two sets of inner walls 59, 60, 61 that alternately inflate and deflate, sequenced such that cells 48, 50, 52 are inflated before the adjacent cells are deflated, to insure that the user remains actively supported. This, in turn, may alter a pressure distribution on the user over time, and therefore may improve circulation and reduce the incidence of decubitis ulcers and or promote healing of such ulcers. The inner walls 59, 60, 61 are within the outer walls 69, 70, 71, and may be of much smaller volume. The pressure may be controlled by a standard alternating pressure controller pump as alternative therapy, as and when needed, without replacing the optionally powered mattress 46, which is otherwise passive, with another different active mattress/pump combination.
Like the non-powered mattress 10 described above, the mattress 46 may have a perimeter surround 76 and a topper 78 and be covered with a cover 79, which may function as an environmental barrier. Each air cell 48, 50, 52 may be connected via a hose 80 to form plural zones, such as the head, seat, foot zones 64, 66, 68. The cells in each zone 64, 66, 68 may have a different volume of foam that translates into a different captured air volume upon inflation. That results in a different firmness for each zone 64, 66, 68 and is similar in feel to more costly therapy mattress that incorporate active control over zone pressure.
The inner wall 59, 60, 61 may be formed integrally with the outer walls 69, 70, 71 of each cell 48, 50, 52. In this case, during manufacture, a polyurethane sheet may be radio frequency welded into two concentric spaces, with a respective port formed to communicate with each space. The foam inserts 54, 56, 58 may be inserted within an inner space in a hollow region between the inner wall 59, 60, 61 and the outer wall 69, 70, 71.
The present invention is also applicable to non-medical mattresses and other ergonomic support surfaces, such as beds, couches, chairs, lounges, and the like.
Although the invention is illustrated and described herein as embodied in a foam-filled air cell mattress, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims the benefit of U.S. patent application Ser. No. 11/704,769, filed on Feb. 9, 2007, which claimed the benefit of U.S. Provisional patent application No. 60/772,453, filed on Feb. 10, 2006. The disclosures of both applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2886834 | Gilbertson | May 1959 | A |
5267364 | Volk | Dec 1993 | A |
5634225 | Miller et al. | Jun 1997 | A |
6014784 | Taylor et al. | Jan 2000 | A |
6269505 | Wilkinson | Aug 2001 | B1 |
6564411 | Pirzada | May 2003 | B2 |
6839929 | Stolpmann | Jan 2005 | B2 |
20020116766 | Stolpmann | Aug 2002 | A1 |
20030110568 | Stolpmann | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20130000048 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
60772453 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11704769 | Feb 2007 | US |
Child | 13610137 | US |