Williams et al., Nuc. Acids Res. 18(22):6531-6535, Nov. 25, 1990.* |
Welsh et al., Nuc. Acids Res. 19(2):303-306, Jan. 25, 1991.* |
Welsh et al., Nuc. Acids Res. 19(19):5275-5279, Oct. 11, 1991.* |
Welsh et al., Nuc. Acids Res. 20(19):4965-4970, Oct. 11, 1992.* |
Sommer et al. Nuc. Acids Res. 17:6749, 1989.* |
Bischofberger, et al., Nucleic Acids Research, (1987) vol. 15:2 pp. 709-716 “Cleavage of single stranded oligonucleotides by EcoRI restriction endonuclease”. |
Brigati, et al., Virology, (1983) vol. 126: pp. 32-50 “Detection of Viral Genomes in Cultured Cells and Paraffin-Embedded Tissue Sections Using Biotin-Labeled Hybridization Probes”. |
Bugawan, et al., Bio/Technology, (Aug. 1988) vol. 6: pp. 943-947 “The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing”. |
de Jong, et al., Publication by Lawrence Livermore Labs, (PCR User Meeting Jan. 16, 1990, San Francisco, CA) “Isolation of Region-Specific Probes by ALU-PCR and Coincidence Cloning”. |
Fahrlander, et al., Bio/Technology, (Oct. 1988) vol. 6: pp. 1165-1168 “Amplifying DNA probe signals: A ‘Christmas Tree’ approach”. |
Frohman, et al., Proc. Natl. Acad. Science USA, (Dec. 1988) vol. 85, pp. 8998-9002 “Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer”. |
Goldkorn, et al., Nucleic Acids Research, (1986) vol. 14:22, pp. 9171-9191 “A simple and efficient enzymatic method for covalent attachment of DNA to cellulose. Application for hybridization-restriction analysis and for in vitro synthesis of DNA probes”. |
Langer, et al., Proc. Natl. Acad. Science USA, (Nov. 1981) vol. 78:11 pp. 6633-6637 “Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes”. |
Lizardi, et al., Bio/Technology, (Oct. 1988) vol. 6: pp. 1197-1202 “Exponential amplification of recombinant-RNA hybridization probes”. |
Nelson, et al., Proc. Natl. Acad. Science USA, (Sep. 1989) vol. 86: pp. 6686-6690 Alu Polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. |
Paabo, et al., The Journal of Biological Chemistry, (1990) vol. 265:8 pp. 4718-4721 “DNA Damage Promotes Jumping between Templates during Enzymatic Amplification”. |
Parks, et al., Nucleic Acids Research, (1991) vol. 19:25 pp. 7155-7160 “A polymerase chain reaction mediated by a single primer: cloning of genomic sequences adjacent to a serotonin receptor protein coding region”. |
Saiki, et al. Science, (Dec. 1985) vol. 230: pp. 1350-1354 “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia”. |
Saiki, et al. Science, (Jan. 1988) vol. 239 pp. 487-491 “Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase”. |
Strobel, et al., Molecular and Cellular Biology, (Jul. 1986) vol. 6:7 pp. 2674-2683 “Intron Mutations Affect Splicing of Saccharomyces cerevisiae SUP53 Precursor tRNA”. |
Stoflet, et al., Science, (Jan. 1988) vol. 239 pp. 491-494 “Genomic Amplification with Transcript Sequencing”. |
Timblin, et al., Nucleic Acids Research, (1990) vol. 18:6, pp. 1587-1593 “Application for PCR technology to subtractive cDNA cloning: identificatin of genes expressed specifically in murine plasmacytoma cells”. |
Wang, et al., DNA and Cell Biology, (1991) vol. 10:10 pp. 771-777 “Single Primer-Mediated Polymerase Chain Reaction: Application in Cloning of Two Different 5′-Untranslated Sequences of Acidic Fibroblast Growth Factor mRNA”. |
Watson, et al., Molecular Biology of the Gene, Fourth Edition, The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA pp. 939-941 “Reverse Transcriptase Generates Long Terminal Repeats in Proviral DNA”. |