This specification relates to offshore structures, for example, offshore structures to support hydrocarbon recovery equipment.
Hydrocarbons can be developed from onshore and offshore facilities. Offshore facilities can be supported by either floating platforms or fixed platforms. Fixed platforms are attached to the seafloor by either suction piles, a foundation, or the weight of the platform itself. These platforms may be installed at their required offshore location with the assistance of heavy-lift, floating crane vessels.
This specification describes technologies relating to self-installing offshore platforms.
Certain aspects of the subject matter described here can be implemented as an off-shore platform. A self-installing offshore platform includes a top deck that supports an offshore facility during both a deployed state and an undeployed state of the self-installing offshore platform, a column having a top end and a bottom end, the top end connected to the top deck, the column that supports the top deck to maintain the top deck above water in a water body in both the deployed state and the undeployed state of the self-installing offshore platform, a skirt connected to the bottom end of the column, the skirt residing above a floor of the water body in the undeployed state of the self-installing offshore platform and residing on the floor of the water body in the deployed state of the self-installing offshore platform, and a ballastable float positioned between the top deck and the skirt, the ballastable float floating in the water when the self-installing offshore platform transitions from the undeployed state to the deployed state.
In the deployed state, the ballastable float is can be ballasted to sink in the water to the skirt. The ballastable float floats to a surface of the water when the self-installing offshore platform transitions from the deployed state to the undeployed state. The ballastable float can include an annular opening. The column is able to pass through the annular opening. The column can contain an annular moonpool configured to pass a vertical top-tensioned riser from the top deck to the floor of the water body. Rollers can connect the column and the ballastable float. The rollers can controllably move the column through the opening in the ballastable float. The rollers control a rate at which the column moves through the opening in the ballastable float. The rollers can also control a direction in which the column moves through the opening in the ballastable float. The offshore facility includes at least one of a hydrocarbon recovery facility, offshore wind turbine, navigational equipment or security-related equipment.
Certain aspects of the subject matter described here can be implemented as a method. In a vertically-oriented self-installing offshore platform that includes a top deck, a column connected to the top deck, a skirt connected to the column, and a ballastable float positioned between the top deck and the skirt, the self-installing offshore platform is deployed in a vertical orientation toward a floor of a water body from a surface of the water body, and in response to the self-installing offshore platform being deployed on the floor of the water body, the ballastable float is ballasted to sink towards the skirt.
Deploying the self-installing offshore platform includes lowering the top deck, the column and the skirt toward the floor of the water body. A rate at which the top deck, the column and the skirt are lowered toward the floor of the water body is controlled. The skirt contacts the floor of the water body when the self-installing offshore platform is deployed. The self-installing offshore platform is towed in the vertical orientation to a destination in the water body. The self-installing offshore platform is positioned in the vertical orientation before towing the self-installing offshore platform to the destination. The self-installing offshore platform is undeployed in a vertical orientation away from a floor of a water body towards a surface of the water body to an undeployed state. The ballastable float is de-ballasted to rise towards the top deck. Undeploying of the self-installing offshore platform includes raising the top deck, the column and the skirt toward the surface of the water body. A rate at which the top deck, the column and the skirt are raised away from the floor of the water body is controlled. The undeployed state includes the self-installing platform floating on the surface the body of water.
Certain aspects of the subject matter described here can be implemented as a method. In a vertically-oriented self-installing offshore platform that includes a top deck, a column connected to the top deck, a skirt connected to the column, and a ballastable float positioned between the top deck and the skirt, the top deck, column, and skirt are lowered in a vertical orientation toward a floor of a water body from a surface of the water body, and in response to the self-installing offshore platform being lowered on the floor of the water body, the ballastable float is ballasted to sink towards the skirt.
The details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the subject matter will become apparent from the description, the drawings, and the claims.
Like reference numbers and designations in the various drawings indicate like elements.
Certain fixed offshore structures utilize steel jacket substructures to support the topsides facilities. Certain other offshore installations utilize a substructure manufactured from reinforced concrete. Concrete, gravity-based structures rely on their own weight to resist any lateral environmental loads. The topsides structure is similar to that for steel-jacket structures, that is, it is either an integrated steel-deck configuration or is of modular construction with a module support frame. Gravity-based structures are often constructed with reinforced concrete and typically consist of a cellular base surrounding several unbraced columns that extend upward from the base to support the topsides superstructure above the water surface.
Typical offshore gravity-based structures are large in comparison to steel jacket structures. The large size and large environmental forces can cause design problems. The structural design requirements include the categories of material quality, strength, and serviceability. Most gravity-based structures are designed for several functions, namely combined drilling, production, and hydrocarbon storage. The design is targeted to minimize resistance to environmental loads while providing adequate support for the topsides structure. Typically, using a range of national and international engineering standards, materials, and specifications, the structure is designed to meet the criteria laid down for the ultimate progressive collapse, fatigue, and serviceability limit states.
This specification describes a self-installing gravity-based platform that employs a purpose-built installation aid which prevents ratcheting effects and helps control the lowering process during installation. The self-installing platform includes the following components: a top deck, a column, a float, rollers, and a skirt. The platform is capable of floating substantially on the surface of a water body, that is, the platform can have a draft of less than fifty feet, in a vertical position as it is towed from an onshore location to a preferred, offshore location for deployment in the water body. A “draft” is defined as the distance between the keel (bottom most part of the platform) and the surface of the water body. Once the desired location is reached, the platform is capable of deploying itself by transitioning from an undeployed state at the surface of a water body to a deployed state at the floor of the water body. The self-installing platform can be utilized for any number of applications including, but not limited to, hydrocarbon production, drilling, supporting a wind-turbine, supporting leisure facilities, combinations of them or other applications. The self-installing platform can be configured to utilize either dry or wet trees if the self-installing platform is utilized for hydrocarbon production.
By implementing the self-installing platform described here, offshore platforms can be built and installed more quickly and easily over current designs. The self-installing aspect of the self-installing platform allows deployment with smaller vessels and eliminates the risks associated with heavy lifts offshore. In some implementations, the self-installing platform can be re-usable, that is, once the self-installing platform is no longer needed, it can be moved to a new location. The re-usability and versatility of the self-installing platform further reduces life-cycle costs associated with a fleet of platforms. The self-installing platform has several advantages including quayside integration of topsides equipment, elimination of the need for a heavy lift vessel, elimination of the need for barge transport, reduction of time for offshore hook-up & commissioning, free floating stability, stability during installation sequence, acceptable vessel motion during applicable sea-states, and a stable foundation. All of the aforementioned advantages help reduce installation costs and safety risks.
Self-installing platform 100 can be constructed from formed concrete, reinforced concrete, steel, or any combination of common marine structure building materials. The column 108, skirt 110, and the top deck 102 can be constructed in a variety of shapes. For example, the skirt 110 could be constructed to be substantially circular or substantially square. Similarly, the column 108 could be cylindrical or rectangular. In dry-tree applications (hydrocarbon production), the skirt 110 can be U-shaped to allow a slipover-type installation around an existing conductor system. Also, the float 106 can have a variety of shapes, so long as the float 106 surrounds the column 108 and is able to connect to the column 108 through the rollers 104.
The top deck 102 can be utilized for a variety of applications, such as a hydrocarbon recovery facility, a drilling facility, an offshore wind turbine support, a leisure facility, navigational support equipment, security-related equipment, or any other offshore facility. In some implementations, facilities can be pre-installed on the top deck 102 before the self-installing platform 100 is deployed. The top deck can support 2-3 levels of facilities depending on the weight of the facilities.
The column 108 can be of sufficient length to keep the top deck 102 above the surface 112 of the water body 116 when the self-installing platform 100 is deployed. In some implementations, the column 108 can be constructed with isolatable internal compartments. The self-installing platform 100 can be deployed into a water body 116 up to 300 feet deep. The column is constructed of concrete, metal, or a combination of the two. In some implementations, the column 108 can be hollow to allow the self-installing platform 100 to have a moonpool. The moonpool can be utilized to run production risers or similar piping if the self-installing platform 100 is utilized as a production platform.
The skirt 110 can support the self-installing offshore platform 100 when the self-installing platform 100 is deployed. The skirt 110 can be thick enough and cover a large enough area for the self-installing platform 100 to survive an extreme storm event, such as a one hundred year storm. In some implementations, the skirt 110 can be constructed with isolatable internal compartments. Metocean data can be provided by government agencies or developed by companies to define what criteria are considered for such extreme storm events. In some examples, when the self-installing platform 100 is in an undeployed state, that is, the self-installing platform 100 is floating in a vertically-oriented position with a draft of, for example, 26 feet. The skirt 110 is designed to help maintain stability of the self-installing platform. The skirt 110 can be designed for both the deployed and undeployed states of the self-installing platform 100. In some implementations, such as the implementation illustrated in
The rollers 104 control motion through friction. The required amount of friction is obtained through a braking system controlled by an installation team during placement operations. The rollers have sufficient strength to support the entire weight of the self-installing platform 100 from the float 106, that is, when in an undeployed state, the rollers 104 prevent the top deck 102, the column 108, and the skirt 110 from sinking into the body of water 116. When deploying the self-installing platform 100, the rollers control the rate and direction of descent of the skirt 110, the column 108, and the top deck 102. In some implementations, a ballasting rate can be used to control the rate of decent. The rollers are able to control the rate of decent through friction obtained through an integrated braking system. In some implementations, the rollers 104 is removed after the self-installing platform has contacted the floor 114 of the water body 116. Removing the rollers 104 prevents them from deteriorating in the marine environment. In some implementations, the rollers 104 are capable of raising or recovering the self-installing platform 100 and are capable of lifting the top deck 102, the column 108, and the skirt 110 back to their undeployed positions. In such implementations, the rollers 104 include motors capable of lifting the platform components.
The float 106 surrounds the column 108 and is positioned between the skirt 110 and the top-deck 102. In other words, the float 106 includes an annular opening for the column to pass through. The float 106 is connected to the column 108 through the rollers 104. The float 106 is ballastable, that is, a buoyancy of the float 106 can be changed on demand. The buoyancy can be changed, for example, by opening a valve and flooding the ballastable float 106. In some implementations, the column 108 is ballastable as well. When the self-installing platform 100 is in the undeployed state, the float 106 is positioned along the column 108 atop the skirt 110. In the undeployed state, the float 106, column 108, and skirt 110 have a combined net buoyancy force sufficient to support the weight of the entire self-installing platform 100 on the surface 112 of the water body 116. When the self-installing platform 100 is transitioned from the undeployed state to the deployed state, the float 106 is ballasted to sink towards the floor 114 of the water body 116. When the self-installing platform 100 is in the deployed state, the float 106 is also positioned along the column 108 adjacent to the skirt 110, for example, to rest on top of the skirt 110. In some implementations, a damping plate can be added to the float 106 to reduce wave-induced motions and allow installation in more severe sea-states. In some implementations, the float 106 can be outfitted with a temporary buoyancy module 118 for additional stability. Details of the transition between the deployed and undeployed states of the self-installing platform 100 are described later in this specification.
For the undeployed self-installing platform 100 to be stable during towing, certain criteria should be met. Different regions have different criteria that the undeployed self-installing platform 100 must meet. The requirements deal with the stability of the undeployed self-installing platform 100 in various sea-states, for example, a one year storm. Different regions have different met-ocean characteristics, for example, a 30 year storm in the Gulf of Mexico is different from a 30 year storm in the Arabian Gulf. The undeployed self-installing platform 100 must be able to handle whatever conditions coastal regulators have stipulated for each individual region; for example, in the Arabian Gulf, the undeployed self-installing platform 100 may be designed to survive a 1 year storm during towing.
The various dimensions of the undeployed self-installing platform 100 play a significant role in towing stability. For example, a key factor in a floating platform's stability is called the metacentric height (GM), which is the distance between the platform's center of gravity (G) and its metacenter (M). The metacenter is the point of intersection of an imaginary line drawn from G through the equilibrium center of buoyancy of the floating system and a vertical line drawn through the new center of buoyancy when the platform is tilted. For a floating platform to stay stable, the center of buoyancy must stay above the center of gravity, that is, GM must be a positive number. The greater the GM, the more stable the platform is. If a vessel has a GM that is a negative number, that is, the center of gravity is above the center of buoyancy, then the vessel will likely invert (capsize or flip over). Regulators may have a minimum GM requirement for platform stability, for example, 3 ft. The undeployed self-installing platform 100 can have a GM greater than 5 feet. The undeployed self-installing platform 100 has a stability similar to permanently floating platforms, such as truss-spars. In order to produce such a stable GM, the weight of the skirt must be sufficiently higher than the column 108, the top deck 102, and any facilities positioned on the top deck 102, to move the center of gravity below the center of buoyancy. The requirement for increased weight conveniently tends to increase the lateral dimensions of the skirt 110 as well. The increased lateral dimensions of the skirt 110 aids in supporting the self-installing platform 100 once it is deployed.
At 308, the top deck 102, the column 108, and the skirt 110 are all lowered towards the floor 114 of the body of water 116 to deploy the self-installing offshore platform. In some implementations, at 310, the rate at which the top deck 102, the column 108, and the skirt 110 are all lowered is controlled by the rollers 104 to deploy the self-installing offshore platform [As previously stated, the rollers 104 can control the decent through a friction braking system controlled by an operator.
After the self-installing platform 100 has contacted the floor 114 of the water body 116, the rollers 104 is removed from self-installing platform 100. Referring back to
In some implementations, the self-installing platform 100 is reusable.
In some implementations, such as the implementation shown in
Thus, particular implementations of the subject matter have been described. Other implementations are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2953904 | Christenson | Sep 1960 | A |
3138932 | Kofahl et al. | Jun 1964 | A |
3191388 | Ludwig | Jun 1965 | A |
3277653 | Foster | Oct 1966 | A |
3294051 | Khelstovsky | Dec 1966 | A |
3389562 | Mott et al. | Jun 1968 | A |
3515259 | Before | Jun 1970 | A |
3535884 | Chaney | Oct 1970 | A |
3572044 | Pogonowski | Mar 1971 | A |
3575005 | Sumner | Apr 1971 | A |
3610193 | Lacy et al. | Oct 1971 | A |
3624702 | Meheen | Nov 1971 | A |
3797256 | Giblon | Mar 1974 | A |
4000624 | Chow | Jan 1977 | A |
4040256 | Bosche et al. | Aug 1977 | A |
4117691 | Spray | Oct 1978 | A |
4155671 | Vos | May 1979 | A |
4156577 | McMakin | May 1979 | A |
4161376 | Armstrong | Jul 1979 | A |
4227831 | Evans | Oct 1980 | A |
4271412 | Glass et al. | Jun 1981 | A |
4451174 | Wetmore | May 1984 | A |
4534678 | Nakazato | Aug 1985 | A |
4666341 | Field | May 1987 | A |
4711601 | Grosman | Dec 1987 | A |
4983074 | Carruba | Jan 1991 | A |
5188484 | White | Feb 1993 | A |
6612781 | Jackson | Sep 2003 | B1 |
20020154954 | Huang | Oct 2002 | A1 |
20050084336 | Xu et al. | Apr 2005 | A1 |
20060275080 | Li et al. | Dec 2006 | A1 |
20090191002 | Stubler | Jul 2009 | A1 |
20100024705 | Leverette | Feb 2010 | A1 |
20100150660 | Nadarajah | Jun 2010 | A1 |
20110158750 | Reichel et al. | Jun 2011 | A1 |
20110305523 | Karal | Dec 2011 | A1 |
20120216737 | Luo | Aug 2012 | A1 |
20130092069 | Xie | Apr 2013 | A1 |
20130298815 | Bussemaker | Nov 2013 | A1 |
20140308080 | Youman et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2457536 | Jun 1976 | DE |
2016514779 | May 2016 | JP |
2010085970 | Aug 2010 | WO |
WO2015170098 | Nov 2015 | WO |
Entry |
---|
International Search Report and Written Opinion in International Application No. PCT/US2018/016854 dated Apr. 5, 2018, 16 pages. |
Number | Date | Country | |
---|---|---|---|
20180230662 A1 | Aug 2018 | US |