Horizontal sliding doors, which actually may slide or roll, usually include one or more door panels suspended by carriages that travel along an overhead track. The carriages allow the door panels to slide or roll in a generally horizontal direction in front of a doorway to open and close the door. The door may be manually or automatically moved from its open and closed position. Sliding doors such as these are often used with storage structures such as barns.
Depending on the width of the doorway and the space along either side of it, a sliding door can assume a variety of configurations. For a relatively narrow doorway with adequate space alongside to receive an opening door panel, a single door panel is typically enough to cover the doorway. Wider doorways with limited side space may require a bi-parting sliding door that includes at least two panels each moving in the same plane in opposite directions from either side of the doorway and meeting at the center of the doorway to close the door. For even wider doorways or those with even less side space, multi-panel sliding doors can be used. Multi-panel doors have at least two parallel door panels that overlay each other at one side of the doorway when the door is open. To close the door, one panel slides out from behind the other as both panels move in front of the doorway to cover a span of about twice the width of a single panel. Applying such an arrangement to both sides of the doorway provides a bi-parting door with multiple panels on each side.
If any of these door arrangements are not properly secured, wind damage can occur. In fact, a sudden gust of wind may dislodge the doors from the track or tracks. Such wind damage may also cause deformation or damage to the frame or the door itself in cases where the door is inadequately supported. Thus, a more secure door configuration both in the open position, as well as the closed position is needed, among other things.
The invention is generally directed to locking and securing assemblies, which among other things, address the aforementioned needs, simplify the procedures for latching and locking and reduce the steps required to provide access without compromising security.
In some embodiments, the invention is directed to a latching and locking system for sliding doors, which generally includes various components, such as a latch assembly, a lifting rod assembly, a door catch and a retainer system.
In one embodiment, the latch assembly is designed to add the ability to lock and secure large sliding doors from the exterior as well as the interior of a building by combining multiple functions and actions through a single device. In another embodiment, the locking system includes a latch assembly, which includes a lockset on the exterior, a lifting rod assembly, a door catch, and a retainer system. The door can be unlocked using a key from the exterior of the door. The key immediately releases the handle restriction, and the handle operation unlatches the panels and disengages the lifting rod assembly, so that the operator can walk the panel to the opening jamb, where the door retainer automatically latches the panel in the open position. The lifting rod assembly is normally in the lower position so that it does not affect travel along the upper trolley track. When the handle is turned by the user, the lift bolt is raised up into the track and at that point it pushes the latch plate mechanism up and over the door stop that has latched the door in place. The door can be unlocked from the interior without a key. If the door is a double paneled door, the same operation is done for the second door.
For the door to close, the retainer must be released and the door slides and stops due to a stop at the end of the trolley travel, so that the panel remains in the closed position. The retainer catch serves to draw the door in tighter against the building and prevent the door from being pulled away in high winds. When in the closed position, the latch plate mechanism in the trolley stops on a door stop in the trolley track above the door header. In the single panel configuration, the latch assembly primary purpose is to prevent the door from opening. If the door has two panels, a similar door stop will stop each door, and the latch assemblies prevent each door from opening.
Some embodiments are directed to a latch assembly which includes: a support member mounted in a movable body, wherein the movable body is mounted on a structural frame for movement in an interior space defined by the structural frame into and between a substantially open position and a substantially closed position; a latching arm, including a proximal end pivotally mounted to the support member and configured to be biased toward a starting position, an intermediate section extending through an aperture in the movable body to a position adjacent to the periphery of the movable body, a distal end adjacent to the periphery of the movable body including an engagement facilitating portion extending in a substantially transverse direction with respect to the longitudinal axis of the intermediate section, the engagement facilitating portion having a sloped outer surface, wherein the engagement facilitating portion and intermediate section define a receiving space adjacent thereto; and an interlocking member extending in an opposing direction with respect to the engagement facilitating portion, wherein movement of the movable body into the closed position causes the interlocking member to contact the sloped outer surface of the engagement facilitating portion, the latching arm being responsive to the contact between the sloped outer surface of the engagement facilitating portion and the interlocking member by pivoting from the starting position and returning to the starting position upon the interlocking member being received by the receiving space.
In some embodiments, the movable body is a sliding door.
In some embodiments, the engagement facilitating portion has a triangular cross-sectional profile. In some embodiments, the engagement facilitating member includes an upper outer surface and a lower outer surface, wherein the upper and lower surfaces are sloped at substantially similar opposing slopes.
In some embodiments, the latching arm is operatively associated with at least one handle extending adjacent to the exterior of the movable body, wherein the latching arm pivots from the starting position in response to movement of the handle.
In some embodiments, the aforementioned latch assembly further includes a locking member configured for being set in an activated condition and a deactivated condition from the exterior of the movable body, wherein the locking member blocks pivotal movement of the latching arm upon being set in the activated condition and allows pivotal movement of the latching arm upon being set in the deactivated condition.
In some embodiments, the interlocking member further comprises a sloped outer surface at a substantially similar opposing slope with respect to the sloped outer surface of the engagement facilitating portion. In some embodiments, the interlocking member is part of a substantially similar opposing latching arm.
In some embodiments, the opposing latching arm is operatively associated with a support member mounted in a substantially similar opposing movable body mounted for movement in the interior space.
Some embodiments of the invention are also directed to a latch assembly which includes: a support member mounted in a sliding door body, wherein the sliding door body is mounted on a door frame for movement in an interior space defined by the door frame, into and between a substantially open position and a substantially closed position; a latching arm, including a proximal end pivotally mounted to the support member and configured to be biased toward a starting position, an intermediate section extending through an aperture in the movable body to a position adjacent to the periphery of the sliding door body, a distal end adjacent to the periphery of the movable body including an engagement facilitating portion extending in a substantially transverse direction with respect to the longitudinal axis of the intermediate section, the engagement facilitating portion having a sloped outer surface, wherein the engagement facilitating portion and intermediate section define a receiving space adjacent thereto; an interlocking member extending in an opposing direction with respect to the engagement facilitating portion, wherein movement of the sliding door body into the closed position causes the interlocking member to contact the sloped outer surface of the engagement facilitating portion, the latching arm being responsive to the contact between the sloped outer surface of the engagement facilitating portion and the interlocking member by pivoting from the starting position and returning to the starting position upon the interlocking member being received by the receiving space; and at least one handle extending adjacent to the exterior of the sliding door body operatively associated with the latching arm, wherein the latching arm pivots from the starting position in response to pivotal movement of the handle.
The latch assembly described above may further include a locking member configured for being set in an activated condition and a deactivated condition from the exterior of the movable body, wherein the locking member blocks pivotal movement of the latching arm upon being set in the activated condition and allows pivotal movement of the latching arm upon being set in the deactivated condition.
In some embodiments, the interlocking member may be part of a substantially similar opposing latching arm. The opposing latching arm may be operatively associated with a support member mounted in a substantially similar opposing sliding door mounted for movement in the interior space. The opposing latching arm is operatively associated with a support member mounted in the door frame. The interlocking member may be connected with the door frame.
Some embodiments of the invention are also directed to a latching retainer device attached to the jamb of a sliding door which extends outward from the jamb into the frame area in the central part of the door that engages a catch near the edge of the door that is beside the opening jamb when the door is closed. This latching device secures the panel at the jamb when the panel is fully closed.
In some embodiments, the aforementioned latching retainer device engages a ramp type bracket attached to the door panel and small rollers on the latching retainer device engage the ramp to slide the device away from the door and along the side of the jamb to allow the vertical frame members of the panel to pass by the retainer device.
In some embodiments, the latching retainer device is actuated by a spring device to keep pressure on the retainer so that it is forced outward at all times unless the force is overcome by the ramp attached to the door panel and drives the retainer backward to allow the vertical members of the panel to slide past the retainer.
In some embodiments, the latching retainer device includes an adjustment feature to position the end of the retainer in the correct location to engage the catch and the ramps.
In some embodiments, the latching retainer device is attached to the jamb of a sliding door which extends outward from the jamb into the frame area in the central part of the door and which drives outward after the vertical member at the edge of the panel has passed the edge of the jamb and latches the door in the open position, which among other things, facilitates a non-friction positive capture of the open panel such that the door cannot slip back partially into the opening and hence be vulnerable to wind damage.
In some embodiments, a latch mounted in a door track is capable of being actuated from the inside of the door by use of the internal latch handle that actuates a lift rod assembly by means of a cable.
These and other aspects of the invention and various embodiments thereof will become more readily apparent to those having ordinary skill in the art from the following detailed description of the invention and some embodiments thereof taken in conjunction with the drawings.
So that those having ordinary skill in the art to which at least some embodiments of the invention pertains will more readily understand how to make and use systems, devices and methods in accordance therewith, such embodiments thereof will be described in enabling detail herein below with reference to the drawings. It should be noted that the drawings are not necessarily drawn to scale and certain figures may be shown in other form for illustrative reasons.
The following description contains illustrations of devices, systems and methods according to the invention for purposes of promoting an understanding of embodiments the invention, among other things. It should be understood that the scope of the invention is not limited by these embodiments. Alterations and modifications of the features of the invention, as well as additional applications of its principles in other forms or embodiments, such as those which would normally occur to one skilled in the relevant art having possession of this disclosure, are to be considered within the scope of the invention.
Referring now to
In an alternative embodiment where there is a single sliding door, the second sliding door 12 is eliminated and the first sliding door 11 slides into a fixed portion of the building 10. It should be understood that building 10 is not the only form for which the door latch assembly 13 and 14 can be used. There are a wide range of movable doors or similar movable panels, such as sliding windows and partitions, or other configurations in which a latch assembly constructed according to the invention described herein may be employed.
In
Referring now to
Referring now to
The main securing of the door is formed with a latch hook 55, an exterior door handle 30, an optional interior door handle for use in some alternative embodiments or location therefor 90, an inside latch handle 72, pin 72A, key-operable lock 31, latch pivot side plate 73, latch pivot wheel 74, inside lock pivot 58, lock arm 70, lock spring 59, and a latch pivot arm 57. The locking function relies on a notched lock arm 70 that rotates into place with the notch 75 covering a pin connected to the inside latch handle 72. The lock arm 70 is secured by a bolt that runs through side plate 50 and 56 and the pivot point of the lock arm 70. When the notch 75 in the lock arm 70 covers the pin, the inside latch handle 72 is prevented from being able to rotate. Latch hook 55 connected to the inside latch handle 72 through the latch pivot wheel 74 and latch pivot arm 57 is in a position that will allow it to stay latched or allow the latching action to occur. When the lever is prevented from rotating, the interior and exterior handles will not actuate, thus locking the door.
The lock arm 70 maintains pressure over the top of the pin by means of a lock spring 59 attached to the opposite end from the notch on the lock arm. The securing of the latch assembly 14 is spring biased, with lock spring 59 tending to pull the lock arm 70 in a downward direction. The moment imparted to the lock arm 70 ensures that the locking function stays secure over the pin unless acted upon by the pivoting inside lock pivot 58. The inside lock pivot 58 is constructed such that its cylindrical body has a half circle section protruding from the body. The inside lock pivot 58 operates in two positions. In the locked position it allows the lock arm 70 to rest flat across inside lock pivot 58, such that the notch 75 in the lock arm 70 rests over the pin in the inside latch handle 72. In the second unlocked position, as the inside lock pivot 58 rotates into the unlocked position it acts as a cam pushing up against the spring force of the lock arm 70 and raising it up so that there is enough clearance for the pin on the inside latch handle 72 to pass freely beneath the notch and allows actuation of the latching mechanism.
In this embodiment, the inside lock pivot 58 can be rotated by either of two methods. The first method is operated from the exterior of the building. It relies on a key operable lock 31 that is attached to the lock plate bracket 54. The key operable lock 31 protrudes from the interior of the door to the exterior of the door. As the door operator turns the key the key operable lock 31 rotates the inside lock pivot 58. The second method of rotating the inside lock pivot 58 is achieved from the interior side of the door. This method rotates the inside lock pivot 58 by means of a lever 58A directly attached to the inside lock pivot 58.
The exterior rotation of a key in the key operable lock 31 or the rotation of the inside lock pivot 58 from the interior forces the lock arm to release the inside latch handle 72. With the lock arm released, this allows for the rotation of either the interior or exterior latch handle to rotate. The exterior door handle 30 is mounted in the bushings that are pressed into the latch assembly 13 housing made up of side plate 50 and 56. Exterior door handle 30 extends through a hole so as to permit pivoting movement of the latch hook 55. The inside latch handle 72 is mounted on and connected to the exterior door handle 30 and interior door handle. This configuration of exterior handle rod 30 allows the rod to freely turn or rotate within the receiving holes in the outer and inner panels 50 and 56. Connecting them in this way also allows both the inside latch handle 72 and exterior door handle 30 to rotate around the same axis together, so rotating one handle will also rotate the other handle once the lock arm 70 has been disengaged.
Once lock arm 70 is released, the rotation of either handle rotates the inside latch handle 72, which rotates a cam called the latch pivot wheel 74, this cam rotates pin 72A, and pin 72A pushes the latch pivot arm 57 forward and up, thus lifting the latch hook 55 up and over the latch hook 45. The inside latch handle 72 is connected to the latch hook 55 by means of the latch pivot wheel 74. As the latch pivot wheel 74 continues to rotate, pin 72A connected to the bottom of inside latch handle 72 and comes into contact with the latch pivot arm 57 pushing the latch hook 55 up and over the other latch hook 45 as the lever completes its rotation. This allows the operator to pull the door open because both the lock arm 70 and the latch hook 55 connected to the inside latch handle 72 are clear of their respective catches. The interior side of the latch assembly 14 does not have a keyed lock like the exterior, but instead it has an inside lock pivot 58. In an alternative embodiment, the optional interior door handle 90 may be added, if for example, access to the inside latch handle cover 53 is limited.
The latch hook 45 is one of the component parts in the door latch assembly 13, and the latch hook 55 is one of the component parts in the door latch assembly 14. When the two sliding doors are drawn together, either latch hook is lifted up and inserted into clearance slot 34 and 24 (see
Referring now to
Referring now to
In another embodiment, the door is secured by two latch mechanisms: the latch assembly 14 and the overhead track latching mechanism. The overhead track latching mechanism is comprised of the latch mechanism plate 131 and the lift rod assembly 16. In
Referring now to
In this embodiment as shown in
The latch mechanism is attached to inside the overhead track 200 connecting the sliding door 12 by means of a support rod 136. The latch mechanism plate 131 hooks around the axel of the trolley wheel assembly 132 on one side and has a ramp face 134 on the other side. The ramp face 134 has a ramp wheel 133 to allow it to roll easily through the track. There is a secondary stop 130 fixed in the track (see
The compression spring 112 in the lift rod assembly 16 also serves the purpose keeping the bolt in a starting position. The bolt 113 is normally down and out of the overhead track 200, so that sliding door 12 can move freely in between the open and closed positions. To unlatch the in track latch mechanism plate 131 from the secondary stop 130, either interior or exterior door handle needs to be rotated. This action rotates the inside latch handle 72, which connects via cable 51 through a system of pulleys to the compressions spring 112 in the lift rod assembly 16. The wheel pulley 71 and the pulley wheel 111, and 111A are each connected by a cable 51. Pulley wheel 111 and 111A are faceted by means of the pulley assembly to vertical 75 and top horizontal beam of sliding door 12, respectively. Cable 51B draws a spring loaded bolt 113 up and into the track (See
The cable spring 52 attached to the cable 51 that connects the inside latch handle 72 to the spring loaded bolt 113. The cable spring 52 is preferably stiffer than the compression spring 112 in spring loaded bolt 113. The stiffer cable spring 52 allows it to act as a part of the cable in transferring force to unlatch the sliding door 12 in the track. The inside latch handle 72 may be designed to rotate farther than necessary to help ensure the latch assembly 14 unlatches. Once the inside latch handle 72 has pulled the cable 51 far enough that the bolt 113 can no longer travel upward, the stiffer cable spring 52 will extend. This protects cable 51 from damage in over-rotating the lever, among other things
In another embodiment, the operation of unlocking the latch mechanism plate 131 relies upon pressurized air to provide the force necessary for actuating the in track lift rod assembly 16. The pneumatic method of operation for the lift rod assembly 16 replaces mechanically actuated lift rod assemblies 16. An exterior and interior handle may operate the latch hooks as described by the pulley system. However, instead of pulling on a cable attached to pulleys, the handle compresses air in a cylinder as it is actuated. This compressed air operates a pneumatic cylinder at the top of the sliding door 12 and is directed to push the latch mechanism plate 131 up and over the secondary stop 130. The rod end 114 pushes the latch mechanism plate 131 up and over the secondary stop 130 (see
In another embodiment, the door is further secured by another latch mechanism, that is, a retaining subsystem. The retaining subsystem of this embodiment is comprised of retainer assembly 18, retainer ramp 2, and a retainer catch 4. The retaining function serves to keep sliding door 12 in the fully open position and prevent the door from sliding along the track. In a bi-panel two sliding door configuration, there may be two such retaining sub systems. The retainer assembly works in conjunction with a retainer roller ramp and a door catch to create a secure latch.
Referring now to
The exterior facing retainer end cap 153 has a polygonal hole for the hex bolt to pass through and prevent rotation along the axis of the retainer bolt 155. A retainer pin 156 is inserted at the end of the cylindrical portion of the retainer bolt 155 perpendicular to the axis of the bolt, but parallel to the door jamb 150 in order to act as a handle for unlocking the mechanism. The polygonal side of the retainer bolt 155 extends past the door jamb 150 into the sliding door between horizontal support rails of the sliding door 12. That end of the retainer bolt 155 has the retainer roller pin 159 inserted through a hole near the tip that is perpendicular to the axis of the bolt and parallel to the door jamb 150. The retainer roller pin 159 is inserted to the end of the polygonal side of the retainer bolt 155 and serves as an axel for the retainer roller 151 and 151A. One roller is attached to each side of the retainer bolt 155 via e-clip 158 and 158A. E-clip 158 and 158A are used to retain the rollers on the retainer roller pin. Retainer roller 151 and 151A are free to spin around the axis of the retainer roller pin 159 on which they are mounted.
The retainer compression spring 157 allows retainer bolt 155 to move freely in and out. The retainer bolt 155 is pushed out in the direction of the exterior of the building by the spring force and when fully extended it would be considered the starting position for the retainer bolt 155. The retainer bolt 155 should not be circular in nature so as to prevent the bolt from rotating within the retainer assembly, it is envisioned to be polygonal, for example: a triangle, square, pentagon, oval, composite or oblong shape all could be used to prevent rotation. In
The end of the retainer bolt 155 that faces the interior of the building is threaded to provide adjustment in and out by rotating the nylock nut 154 that presses against the press fit bushing 154A and end cap 153A. This adjustment allows the end of the retainer bolt 155 facing the exterior of the building to stick out an optimum distance past the door jamb 150. The press fit bushing 154A is flange shaped to help ensure the threaded portion of the retainer bolt 155 will not become jammed against interior retainer end cap 153A. The retainer roller 151 and 151A do not have to touch the interior of the sliding door 12. The housing of the retainer assembly 18 consists of an extrusion 152 with a retainer end cap 153 and 153A fastened to each side (see
Referring now to
In this embodiment, the retainer catch 4 is mounted in the web of vertical support beams via eight slots or holes (similar to slot 4A in
The retainer catch 4 is made up of two bent plates, called retainer catch plate 160 and 161 that create a gap between them facing the interior of the building 10 when riveted together. The track 162 between the retainer catch plate 160 and 161 create an angled track on which the retainer roller 151 and 151A of the retainer assembly 18 are guided. The retainer catch 4 is positioned vertically so that the horizontal plane that lies at the center of the track 162 is parallel to the axis of the retainer bolt 155 in the retainer assembly 18.
The retainer roller 151 and 151A of the retainer assembly 18 are positioned farther into the door than the leading edge of the track 162 created by the retainer catch 4. As the sliding door 12 moves toward the closed position, the inside surface of the retainer catch track 162 comes in contact with retainer roller 151 and 151A of the retainer assembly 18. The retainer catch 4 is angled opposite of the retainer ramp 2 so that as the sliding door 12 moves toward being fully closed the door is drawn in toward the door jam 150 (see
In the fully closed position the retainer catch 4 and retainer assembly 18 prevent the door from moving away from building 10 due to wind or other forces. The retainer catch 4 holds the sliding door 12 close to the door jam 150 to secure the sliding door 12 from moving away from building 10. To remove the sliding door 12 from the retainer catch 4, the door operator simply needs to unlatch or move the sliding door 12 along the track toward the open position. Once the sliding door 12 has moved the retainer catch 4 past the retainer roller 151 and 151A of the retainer assembly 18, the retainer catch 4 will no longer function to retain the door from moving away from the building.
Referring now to
The retainer roller 151 and 151A catch the retainer ramp 2 as the door closes. The retainer ramp 2 connected to the sliding door 12 contacts the retainer roller 151 and 151A at the end of the retainer assembly 18. As sliding door 12 moves toward the fully open position the retainer ramp 2 pushes in the spring loaded bolt 155. Once the retainer ramp 2 and the inside edge of the vertical support rail 75 have passed the retainer roller 151 and 151A, there is no longer any force to hold the retainer bolt 155 back and so it will spring forward returning to the starting position. At this point sliding door 12 is retained in the open position as the extended retainer 155 bolt impedes the sliding door 12 from traveling along the track.
In the fully closed position retainer assembly 18 prevents the door from moving away from building 10 due to wind or other forces. In the fully open position retainer assembly 18 prevents the door from moving toward the closed position along the track. To release the sliding door 12 from the fully open position the door operator must physically push the retainer pin 156 of the retainer assembly 18 in toward the interior of the building, using it like a handle. Once the operator has pushed the retainer pin 156 far enough back so that the rollers no longer impede the closing of the sliding door 12, the operator can then pull the sliding door 12 into the closed position. Once the edge of the sliding door 12 has moved sufficiently far enough to the closed position that retainer roller 151 and 151A do not spring back to impede the travel of the sliding door 12, the operator can release the retainer pin 156 and allow the spring loaded retainer bolt 155 to return to the starting position. At this point the sliding door 12 is free to move along the overhead track 200.
It will be appreciated by those skilled in the art that while the invention has been described above in connection with particular embodiments and examples, the invention is not necessarily so limited, and that numerous other embodiments, examples, uses, modifications and departures from the embodiments, examples and uses are intended to be encompassed by the claims attached hereto. Indeed, many modifications and variations of the embodiments of the invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described yet remain within the scope of the appended claims and equivalents thereof.
While exemplary methods, systems, devices and applications thereof of the present disclosure, have been described herein, it should also be understood that the foregoing is only illustrative of exemplary embodiments, as well as principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. Various modifications to these embodiments will be readily apparent to those skilled in the relevant art, and principles defined herein may be applied to other embodiments. Thus, the claims are not intended to be limited to the embodiments shown and described herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” All structural and functional equivalents to the elements of the various embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the relevant art are expressly incorporated herein by reference and intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
This application claims priority to U.S. Provisional Application No. 61/374,545 filed Aug. 17, 2010, the disclosure of which is incorporated herein.
Number | Name | Date | Kind |
---|---|---|---|
1209733 | Lester | Dec 1916 | A |
1250816 | Dunderdale | Dec 1917 | A |
1573866 | Rogers | Feb 1926 | A |
1596242 | Dunn | Aug 1926 | A |
1597682 | Hagstrom | Aug 1926 | A |
2437403 | Rice | Mar 1948 | A |
2575465 | Patton | Nov 1951 | A |
2646719 | Spriggs | Jul 1953 | A |
2659230 | Craig | Nov 1953 | A |
2687031 | Craig | Aug 1954 | A |
2862378 | Harris | Dec 1958 | A |
3024054 | Eads | Mar 1962 | A |
3025693 | Braginetz | Mar 1962 | A |
3039153 | Dusing | Jun 1962 | A |
3045464 | Braginetz | Jul 1962 | A |
3094861 | Sayles | Jun 1963 | A |
3150894 | Sant | Sep 1964 | A |
3207544 | Miller | Sep 1965 | A |
3265118 | Smith | Aug 1966 | A |
3391553 | Norrenberg-Sudhaus | Jul 1968 | A |
3514142 | Smith | May 1970 | A |
3534431 | Uphoff | Oct 1970 | A |
3936086 | Berkowitz | Feb 1976 | A |
3938836 | Smith | Feb 1976 | A |
4081880 | Edeus | Apr 1978 | A |
4513535 | Uphoff | Apr 1985 | A |
5388875 | Fleming | Feb 1995 | A |
5595409 | Fier et al. | Jan 1997 | A |
6196034 | Diebold et al. | Mar 2001 | B1 |
6330763 | Kern et al. | Dec 2001 | B1 |
6582036 | Alexander et al. | Jun 2003 | B2 |
7155861 | Berry et al. | Jan 2007 | B2 |
7757437 | Schulte et al. | Jul 2010 | B2 |
7942027 | Cassini | May 2011 | B1 |
20040066046 | Becken | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
2268092 | Nov 1997 | CN |
2639468 | Sep 2004 | CN |
Number | Date | Country | |
---|---|---|---|
20120043767 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61374545 | Aug 2010 | US |