Self lifting iron

Information

  • Patent Grant
  • 6453587
  • Patent Number
    6,453,587
  • Date Filed
    Friday, May 18, 2001
    23 years ago
  • Date Issued
    Tuesday, September 24, 2002
    21 years ago
  • Inventors
  • Examiners
    • Izaguirre; Ismael
    Agents
    • Gregory Smith & Associates
Abstract
The present invention is a clothing iron capable of lifting the iron, and thus the hot sole plate of the iron, away from a surface on which the iron rests when the iron is not in use, to reduce or prevent damage to the surface on which the iron rests. An important characteristic of the invention is that the sole plate of the iron is lifted in a direction including a vertical vector, with a plane of the sole plate remaining roughly horizontal. The elevation of the iron is accomplished through the use of an elevation mechanism including apparatus for extending at least one leg from the underside of the iron when the sensor indicates that the user's hand is not in contact with the iron.
Description




FIELD OF INVENTION




The present invention relates to electric appliances, and more specifically, to an electric iron adopted to preventing the burning of fabric or ironing board surfaces when the iron is disengaged by the operator or inadvertently left unattended.




DESCRIPTION OF RELATED ART




An electric clothes iron consists essentially of a heated sole plate that is pressed against fabric to remove wrinkles. To be effective, the sole plate of an iron must be very hot. Thus, there is a serious danger of burning the fabric or ironing board or even igniting a fire from an electric iron inadvertently left unattended. In addition, lifting and placing an iron on its tail can be physically straining on the operator's wrist, especially those who suffer from arthritis. Furthermore, when the iron is placed on its tail, the hot sole plate is exposed and may cause accidental contact with the sole plate by the user can result in severe burns.




Some pre-existing flat irons have utilized tilting mechanisms, typically hinging near the base of the tail, to raise the sole plate away from the ironing board when left unattended. However, these types of flat irons are frequently unstable and exposed the hot sole plate. Furthermore, these irons generally do not provide enough separation between the sole plate and the ironing board at the tail section. Modern electric irons have base plates to allow the user to stand the iron in a vertical position away from the fabric, but the hot sole plate is still exposed to accidental contact by the user or others. Furthermore, the small base plate and vertical orientation of the standing iron makes such irons prone to falling over due to a high center of mass, which may cause the hot sole plate to inadvertently contact and damage nearby fabric or ironing board surfaces or burn hands.




To reduce the danger of burning the fabric or ironing board by an unattended iron, most electric irons have automatic shut-off devices. The automatic shut-off devices turn off power to the sole plate heater when the iron has not been used for a fixed period of time, such as 10 minutes. Although a 10-minute shut-off cycle is appropriate for avoiding long-term operation of an electric iron in the absence of use, damage may occur long before the expiration of the 10-minute timing cycle, if the sole plate of an electric iron remains stationary in contact with fabric or other surfaces susceptible to marking, charring, or other heat damage. However, reducing the timing cycle to a short enough value to avoid such damage interferes with the normal usage of the electric iron.




Various schemes have been devised to determine when the iron is in use and what timing cycle should be used. For example, some irons use motion sensors or accelerometers. When the iron is moved by the user, the motion sensor repeatedly resets the automatic shut off timer so that power will not be removed from the sole plate when the user is operating the iron. One disadvantage of this type of iron is that it automatically shuts off when held motionless by the user. Also, such an iron may not function properly on an uneven surface.




What is needed is an electric iron that avoids the disadvantages of pre-existing electric irons discussed above, that automatically raises the hot sole plate away from the fabric or the ironing board surface to prevent burning of the fabric or the ironing board surface if the iron is disengaged by the operator or inadvertently left unattended, that automatically raises the sole plate upon removal of the user's hand or during a power outage, that prevents the burning of fabric by creating an even vertical separation between the sole plate and fabric immediately after disengagement by the operator, and that reduces the possibility of being tipped over and exposing the hot sole plate.




SUMMARY OF INVENTION




Accordingly, the present invention is a clothing iron capable of lifting the sole plate of the iron away from a surface on which the iron rests when the iron is not in use. An important characteristic of the invention is that the sole plate of the iron is lifted in a direction including a substantial vertical vector, preferably with a plane of the sole plate remaining roughly horizontal. The lifting is accomplished with the use of at least one leg that extends downward from the iron to lift the sole plate.




In general, the invention comprises an actuation device, a sole plate including a top surface and a bottom surface, a housing coupled to the top surface of the sole plate, at least one leg for lifting the sole plate, and an elevation mechanism positioned within the housing capable of moving the leg to allow the sole plate of the iron to contact the horizontal surface under the sole plate. Any number, shape, and size of legs may be used, although two legs are used in some preferred embodiments. The legs may extend from beside the sole plate of the iron, or through apertures in the sole plate of the iron, or any combination thereof. In some embodiments the legs may be extended and withdrawn in a motion along a vertical axis, or in other embodiments, the legs may be rotated up and down as desired. When retracted, the legs are preferably withdrawn into the housing of the iron. In other embodiments, the leg may retract into a perforated surface that extends from the sole plate. Preferred characteristics of the selected leg configuration include resistance to tipping, and the provision of sufficient space between the support surface and the underside of the iron. The extended legs also act as a sole plate guard, in the event the iron is tilted on its side the legs may prevent accidental contact with the exposed sole plate. A sensor is preferably located in the handle of the iron capable of perceiving when a user has gripped the handle of the iron. Virtually any known and acceptable sensors may be used. In alternate embodiments, additional sensors may be used, and the sensors may be positioned in places other than the handle.




In one preferred embodiment, the elevation mechanism comprises a lift plate with a top side and a bottom side. The legs are coupled to the bottom side of the lift plate. The lift plate is preferably capable of moving up and down along a path or vector including a substantial vertical element. The lift plate is preferably biased downward so that the legs are normally extended. Thus, when the power to the iron is off, or when the user is not in contact with the handle of the iron, the legs are extended. In a preferred embodiment, the downward bias is provided by one or more springs in contact with the lift plate. A means for overcoming the downward bias of the lift plate is coupled to the lift plate so that when the sensor perceives that the user has grasped the handle of the iron, the elevation mechanism is activated and the legs are pulled up into the housing. This allows the sole plate may contact the support surface. In a preferred embodiment, the means for overcoming the downward bias is at least one geared stepper motor that, when supplied with power, will generate a larger force than that of the biased springs causing the lift plate to bias upwards. When the power to the geared stepper motor is disconnected, the spring force preferably will cause the lift plate to bias downward.




In a preferred embodiment, the tail comprises a slight rounded edge. This tail configuration is preferably capable of allowing the sole plate to slide over buttons or uneven sections of fabric. Virtually any shape of the tail that allows smooth transition of the sole plate over uneven surfaces may be used.











BRIEF DESCRIPTION OF THE DRAWINGS




A preferred embodiment of the present invention is further described in connection with the accompanying drawings, in which:





FIG. 1

is a perspective bottom view of a preferred embodiment of electric iron of the invention with the legs extended.





FIG. 3A

is a perspective view partly in section showing a preferred embodiment of the elevating mechanism of the invention with the legs extended.





FIG. 3B

is a perspective view partly in section showing a preferred embodiment of the elevating mechanism of the invention with the legs withdrawn.





FIG. 4

is a bottom view of the iron embodiment of FIG.


1


.





FIG. 5A

is a side plan view of an alternate embodiment showing an alternate leg configuration.





FIG. 5B

is a side plan view of an alternate embodiment showing another alternate leg configuration.





FIG. 5C

is a side plan view of an alternate embodiment showing another alternate leg configuration.





FIG. 5D

is a side plan view of an alternate embodiment showing another alternate leg configuration.





FIG. 6A

is a front view of a preferred embodiment of the iron with the elevation mechanism resting on a surface.





FIG. 6B

is a front view of the preferred embodiment of the iron of


6


A tilted to one side.





FIG. 6C

is a front view of the preferred embodiment of the iron of


6


A tilted on its side with the extended legs acting as a sole plate guard to hinder accidental contact with the exposed sole plate.











DETAILED DESCRIPTION OF THE INVENTION




The following description is provided to enable any person skilled in the art to make and use the invention and sets forth the best mode presently contemplated by the inventor of carrying out his invention. Various modifications, however, will remain readily apparent to those skilled in the art, as generic principles of the present invention have defined herein.




The present invention is a clothing iron capable of lifting the iron, and thus the hot sole plate of the iron, away from a surface on which the iron rests when the iron is not in use, to reduce or prevent damage to the surface on which the iron rests. Typically the surface on which the iron rests is an ironing board with an article of clothing or the like laying thereon. An important characteristic of the invention is that the entire sole plate of the iron is lifted in a direction including a vertical vector. In a preferred embodiment, the plane of the sole plate remains roughly horizontal. The elevation of the iron is accomplished through the use of an elevation mechanism including apparatus for extending at least one leg from the underside of the iron, to lift the iron.




The present invention may be used with virtually any practical or desired iron configuration, and the configuration of the iron and of any particular features of the iron not related directly to the mechanisms of the invention are not critical to the invention. In addition to the heated sole plate which is used to remove wrinkles from fabric, modem electric irons typically include a housing with a handle on the top of the housing, heating elements to heat the sole plate, a heat barrier between the sole plate and the housing or body of the iron, and a cord to plug into an electric wall socket. Conventional iron controls typically include on/off switches, steaming and heating controls, and automatic shut-off mechanisms. Such features are assumed to be included on the embodiment of the iron disclosed herein, but are not shown in the figures.




Referring now to the Figures,

FIG. 1

is a bottom perspective view of an embodiment of the invention showing an iron


10


including a housing


12


with a handle


14


on the top of the housing


10


, a heat barrier


16


, an actuation device


18


in the handle


14


, a sole plate


20


on the underside of the housing


12


, and a pair of legs


22




a


and


22




b


extending from the bottom of the iron


10


.

FIG. 2

is a side view of the iron


10


on an ironing board


26


, with the iron


10


in its neutral state with legs


22




a


and


22




b


extended. The bottom of the sole plate


20


has been lifted from the top surface of the ironing board


26


.





FIGS. 3A and 3B

show a partial cutaway side view of the iron


10


of

FIG. 1

in which one embodiment of the elevation mechanism


24


is visible. The function of the elevation mechanism


24


is to preferably relatively uniformly elevate the sole plate


20


away from the fabric or ironing board


26


surface in a direction including a vertical vector while preferably maintaining the roughly horizontal plane of sole plate


20


, and to provide a stable base when the iron


10


is elevated. In prototype testing it was determined that an approximately lift distance preferably ranging from 0.5 inch to 0.5 inches, and more preferably approximately 1 inch, between the bottom of the sole plate


20


and the fabric or ironing board surface


26


was sufficient to prevent heat damage to fabric on the ironing board surface


26


. In alternate embodiments, other vertical distances may be selected. In further alternate embodiments, the sole plate need not be maintained in a substantially horizontal position, in which case it is preferable that the portion of the sole plate closest to the support surface be lifted at least a distance preferably ranging from 0.5 inch to 1.5 inches, and more preferably approximately 1 inch.




A large number of kinds and variations of the elevation mechanisms may be used in the invention, and such variations may be readily apparent to one skilled in the art. Therefore, the preferred embodiments disclosed herein should be considered as example mechanisms for accomplishing the elevation of the iron.




The elevation mechanism


24


, generally seen in

FIGS. 1 through 4

, preferably includes an actuation device


18


to activate the elevation means


24


, at least one leg to lift the iron, a means for biasing the legs into an extended position, and a means for overcoming the bias causing the legs to extend.




Preferably, the actuation device


18


comprises a sensor capable of detecting the grip of a user on the handle


14


of the iron


10


. The actuation device


18


can be any commercially available device capable of switching electrical or mechanical states and can be situated in various locations on the iron


10


, although preferably in the handle


14


of the iron


10


. In prototype construction, the actuation device


18


used was a photosensor switch located in the handle, as seen in

FIGS. 1 through 4

. However, many other kinds of actuation devices may be acceptable, such as heat sensors, conductivity switches or pressure activated switches, force sensors, capacitive sensors, matched emitter detector pairs, or light or signal emitters and receivers that are interrupted when the iron is grabbed.




The actuation device


18


is preferably configured in a normally open state. In the embodiment shown, the actuation device


18


is a photosensor that closes, or completes a circuit activating the elevation mechanism


24


when a hand is placed over the photosensor of the actuation device


18


reducing the amount of light perceived by the photosensor to below a selected threshold. When the elevation mechanism


24


is activated, the legs


22




a


and


22




b


are caused to retract, allowing the sole plate


20


to contact the ironing board


26


. Upon releasing the handle


14


, the actuation device


18


opens, breaking the electrical connection and allowing the biased force to extend the legs


22




a


and


22




b


raising the iron


10


away from the ironing board


26


.




In a preferred embodiment, best seen in

FIG. 4

, two legs are used, with the front retractable leg


22




a


being crescent shaped and positioned near the pointed tip of the sole plate


20


extending through a similarly shaped aperture


34


in the sole plate


20


. The rear retractable leg


22




b


is rectangular and may span the width of the iron


10


. The heat barrier


16


has an aperture


36


, similar in size and shape of the rear retractable leg


22




b,


to allow the rear retractable leg


22




b


to extend or retract through the heat barrier


16


. In alternate embodiments, the retractable rear leg


22




b


may also extend through an aperture in the sole plate


20


. In order to prevent the burning of fabric or ironing board surface


26


, it is most preferable that the front and rear retractable legs


22




a


and


22




b,


respectively, extend at least one inch beyond the bottom surface of the iron


10


. Because of the proximity of the legs


22




a


and


22




b


to the heated sole plate


20


in this embodiment, it is also preferable that the legs


22




a


and


22




b


be formed of heat resistant material. High temperature resistant plastics such as Ultem have been used in prototype construction, however, many other kinds of acceptable commercially available heat resistant materials may be easily identified and used by one skilled in the art, including materials such as ceramics.




In alternate embodiments, the number, shape, and position of the legs


22




a


and


22




b


may be varied as desired. It is a preferred characteristic of the leg configuration selected that the legs provide a stable platform so that the iron


10


is resistant to tipping. Examples of alternate leg configuration embodiments are seen in

FIGS. 5A through 5D

.

FIG. 5A

shows an alternate leg configuration embodiment in which the iron


10


is raised and lowered by four off-center wheels


50


attached to the sides of the iron.

FIG. 5B

shows another alternate leg configuration embodiment in which the iron


10


is raised and lowered by a skirt


52


that moves vertically up and down around the perimeter of the sole plate.

FIG. 5C

shows another alternate leg configuration embodiment in which the iron


10


is raised and lowered by spider legs


54


attached to the sides of the iron.

FIG. 5D

shows another alternate leg configuration where legs


55


are moved to the front and the rear section of the iron outside of the iron sole plate. The legs seen in

FIGS. 5A through 5D

may alternatively extend through apertures in the sole plate


20


, or they may extend downward beside the sole plate


20


.





FIG. 6A

shows a preferred embodiment of the iron with the elevation mechanism resting on a surface in a stable position. The extended legs are also designed to function as a sole plate guard in the event the iron is tilted on its side.

FIG. 6B

shows a preferred embodiment of the iron


10


tilted to sideways. The iron


10


is preferably configured so that the center of gravity is located such that once hand pressure is released from the iron


10


in this position, the iron


10


will move back to its normal resting position.

FIG. 6C

shows a preferred embodiment of the iron


10


tilted on its side with the housing


12


preventing contact of the sole plate


20


with the support surface. In this position, the extended legs


22




a


and


22




b


act as a guard hindering accidental contact with the sole plate


20


.




Returning to

FIGS. 3A and 3B

, in the preferred embodiment shown, the retractable legs


22




a


and


22




b


are preferably attached to a lift plate so that the legs


22




a


and


22




b


are evenly extended. More specifically, in the preferred embodiment shown in

FIG. 3

, the top surface of the front and rear retractable legs


22




a


and


22




b


are connected to the bottom surface of lift plate


30


. The lift plate


30


is preferably spring biased downward. The lift plate


30


is preferably made of heat resistant material and is connected to the retractable legs


22




a


and


22




b,


by any acceptable means, including the use of adhesives, screws, or other known securing means. In prototype construction, the lift plate was made of high temperature resistant plastic, however, many other kinds of commercially available heat resistant materials may be acceptable.




In a preferred embodiment, best seen in

FIG. 3A

, the lift plate


30


is preferably biased downward by springs


42




a


and


42




b.


More specifically, in the preferred embodiment shown in

FIG. 3A

, the spring retaining shafts


41




a


and


41




b


are extended through apertures in the lift plate


30


and retain springs


42




a


and


42




b.


Bushings


45




a


and


45




b


ensure smooth movement of lift plate


30


along shafts


41




a


and


41




b.


Springs


42




a


and


42




b


surround spring retaining shafts


41




a


and


41




b,


respectively, and exert a spring force on lift plate


30


, causing lift plate


30


to bias downward. This biased force is preferably sufficient to lift the weight of the iron and to overcome any resistive force of the stepper motor


43


causing the cam


44


to rotate counter-clockwise enabling the lift plate


30


to move downwards. In alternate embodiments, the downward bias could be achieved using NITINOL wire, pneumatic components or simple alternate current or direct current motors, synchronous motors, stepper motors, solenoids, mechanical systems, or any combination thereof. These and other means for biasing the lifting plate downward may be easily selected by one skilled in the art in light of this disclosure.




Referring to

FIG. 3B

, the geared stepper motor


43


is used to overcome the downward bias of springs


42




a


and


42




b.


More specifically, in the preferred embodiment, power is supplied to geared stepper motor


43


when actuator device


18


is activated upon detection of the presence of the users hand. When power is supplied to geared stepper motor


43


, gear stepper motor


43


rotates cam


44


clockwise against the top of a heat isolation sliding plate


46


, pulling lift plate


30


upward against the springs


42




a


and


42




b.


The rotational force of geared stepper motor


43


and cam


44


is sufficient to overcome the bias of springs


41




a


and


41




b,


causing the elevation mechanism


24


to elevate within the body of the iron, thus retracting legs


22




a


and


22




b.


When the iron


10


is deactivated, the geared stepper motor


43


no longer exerts rotational force on the cam


44


. Thus, springs


41




a


and


42




b


force elevation mechanism


24


downward, causing legs


22




a


and


22




b


to extend through sole plate


20


. The geared stepper motor


43


and cam


44


were used in prototype construction, however, any known mechanical configuration for overcoming spring bias may be used, and such alternatives may be easily selected and constructed by one skilled in the art in light of this disclosure.




The preferred operation of the iron in accordance with the present invention is described below. The electric iron


10


is connected to electric power and turned on. When the iron


10


is not in use the spring biased lift plate


30


is automatically extended downward pushing legs


22




a


and


22




b


through apertures


34


and


36


. In this position, the sole plate


20


is elevated away from the cloth or ironing board surface


26


. When the sole plate


20


has reached the desired temperature, as determined by a temperature control setting, the user grips the iron


10


, and the user's palm contacts the actuator device


18


on the handle


14


. The actuator device


18


includes an electric circuit that is normally configured to be normally open and which closes when the user grasps the handle


14


, thus completing the electrical circuit, activating the elevation mechanism


24


. The elevation mechanism


24


acts to overcome the preferred downward bias of the elevation mechanism


24


, raising the lift plate


30


retracting the legs


22




a


and


22




b


into the body of the iron


10


. Retraction of the legs


22




a


and


22




b


allows the user to move the hot sole plate


20


of the iron


10


across the fabric or other material to be ironed on the ironing board


26


. When the user releases the handle


14


, the actuator device


18


opens and breaks the electrical circuit causing the elevation mechanism


24


to deenergize, which allows the downward biased lift plate


30


and legs


22




a


and


22




b


to extend downward raising the hot sole plate


20


above the ironing board surface


26


.




Also, in the event of a power outage or other interruption to electric power during use, the iron


10


and the elevation mechanism


24


are deenergized allowing the biased lift plate


30


and legs


22




a


and


22




b


to extend downward.




It is an advantage of the embodiments described herein, that the hot sole plate of the iron is not as exposed to accidental contact by the user when lifted from the working surface, as is the hot sole plate of irons that are placed on the back plate with the hot sole plate extending vertically into the air. Furthermore, the iron of the invention is more stable, and less likely to fall over causing the hot sole plate to make unwanted contact with other materials. As previously explained, the extended legs are also designed to function as a sole plate guard in the event the iron is titled on its side. It is also an advantage of the present embodiments, that the sole plate surface area is maximized and energy efficient. The present invention eliminates the recessed slot in the sole plate required for most hinging tilt mechanism, thus maximizing surface area of the sole plate contacting the surface to be ironed. Hinging tilt mechanisms waste energy because recessed slots are either (a) heated but not used for ironing, or (b) are engineered to remain cool, thus acting as acting as heat sinks. Furthermore, because the iron is intended to be used in a single horizontal plane, the need for a hinged cord is reduced, the steam system maybe easier to build, which may reduce the cost of manufacturing the irons. Also, because the back end or tail of the iron is not reserved for use in standing the iron, designers are free to change the geometry of the back of the iron to add additional functionality or for design purposes. This also eliminates the need for the operator to lift the heavy iron and place the iron on its tail. This feature will help people who suffer from arthritis or other wrist problems. The use in a single horizontal plane will also allow the weight of the iron to be heavier, which is desirable among expert iron users. Because the iron need not stand on its rear, the back end or tail of the iron can include a geometry. For example, it is possible to configure the tail of the iron of the present invention to include a geometry designed to assist the user in ironing over buttons or uneven sections of fabric. Another advantage of the iron of the invention is that it provides a clear visual queue as to the status of the iron. Many prior art irons use colored on/off indicator lamps. However, these indicators are often difficult to see and many users are confused by such indicator designs and are not able to discern the exact state of operation of the iron.




The preferred embodiments described herein are illustrative only, and although the examples given include many specificities, they are intended as illustrative of only a few possible embodiments of the invention. Other embodiments and modifications will, no doubt, occur to those skilled in the art. The examples given should only be interpreted as illustrations of some of the preferred embodiments of the invention, and the full scope of the invention should be determined by the appended claims and their legal equivalents.



Claims
  • 1. An iron for use on a support surface defining a plane, the iron comprising:a sole plate including a bottom surface, a housing coupled to said sole plate, at least one leg for holding said sole plate at least ½ inch above the support surface, an elevation mechanism positioned within said housing capable of moving said at least one leg between a first configuration to lift said sole plate away from the support surface, and a second configuration to allow said sole plate to contact the support surface.
  • 2. The iron of claim 1, wherein said at least one leg holds said sole plate at least 1 inch above the support surface.
  • 3. The iron of claim 1, wherein said at least one leg holds said sole plate in a plane approximately parallel to the plane of the support surface.
  • 4. The iron of claim 1, wherein said at least one leg comprises at least two legs.
  • 5. The iron of claim 1, wherein said at least one leg extends through an aperture in said sole plate.
  • 6. The iron of claim 1, wherein said iron includes a side, and wherein said at least one leg acts as a sole plate guard if said iron is tilted on said side.
  • 7. The iron of claim 1, wherein said at least one leg may be pulled upward into said housing.
  • 8. The iron of claim 1, wherein said iron includes a handle, and said elevation mechanism includes a sensor capable of determining when a user has grasped said handle.
  • 9. The iron of claim 8, wherein said sensor is a sensor selected from the group consisting of: heat sensors, conductivity switches, pressure activated switches, force sensors, capacitive sensors, matched emitter detector pairs, or light or signal emitters and receivers that are interrupted when contacted by the hand of a user.
  • 10. The iron of claim 4, wherein said elevation mechanism comprises a lift plate coupled to said at least two legs, said lift plate being capable of moving in an upward direction to retract said at least two legs, and capable of moving in a downward direction to extend said at least two legs.
  • 11. The iron of claim 10, wherein said lift plate is biased downward by at least one spring acting on said lift plate.
  • 12. The iron of claim 11, wherein said elevation mechanism includes a geared stepper motor coupled to said lift plate.
  • 13. The iron of claim 12, wherein said geared stepper motor is capable of overcoming spring force generated by said spring acting on said lift plate to move said lift plate upward.
  • 14. The iron of claim 1 wherein said extended or retracted configuration of said at least on leg provides a visual queue of the operational status of said iron.
  • 15. The iron of claim 1, wherein said iron includes a tail portion, said tail portion being adapted to perform a selected ironing task.
  • 16. An iron for use on a support surface defining a plane, the iron comprising:a sole plate including a bottom surface, a housing coupled to said sole plate, at least one leg for holding said sole plate above the support surface, in a plane approximately parallel to the plane defined by the support surface, an elevation mechanism positioned within said housing capable of moving said at least one leg between an extended configuration to lift said sole plate away from the support surface, and a retracted configuration to allow said sole plate to contact the support surface, and a sensor capable of detecting when the user has grasped the iron.
  • 17. The iron of claim 16, wherein said at least one leg holds said sole plate at least ½ inch above the support surface.
  • 18. The iron of claim 17, wherein said at least one leg holds said sole plate at least 1 inch above the support surface.
  • 19. The iron of claim 16, further including a handle, and said sensor capable of detecting when the user has grasped said handle.
  • 20. The iron of claim 19, wherein the at least one leg is caused to retract when said sensor detects that the user has grasped said handle.
  • 21. An iron for use on a support surface defining a plane, the iron comprising:a sole plate including a bottom surface, a housing coupled to said sole plate, a handle coupled to said housing, at least one aperture passing through said bottom surface of said sole plate, at least one leg for holding said sole plate at least ½ inch above the support surface, said at least one leg passing through said at least one aperture in said bottom surface of said sole plate, an elevation mechanism positioned within said housing capable of moving said at least one leg between a first configuration to lift said sole plate away from the support surface, and a second configuration to allow said sole plate to contact the support surface, a sensor coupled to said elevation mechanism capable of determining when a user has grasped said handle, and a motor for moving said elevation mechanism, said motor activated by said sensor to allow said sole plate to contact the support surface, wherein said motor automatically lifts said sole plate away from the support surface when the sensor is not activated.
US Referenced Citations (13)
Number Name Date Kind
2211839 Simonsen Aug 1940 A
2470532 Thomas May 1949 A
2501549 Swenson Mar 1950 A
2584071 Wallis Jan 1952 A
2602247 Cochran Jul 1952 A
2642682 Browning Jun 1953 A
2680313 Victor Jun 1954 A
2712703 Hilldale Jul 1955 A
2716825 Kulicke, Jr. Sep 1955 A
2718076 Brace Oct 1955 A
3050885 Whittled Aug 1962 A
3200521 Whittled Aug 1965 A
5966851 Serpa Oct 1999 A