The invention of the patent application relates to a self-locking carbon adsorbent. The invention of the patent application relates, particularly to a new self-locking carbon adsorbent which is useful for storing methane gas and can store various gases put in a high density as quasi-liquid state at room temperature.
Much attention is focused on natural gas as clean energy which takes the place of petroleum oil from the viewpoint of preservation of the global environment and effective utilization of resources. The density of methane gas which Is a major component of natural gas is 23 g/L at 303 K under 3.5 MPa but is as very high as 419 g/L at its boiling point or 109 K. Liquefied natural gas is, based on this characteristics, cooled under pressure to liquefy after it is refined into a methane component as a major component and supplied as highly refined liquefied natural gas called refrigerated liquid methane (RLM).
However, this liquefied natural gas has the drawback that it must be kept at extreme low temperature as low as −160° C. or less during all processes such as storage and transfer and therefore has a difficulty in putting it to practical use. In this situation, it is expected to develop a methane storing system capable of storing a large amount of methane at room temperature.
For example, U.S. Department of Energy (DOE) is trying to realize a storage unit of methane gas at room temperature with the aim of achieving a methane storing rate of 150 times per unit volume (V/Vs: V represents the volume of gas to be adsorbed and Vs represents the volume of an adsorbent) under a pressure of 500 psig (about 35 MPa) by utilizing an activated carbon which is porous solid as a methane adsorbent.
The methane storing rate of activated carbon is approaching such a value as high as 150 times which is the target of DOE. However, this target has not been achieved yet. This reason is considered to be that methane gas is not liquefied at room temperature even if it is placed in an extreme pressure state because it takes a supercritical state.
The invention of the patent application has been made in view of the above situation and it is an object of the invention to solve the prior art problems and to provide a new self-locking carbon adsorbent which is useful for storing methane gas and can store various gases put in a high density as quasi-liquid state at room temperature.
Accordingly, the invention of the patent application provides the following inventions to solve the aforementioned problem.
Specifically, the invention of the patent application provides, first, a self-locking carbon adsorbent comprising a carbon nanohorn aggregate provided with one or more openings in the wall part thereof, wherein a substance to be adsorbed passes through the opening in one limited direction from the outside to inside of the carbon nanohorn in isothermal or isobaric adsorption.
With regard to the method of the above invention, the invention of the patent application provides, second, a self-locking carbon adsorbent wherein the substance to be adsorbed is gas which is put in a supercritical state at room temperature, third a self-locking carbon adsorbent wherein the substance to be adsorbed is methane gas and the methane gas is allowed to be adsorbed in a quasi-liquid state in the inside of the carbon nanohorn, and fourth a self-locking carbon adsorbent wherein the methane gas adsorption ability V/Vs (where V represents the volume of gas to be adsorbed and Vs represents the volume of an adsorbent) is 150 or more at 303 K under 3.5 MPa.
The inventors of the patent application have made studies for realizing a high performance adsorbent using a carbon nanohorn aggregate and have already found that the carbon nanohorn aggregate has adsorption ability and that the adsorption capacity is increased and a molecular sieve can be realized by providing an opening in the horn part of the carbon nanohorn aggregate. Further, the invention of the patent application has been attained by finding, for the first time, that a carbon nanohorn aggregate having an opening exhibits very specific characteristics when storing (occluding) methane gas as a result of further earnest studies made by the inventors.
FIGS. 1(a) to 1(d) are a TEM image and typical views for explaining the structure of a self-locking carbon adsorbent according to the invention of the patent application.
FIGS. 5(a) to 5(d) are views illustrating each pore structure of an opened SWNH, ACF and AX21 and the potential of the interaction between a methane molecule and a carbon wall.
The invention of the patent application has the characteristics as mentioned above. An embodiment of the invention will be hereinafter explained.
A self-locking carbon adsorbent provided by the invention of the patent application comprises a carbon nanohorn aggregate provided with one or more openings in its wall part thereof, wherein a substance to be adsorbed passes through the opening in one limited direction from the outside to inside of the carbon nanohorn in isothermal or isobaric adsorption.
As the carbon nanohorn aggregate in the invention of the patent application, various carbon nanohorn aggregates provided with one or more openings in at least one of their lube walls among carbon nanohorn aggregates in which carbon nanohorns that are carbon nanotubes having a horn-like end and many carbon nanohorns are aggregated spherically with their ends protruding externally may be the subject. Any of, for example, dahlia-like carbon nanohorn aggregates in which carbon nanohorns are gathered in a globular form 80 to 100 nm diameter and bud-like carbon nanohorn aggregates which are not provided with a surface on which horn-like projections are observed but provided with a smooth surface may also be used. In order to realize a highly efficient and high performance adsorbent, the carbon nanohorn aggregate is preferably a dahlia-like carbon nanohorn aggregate provided with one or more openings. The carbon nanohorn aggregate may he constituted of a single carbon nanohorn aggregate or plural carbon nanohorn aggregates put in a dispersed state or aggregated state.
In the invention of the patent application, there is no particular limitation to the number or size of the openings disposed in the wall of the carbon nanohorn and carbon nanohorn aggregates having optional number and size of openings according to the size of an adsorbed material may be used. For example, when the substance to he adsorbed is methane (molecular diameter: 0.37 nm), more preferable examples of the aggregate are given in which the size of the opening is 0.37 nm or more at least, and more preferably the diameter of the aggregates is 0.7 to 1.1 nm corresponding to about two or three molecules. Such openings are considered to be preferably present in relatively small numbers only in the wall part of the carbon nanohorn.
The self-locking carbon adsorbent of the invention of the patent application like this is provided with an opening in the wall part of a carbon nanohorn and therefore has, as an adsorption space, interstices between individual carbon nanohorns constituting the carbon nanohorn aggregate and the inner parts of these carbon nanohorns. When plural carbon nanohorn aggregates are aggregated to constitute the self-locking carbon adsorbent, the self-locking carbon adsorbent also has spaces formed between neighboring carbon nanohorn aggregates as the adsorption capacity.
The self-locking carbon adsorbent will be explained in more detail with reference to
No particular limitation is imposed on the substance to be adsorbed and various gases, such as nitrogen, methane hydrogen and the like, which are put in a supercritical state at room temperature may be considered. Methane may be exemplified as the substance to be adsorbed which substance can use the characteristics of the self-locking carbon adsorbent of the invention of the patent application more efficiently.
To state the futures of this self-locking carbon nano-adsorbent, the distance between each tube part of individual carbon nanohorns constituting the carbon nanohorn aggregate is as narrow as about 0.4 nm as mentioned above and therefore, a micropore phenomenon takes place in the interstices between carbon nanohorns. When a sufficient amount of a substance to be adsorbed is supplied, the substance to be adsorbed is fed to the inside of nanohorns through interstices between individual carbon nanohorns and the openings. At this time, the substance to be adsorbed is filled in the interstices between carbon nanohorns as illustrated in
When the substance to be adsorbed is methane gas, methane gas is initially adsorbed at a low density inside of the carbon nanohorn. It is amazing that when methane gas is supplied in a sufficient concentration to the inside of the carbon nanohorn, it is condensed into a quasi-liquid state by the interaction between methane gas and the wail of the carbon nanohorn in the inside of the nanohorn. Here, the quasi-liquid state is such a state of gas that the density of the gas reaches that of a liquid under low pressures in a supercritical state. Here, the term “low pressure” cannot be shown in detail because it differs depending on the type and temperature of gas. However, it is about a so-called critical pressure and, is, for example, about 4.7 MPa in the case of methane gas. Such a quasi-liquid state has been confirmed at an extreme low temperature in the vicinity of, for example, the boiling point of methane gas. Meanwhile, in the self-locking carbon adsorbent of the invention of the patent application, the quasi-liquid state is achieved at a temperature in the vicinity of room temperature which is very high for liquid methane, which is regarded as a specific phenomenon.
In the invention of the patent application, the quasi-liquid state methane means high density methane having a density of 0.26 to 0.31 g/L at 303 K as was reported by Dubinin at al., and Ozawa et al, (R. K. Agarwal, J. A. Schwarz, Carbon 26, 873 (1988)). To exemplify in more detail, it has been confirmed that the self-locking carbon adsorbent of the invention of the patent application can attain a methane gas adsorption ability of 150 or more in the condition of 303 K and 35 MPa when the methane gas adsorption ability is expressed by V/Vs. This absorption ability value is higher by about 10% than the DOE target value, which suggests that those results will lead to the realization of a storage unit of methane gas having high performance. In the above formula, V represents the volume of the gas to be adsorbed and Vs represents the volume of the adsorbent. Moreover, it is expected, though not confirmed, that repeated improvements using the self-locking carbon adsorbent of the invention of the patent application enables a large amount of methane to be stored in a more thickened state than liquid methane (density: 0.31 g/L).
The self-locking carbon adsorbent like this according to the invention of the patent application is expected to be applied to storage materials in fuel cylinders for fuel cells that are expected to be utilized in various fields in the future.
Embodiments of the invention will be explained in detail by way of examples with reference to drawings.
The isothermal adsorption characters of a dahlia-like carbon nanohorn (SWNH), carbon nanohorn (opened SWNH) provided with openings on the tube wall or the tip part of the above dahlia-like carbon nanohorn by oxidation beating treatment, activated carbon fiber (ACF) and KOH activated carbon (AX21) were measured. Prior to the measurement, the SWNH and the opened SWNH were treated under heating at 423 K under a pressure of 1 mPa to remove adsorbed gas and moisture.
The methane adsorption characters of the SWNH, opened SWNH, ACF and AX21 were measured at 303 K under a pressure range from 10 kPa to 10 MPa by utilizing an electronic balance. The interstitial pore structures of these materials were estimated from N2 adsorption isotherm at 77 K by utilizing a SPE method (subtracting pore effect method) which subtracts the effect of fine pores. Moreover, with regard to the correlation characteristic between CH4 and the SWNH, that of the interstitial pore and the internal pore were calculated by utilizing the Steele-Bojan smooth-walled cylinder potential. Then, the correlation characteristic of the slit-type pore which conventional activated carbon possesses was calculated using the 10-4-3 potential of Steele.
It is confirmed from
It is found that each methane storing ability of ACF and AX21 is on a level less than 150 V/Vap even under a pressure range as high as 7 to 8 MPa. It is also found that the target value of DOE can be attained even if the pressure is raised. This is considered to be because AX 21 contains a large number of voids and a lot of a binder required to form a monolith structure and ACF contains a larger number of voids than AX21 because ACF is a fibrous material. On the other hand, the SWNH is a globular particle having a nano-dimension and forms a monolith structure without the necessity of a binder. Therefore, the opened SWNH obtained by forming openings in the SWNH is considered to be very effective for adsorbing and filming methane. The above fact in this example shows that only the opened SWNH can attain the target of DOE.
For this, the reason why the opened SWNH has a methane adsorption ability enough to attain the target of DOE will be discussed hereinbelow. It is considered that although methane is not usually liquefied at room temperature, the density of methane adsorbed to the opened SWNH becomes close to a level which stands comparison with that of liquid methane.
The average density of methane adsorbed to each of the interstitial pores and internal pores of the SWNH is 1.5 to 2 times larger than that of ACF or AX21. However, this measuring temperature 303 K is higher than the critical temperature of methane, methane cannot be liquefied if it is compressed at 303 K. In the meantime, Dubinin et al., and Ozawa et al., have proposed that methane having a density range from 0.26 to 0.31 g/L shown by the band in
This specific phenomenon can be understood based on an interaction potential between a methane molecule and the carbon wall. FIGS. 5(a) and 5(c) respectively show the structure of a pore and FIGS. (b) and (d) respectively show the correlation potential characters between carbon and methane. (a) and (b) show the slit-form pores of ACF and AX21 respectively and (c) and (d) show the tube-form pores in the SWNH (opened SWNH). Each X axis in (b) and (d) indicates the distance from the center of a pore to the wall of carbon and the distance from the O point to the X point respectively. In (b), the dotted line shows the potential characteristic or ACF and the solid line shows the potential character of AX21. (d) shows the potential characteristic of the SWNH.
As shown in (b), the correlation potential depths between a methane molecule and the wall of carbon in ACF and AX21 were −1240 and −1250 K respectively. On the other hand, the fine pores of the SWNH (opened SWNH) are oriented so as to partly organize the order structure of a trigonal system. For this, each potential in these structures was calculated based on the formula 10-4-3 of Steel. Here, as the tube diameter and the distance between neighboring tubes in the SWNH, 2.8 nm and 0.4 nm which were found from the result of N2 adsorption isotherm were used respectively. As a result, the correlation potential depth between a methane molecule and the wall of carbon in the interstice and inside of the SWNH were −2400 K and −1450 K respectively.
The results of the adsorption character of methane to activated carbon or ACF were as follows. The regularity of adsorption amount corresponded to the regularity of each average potential depth and the amount of methane to be adsorbed accorded to the results of GCMC simulation and theoretical studies because these activated carbon and ACF both had slit-form pores.
However, the adsorption of methane to the opened SWNH was different from the above results. As shown in (d), the average potential depth (A) of the internal pores of the SWNH was smaller than that of the interstices (B) and (C) and it was therefore inferred that the density of methane adsorbed to the internal pores of the opened SWNH was also lower. However, from the results of
From the above results, it may be considered that methane is concentrated at an extraordinarily high density inside of pores by the self-lock mechanism shown in
This phenomenon is caused only by the narrow interstices formed with the tube part of carbon nanohorns, the openings formed in the tube part of carbon nanohorns and the specific structure of the carbon nanohorn aggregate which has a large capacity.
The hydrogen adsorption characters of a carbon nanohorn (opened SWNH) provided with openings in the tube wall or the tip part by subjecting a dahlia-like carbon nanohorn to oxidation heat treatment were investigated. Prior to the measurement of adsorption, the opened SWNH was heat-treated at 423 K under a pressure of 1 mPa or less to remove adsorbed gas and moisture.
The hydrogen isothermal adsorption characters of the opened SWNH were measured using an electronic balance at three temperatures 77 K, 196 K and 303 K under pressure ranging from 10 kPa to 10 MPa. The results are shown in
Also, using a carbon tube having the same tube diameter, a simulation using a computer was carried out to estimate the amount of hydrogen to he stored theoretically and the results are also shown together. This theoretical estimation has been confirmed to conform to the amount to be stored in an experiment made for a carbon material having silt type pores sandwiched between plane carbons. In the simulation, a Gland Canonical Monte Carlo (GCMC) method was used. The correlation characteristic between CH4 and the SWNH used in the GCMC method was calculated utilizing the Steel-Bojan smooth-walled cylinder potential.
It is confirmed from
It is needless to say that this invention is not limited to the above examples but may be otherwise variously embodied in detail parts.
As explained above in detail, this invention provides a new self-locking carbon adsorbent that is useful, for example, for storing methane gas and can store various gases at room temperature in a quasi-liquid state.
Number | Date | Country | Kind |
---|---|---|---|
2002-177656 | Jun 2002 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP02/07967 | 8/5/2002 | WO | 6/30/2005 |