The present invention relates to joints for concrete piles, methods for making concrete pile joints, and methods for joining concrete piles using those joints.
The most common pile used in many parts of the world, is the pre-cast reinforced concrete pile. Because of manufacturing, structural, transportation, installation, and other limitations associated with concrete piles, the length of the piles is often limited to a pre-determined length. Depending on the situation, it is often necessary to join, or splice, two piles end-to-end at a construction site when an individual pile section is not long enough for a particular application.
An object of the present invention is to provide a reinforced concrete pile joint that is stiff, fast and economical while able to perform in utmost integrity under the most severe driving conditions, having a resulting joint providing flexural strength equal to that of the pile itself.
Joints have also been proposed that involve welding. However, these are relatively time consuming during fabrication involving costly downtime on the piling machine. They also carry the inherent risk of damaging the adjacent concrete as a result of heat input.
Joints requiring bolts carry the risk of bolt loosening as a result of vibration during driving. Sleeved type joints have a very poor resistance to bending as well as tensile forces. Mechanical joints that required inserting locking pins are hazardous to workers safety as large heavy hammers are often used or locking pins may accidentally be misplaced or loosen during driving.
In accordance with the present invention, one part of the pile section consists of projecting bars peripheral to each corner of the pile's end plate that has a substantial planar surface that correspond to the end plate of the other pile section it is to be jointed. Lower pile section comprised of locking sockets positioned in alignment with the locking bars when engaged end to end such that the locking bars are introduced into the locking sockets. Each locking bar consists of latches formed on both sides that when passed through the flap structures formed from the opposed side walls of the socket to secure and clamp the two pile tightly together.
U.S. Pat. No. 3,625,012 discloses a joint that is self-locking with interfitting means in their opposed ends. One end consist of a rod whose end is cut and projecting from it.
FIG. 9 of that patent, the wedge can be easily reversed by driving it back out of the key hole. The other pile has a tube embedded therein and when the rod is laced in the tube and as the pile is driven, the cut end is forced by a wedge into the flare of the tube, thus locking the piles together. However, the wedge can be easily reversed by driving it back out of the tube or loosen by the friction of the surrounding soil of the piles.
U.S. Pat. No. 3,884,589 discloses an exemplary locking joint for concrete piles having joined sections. The facing end surfaces of the sections to be joined are made of metal and have outwardly projecting pins and/or openings arranged therein, the openings communicating with the pin receiving spaces to receive the pin from a next pile section. The pin receiving spaces have metal walls and each pin has a transverse hole there through to receive a wedge device to be inserted through the hole in the pin through a bore projecting through the side of the pile section into which the pin is inserted, thereby to hold the ends of the pile sections in firm abutting relationship as previously described. The locking joint is mainly characterized in that the wedge device is held in locking position in the bore and in the transversally extending hole through the pin by locking means located in the bore adjacent the side surface of the pile section and on the wedge device itself.
U.S. Pat. No. 5,032,041 discloses a joining device for concrete piles having a “through-going cavity” (9) that traverses the width of the concrete pile and that allows one to insert a wedge (13) to secure two concrete pile ends together. As shown in U.S. Pat. No. 4,009,550 discloses a concrete pile joint box that is square- or box-shaped, illustrating what many concrete pile joints look like today.
U.S. Pat. No. 3,313,560 discloses a pre-tensioning wire anchoring system for concrete pre-compressed structures (concrete pipes are illustrated), and teaches using a flat socket member adapted to being placed at the end of a concrete form, the socket member having multiple spaced-apart through holes for insertion of a tensioning wire.
EP 1,288,382 discloses a joint for joining reinforced concrete pillars together, and requires that the projecting locking part have an annular groove, a connecting element that includes an annular groove, and a spring-like locking element which locks in the two grooves.
Prior art concrete piles use concrete anchor bars to provide a means to attach and/or align joints. However, anchor bars of that type are not suitable for precision component purposes. It is not uncommon to observe wet, muddy, and icy conditions at construction sites where concrete piles are used. Because concrete piles are often placed directly on the ground before use at a site, the transverse holes for the locking pins often become clogged with debris, ice, mud, pebbles, etc. However, if a straight path is present to the other side, the debris can simply be pressed through. Ice is a particular concern for concrete piles, as mentioned above, because the spliced sections often become unstable. Therefore, pin-receiving tubes that extend straight through from one side of the pile to the other present a significant prevention in lost resources due to unusable or damages to concrete piles. The aforementioned prior art pile joints and methods of joining piles fail to address those, and other known problems associated with typical concrete piles.
With those and other objects, advantages and features of the invention that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the invention, the appended claims and to the several drawings attached herein.
Several preferred embodiments of the invention are described for illustrative purposes, it being understood that the invention may be embodied in other forms not specifically shown in the drawings.
Turning first to
As shown in
Although not shown in
As discussed previously, it is important to use economical materials in the manufacture of the joints 2a, 2b. To make the least expensive end plates 3a, 3b as possible, they are essentially a non-structural component of the joints 2a, 2b. Their main role is for alignment of the locking assemblies such as the lock bars 7a and lock sockets 7b. However, lower cost end plates 3a, 3b tend to have worse tolerances across the surface. However the tensile strength of the lock bars 7a which are to be engaged with the lock sockets 7b to splice the pile segments together must be of sufficient strength and preferably be made of material such as carbon steel above 800 MPa.
Turning now to
Turning now to
Although certain presently preferred embodiments of the disclosed invention have been specifically described herein, it will be apparent to those skilled in the art to which the invention pertains that variations and modifications of the various embodiments shown and described herein may be made without departing from the spirit and scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the appended claims and the applicable rules of law.
Number | Date | Country | Kind |
---|---|---|---|
PI 2022002016 | Apr 2022 | MY | national |