Self-locking plug

Information

  • Patent Grant
  • 12345332
  • Patent Number
    12,345,332
  • Date Filed
    Friday, December 15, 2023
    a year ago
  • Date Issued
    Tuesday, July 1, 2025
    19 days ago
Abstract
A fluid end, includes a plunger reciprocating within a first bore, the plunger increasing a pressure of a fluid within a pressure chamber. The fluid end also includes a second bore. The fluid end further includes a plug assembly associated with the second bore. The plug assembly includes a plug body positioned within the second bore. The plug assembly also includes a lock ring positioned, at least in part, within the second bore, the lock ring positioned to be driven radially outward responsive to a longitudinal force applied to the plug body.
Description
TECHNICAL FIELD

Embodiments of the subject matter disclosed herein generally relate to pump systems, and in particular to pump systems including one or more plugs.


BACKGROUND

Pumping systems may be used in a variety of applications, such as industrial applications where pumping systems are used to elevate a working fluid pressure. One such application is hydraulic fracturing systems, where high pressure pumps are used to increase a fluid pressure of a working fluid (e.g., fracturing fluid, slurry, etc.) for injection into an underground formation. The working fluid may include particulates, which are injected into fissures of the formation. When the fluid is removed from the formation, the particulates remain and “prop” open the fissures, facilitating flow of oil and gas. In many applications, reciprocating pumps are used where a fluid is introduced into a fluid end inlet passage and driven out through an outlet passage. A plunger reciprocates within a bore to add energy to the fluid. The pressure and operating conditions of the pumps may lead to movement and load cycling at various interfaces, which may cause leaks or other operational problems.


SUMMARY

Applicant recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, for plugs, and in various embodiments, fluid ends containing one or more plugs at different sealing interfaces.


In accordance with one or more embodiments, a fluid end, includes a plunger reciprocating within a first bore, the plunger increasing a pressure of a fluid within a pressure chamber. The fluid end also includes a second bore. The fluid end further includes a plug assembly associated with the second bore. The plug assembly includes a plug body positioned within the second bore. The plug assembly also includes a lock ring positioned, at least in part, within the second bore, the lock ring positioned to be driven radially outward responsive to a longitudinal force applied to the plug body.


In accordance with another embodiment, a plug assembly includes a plug body. The plug assembly also includes a lock ring positioned circumferentially about the plug body, at least a portion of the lock ring overlapping the plug body in both a deactivated position and an activated position. The plug assembly further includes a retaining plate arranged proximate the lock ring, the lock ring positioned between the plug body and the retaining plate. The plug assembly also includes a fastener extending, at least part, through the retaining plate and coupling to the plug body. The plug body is transitioned between the deactivated position and the activated position responsive to an axial force applied, at least in part, by the fastener, the axial force driving the plug body toward the retaining plate to transition an arm of the lock ring radially outward.


In accordance with another embodiment, a method includes positioning a plug body within a bore in a deactivated position. The method further includes applying an axial force to the plug body, the axial force being in a direction toward an outlet of the bore. The method also includes causing, responsive to the axial force, a lock ring positioned about the plug body to transition, at least in part, radially outward into a groove formed along the bore.





BRIEF DESCRIPTION OF THE DRAWINGS

The present technology will be better understood on reading the following detailed description of non-limiting embodiments thereof, and on examining the accompanying drawings, in which:



FIG. 1 is a schematic cross-sectional view of an embodiment of a pump assembly, in accordance with embodiments of the present disclosure;



FIG. 2 is a schematic cross-sectional view of an embodiment of a pump assembly, in accordance with embodiments of the present disclosure;



FIG. 3 is a perspective view of an embodiment of a plug assembly, in accordance with embodiments of the present disclosure;



FIG. 4 is a schematic cross-sectional view of an embodiment of a plug assembly, in accordance with embodiments of the present disclosure;



FIGS. 5A and 5B are schematic cross-sectional views of embodiments of a plug assembly, in accordance with embodiments of the present disclosure; and



FIG. 6 is a flow chart of an embodiment of a method for installing a plug assembly, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.


When introducing elements of various embodiments of the present disclosure, the articles “a”, “an”, “the”, and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including”, and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment”, “an embodiment”, “certain embodiments”, or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above”, “below”, “upper”, “lower”, “side”, “front”, “back”, or other terms regarding orientation or direction are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations or directions. Additionally, like reference numerals may be used for like components, but such use is for convenience purposes and not intended to limit the scope of the present disclosure. Moreover, use of terms such as substantially or approximately may refer to +/−10 percent.


Embodiments of the present disclosure are directed toward systems and methods to install and maintain plugs within one or more openings of a pumping unit, such as a fracturing pump. In at least one embodiment, configurations are directed toward plugs in one or both of a discharge side or a suction side of the pump. In at least one embodiment, plugs may include a configuration to facilitate self-locking, where a pressure applied from an interior portion of the pump drives one or more portions of the plug into a body of the fluid end to increase loading on the plug, thereby reducing a likelihood of leakage. Accordingly, systems and methods of the present disclosure may be directed toward plugs that are not reliant on axial loading from an external fastener or with threaded fasteners arranged along a bore, but rather, utilize configurations where a sealing or locking force increases responsive to an increased pressure within a fluid end.


Various embodiments of the present disclosure are directed toward one or more plugs that include a seal, which may be a piston-style seal. In at least one embodiment, the seal may be arranged around a portion of the plug to align with and engage a sealing surface. Moreover, systems and method include a lock ring, which in various embodiments may be a segmented lock ring. That is, the lock ring may include one or more portions that are positioned circumferentially about at least a portion of a plug body. Furthermore, various embodiments may also include a retainer or limiter plate, which may be utilized to limit or reduce axial motion, along with one or more engaging fasteners, which in various embodiments may include an elevator stud and a nut. In operation, the plug body may be driven into the bore until the seal engages the bore, which in one or more embodiments utilizes an external force to facilitate alignment and positioning. Thereafter, the nut may be rotated on the elevator stud such that the plug body is driven outwards, which may engage the lock ring (or segments of the lock ring) on a tapered surface, thereby driving the lock ring and/or segments radially outward and into a mating groove formed in the fluid end. As axial movement of the plug in an outward direction decreases, the plug provides more energizing force to the lock ring and/or segments. In one or more embodiments, the lock ring and/or segments may be retained on the limiting plate, for example using one or more mechanical fasteners, or may be geometrically constrained between the plug and the plate.


Embodiments of the present disclosure may overcome problems with existing plug or suction covers. By way of example, traditional approaches involve inserting a plug into a bore and then threaded a retainer into the fluid housing. This approach leads to failure because of an inability to generate enough loading to prevent movement of the plug and load cycling on the threads, and as a result, an interface will eventually crack or peel, which renders the fluid end inoperable. Attempts to solve these problems are also insufficient, such as using a captured drive screw against a threaded locking collar. This configuration relies on a threaded interface between the locking collar and the fluid end body, and any applied pressure will not further energizing the locking mechanism, but will either be resisted or failure in a similar way as traditional designs. As with the traditional approach, performance is dependent on an amount of torque applied to the drive bolt. Further attempts to overcome problems with traditional configurations include using a custom retaining nut that uses drive screws to load threads along the nut that engage the fluid end body. Once again, this configuration also relies on the amount of torque applied to the threaded members used to energize the assembly. Another attempt to overcome these problems includes utilizing opposite-facing edge components that are energized using a threaded fasteners. This configuration suffers from the same problems where failure at the threaded components will reduce loading on the entire design. Further configurations have attempted to integrate the retainer with the plug, which also relies on the threaded interface between the retainer/plug combo and the fluid end or to include a retainer that includes projections that generate a downward force when rotated into place, where vibrations may cause loosening and failure of the system. Systems and methods of the present disclosure have identified these problems and have created one or more configurations to overcome existing problems with respect to plugs utilized with pumping units, among other others.


Embodiments of the present disclosure are directed toward systems and methods to overcome problems with plugs utilized with pumping units. Unlike plug configurations that depend on linearly applied forces to account applied pressures, wedges to generate a mechanical advance, integrated plug/retainer combinations, and rotational tapers to generate preloads, present disclosure configurations may utilize the natural outward (e.g., away from the chamber) pressure of the fluid end in order to create more preload on the plug. As a result, the plug may continuously wedge into lock ring and/or segments.


Various embodiments of the present disclosure include the limiting or retention plate for the lock ring and/or segments that may be directly attached to the plug body or may be a separate assembly. The segments may be designed such that they move radially outwards from the retention plate. The segments may have a stepped taper or may be a single continuous taper. The plug is designed to come to a hard stop against the segments when full travel has been achieved and may not pass through them. When fully loaded, the plug is configured to not pass an axial load into the retention plate. The elevator fastener that is used to initially engage the plug into the segments may be a stud and nut or a bolted fastener. In one or more embodiments, a variety of retention mechanisms may be utilized with systems and methods of the present disclosure.



FIG. 1 is a schematic cross-sectional view of an embodiment of a pump assembly 100, which may also be referred to as a reciprocating pump assembly and/or a reciprocating pump. The pump assembly 100 may be utilized during hydraulic fracturing operations, among other operations, where a working fluid (e.g., fracturing fluid, slurry, etc.) is introduced into the pump and energy is added to the working fluid to increase a pressure of the working fluid. Fracturing fluid, by way of example only, may include corrosives and also particulates, such as sand or ceramics, which are utilized during fracturing operations. These corrosives and particulates cause erosion within the pump assembly 100, which may undesirably affect fracturing operations and lead to down times to replace various components. Additionally, the fracturing fluids may include corrosive acids and the like, which may wear down components of the pump assembly 100.


It should be appreciated that various components of the pump assembly 100 have been removed for clarity with the following discussion. For example, a power end has been removed in favor of focusing on the illustrated fluid end 102 of the pump assembly 100. The power end may include a crankshaft that is driven by an engine or motor to facilitate operations. The fluid end 102 includes a fluid end block 104 that may house one or more components discussed herein. A plunger rod 106 is driven (e.g., via the crankshaft) to reciprocate within the fluid end block 104 along a plunger axis 108. The plunger rod 106 is positioned within a bore 110 extending through at least a portion of the fluid end block 104. The illustrated bore 110 is arranged along the plunger axis 108 (e.g., first axis) and intersects a pressure chamber 112, which is arranged along a pressure chamber axis 114 (e.g., second axis), which is positioned substantially perpendicular to the plunger axis 108. It should be appreciated that the pump assembly 100 may include multiple plunger rod and pressure chamber arrangements, which may be referred to as a plunger throw. For example, the pump assembly 100 may be a triplex pump, quadplex pump, quintuplex pump, and the like.


The illustrated fluid end block 104 includes an inlet passage 116 and an outlet passage 118, which are generally coaxial and arranged along the pressure chamber axis 114. In other words, the inlet passage 116 and the outlet passage 118 are axially aligned with respect to one another and/or the pressure chamber 112. In various embodiments, fluid enters the pressure chamber 112 via the inlet passage 116, for example on an up stroke of the plunger rod 106, and is driven out of the pressure chamber 112 to an outlet chamber 120, for example on a down stroke of the plunger 106.


Respective valve assemblies 122, 124 are arranged within the inlet passage 116 and the outlet passage 118. These valve assemblies 122, 124 are spring loaded in the illustrated embodiment, but it should be appreciated that such an arrangement is for illustrative purposes only. In operation, a differential pressure may drive movement of the valve assemblies. For example, as the plunger rod 106 is on the upstroke, pressure at the inlet passage 116 may overcome the spring force of the valve assembly 122, thereby driving fluid into the pressure chamber 112. However, on the down stroke, the valve assembly 122 may be driven to a closed position, while the spring force of the valve assembly 124 is overcome, thereby enabling the fluid to exit via the outlet chamber 120.


Further illustrated in FIG. 1 is a suction cover 126 (e.g., plug, suction cover plug, suction plug) positioned at a suction end 128 of the fluid end 102. In this example, the suction cover 126 extends into a bore 130 and may be retained within the bore 130 using a retainer (not pictured). The retainer may be threaded into the fluid end block 104 and may maintain the suction cover 126 position during operations. As noted above, in operation, pressure within the pressure chamber 112 may act against the suction cover 126 to drive the suction cover 126 in an axially outward direction. The retainer prevents such movement of the cover 126, but over time, the threaded connection between the retainer and fluid end block 104 may break down. Systems and methods of the present disclosure are directed toward a suction plug configuration that utilizes the axial force from the pressure chamber 112 in order to increase a loading on the retainer, thereby maintaining a position of the suction cover 126. Various embodiments of the present disclosure may include a lock ring that includes one or more segments and tapered surfaces that interact with tapered surfaces of the suction cover 126 in order to drive radially outward movement of the lock ring. This outward movement may drive the retainer into a groove or opening within the fluid end, thereby maintaining the position of the suction cover 126, even as pressure increases.



FIG. 2 is a schematic cross-sectional view of an embodiment of the pump assembly 100 incorporating one or more plug assemblies 200, in accordance with one or more embodiments of the present disclosure. As noted, like numerals may be used for like components for convenience, but such use should not be interpreted as limiting the scope of the present disclosure. In this example, the pump assembly 100 includes the fluid end 102 with the plunger 106 that reciprocates along the axis 108. Further shown are the inlet and outlet valve assemblies 122, 124 along with the suction cover 126 arranged within the suction bore 130. In one or more embodiments, the illustrated suction cover 126 may form at least a portion of the plug assembly 200. As noted above, in operation reciprocation of the plunger 106 may increase a pressure within the pressure chamber 112 to drive fluid out of the outlet chamber 120.


In one or more embodiments, plug assemblies 200 are arranged at each of the suction bore 130 and the outlet passage 118 (e.g. discharge side). It should be appreciated that this configuration is shown by way of example only, and that plug assemblies 200 may not be at each of the illustrated locations and/or may be at additional locations. In this example, the plug assemblies 200 include a plug body 202, which may correspond to a suction cover 126 with respect to the assembly 200 at the suction end 128. The plug bodies 202 extend into respective bores to seal against a bore wall. Further illustrated is a retaining assembly 204, which will be described in more detail below, that engages and maintains an axial position of the plug bodies 202. In operation, one or more components of the retaining assembly 204 may, responsive to an axial force of the fluid, be driven radially outward to engage one or more grooves 206 within the fluid end block 104, and as a result, may be locked or otherwise secured within the bore. Accordingly, increased pressures or load cycling may result in a more rigid or improved retaining configuration with respect to the plug bodies 202. In this manner, systems and methods may be utilized to retain the respective plug bodies 202 without directly threading to the fluid end block 104.



FIG. 3 is a perspective view of an embodiment of the plug assembly 200. The illustrated configuration includes the plug body 202 and the retaining assembly 204, which is shown as being positioned, at least in part, circumferentially about the plug body 202.


In at least one embodiment, the retaining assembly 204 includes a lock ring 300 (e.g., locking ring, ring), which in this configuration is a segmented ring that includes a plurality of locking segments 302 (e.g., lock ring segments, lock segments, segments) arranged circumferentially about a retaining axis 304. It should be appreciated that the locking segments 302 illustrated in FIG. 3 are for illustrative purposes only and that, in other embodiments, there may be more or fewer segments 302. For example, the lock ring 300 may be a continuous piece. Additionally, in another embodiment, the lock ring 300 may include segments that have different circumferential extents. That is, each of the locking segments 302 may not be the same size or shape. For example, alternating segments 302 may have different circumferential extents, different shapes, different tapers, and the like. Accordingly, various geometric features of the lock ring 300 and/or segments 302 may be adjusted and/or particularly selected for a variety of different operating conditions.


The lock ring 300 is positioned axially lower than a retaining plate 306 (e.g., retainer plate, limiting plate). The retaining plate 306 is shown here as a substantially flat or planar plate, but it should be appreciated that different shapes may be utilized. For example, in at least one embodiment, the retaining plate 306 may be a ring. Additionally, in one or more embodiments, the retaining plate 306 may segmented or divided with spaces between solid sections. The retaining plate 306 is arranged at a top end 308 of the segments 302 and has a retaining plate diameter 310 that overlaps, at least in part, the top ends 308 of the segments 302. As a result, axial movement of the retaining plate 306 may be transferred to the segments 302 and/or axial movement of the segments 302 may be blocked beyond a predetermined point by the retaining plate 306. It should be appreciated that various embodiments may include a mechanical fastener or other coupling device between the retaining plate 306 and the segments 302. For example, a bolt or other threaded fastener may couple the components together. Additionally, in other embodiments, one or more hinged or multi-axis coupling devices may also be used to facilitate radially outward movement of the segments 302, as will be described below. Furthermore, in configurations, tongue and groove fittings, among other options, may enable movement of the segments 302 with respect to the retaining plate 306. Additionally, it should be appreciated that certain embodiments may omit a coupling or fastener between segments 302 and the retaining plate 306 and that geometric features may be used to maintain positions of respective components relative to one another, such as various lips, grooves, extensions, and the like.


Further illustrated is an engagement system 312, which in this configuration includes one or more fasteners, such as, for example, an elevator stud 314 and a nut 316. It should be appreciated that such a configuration is for illustrative purposes and other configurations may include different engaging mechanisms, such as other threaded fittings, bayonet connections, clamps, spring-loaded couplings, and the like. In operation, the nut 316 may be rotated about the axis 304 to draw the plug body 202 up and along the elevator stud 314, which causes the plug body 202 to engage the segments 302 of the lock ring 300.


In at least one embodiment, the segments 302 include respective arms 318 that extend radially outward from a segment body 320. That is, a segment outer diameter 322 is less than an arm outer diameter 324. As will be described below, the arms 318 may be utilized to engage the grooves 206 (FIG. 2) formed within the fluid end block 104 (FIG. 2). In this example, the arms 318 include an outer taper 326 that marks a transition between the segment outer diameter 322 and the arm outer diameter 324. It should be appreciated that a length and/or an angle the outer taper 326 may be particularly selected based on one or more design conditions. Moreover, in various embodiments, each of the segments 302 may have different sized or shaped arms 318. For example, different arms 318 may have different outer taper 326 shapes or sizes. Moreover, different arms 318 may have different arm outer diameters 324, among other potential design configurations.


In this example, the plug body 202 includes a seal groove 328 to receive a seal (not pictured), such as a piston seal. In various embodiments, the plug body 202 may include multiple grooves 328 to receive multiple seals. It should be appreciated that embodiments having the seal (not pictured) associated with the plug body 202 are for illustrative purposes only and that, in other embodiments, or in addition to the seal associated with the plug body 202, there may be one or more seals formed along a bore that engages portions of the plug body 202, such as one or more sealing surfaces. As will be described below, in operation the plug body 202 may be installed within a bore to engage the seal. Thereafter, the retaining assembly 204 may be utilized to drive the plug body 202 axially out of the bore such that one or more portions of the plug body 202 engages the lock ring 300, which may drive portions of the lock ring 300 radially outward to engage grooves 206 (FIG. 2). This engagement may lock or otherwise position the plug body 202 within the bore. Furthermore, responsive to axial forces applied by fluid pressures, further axial movement of the plug body 202 may serve to drive the lock ring 300 further outward and into the grooves 206 (FIG. 2), which may then lock or otherwise maintain the position of the plug body 202.



FIG. 4 is a cross-sectional view of an embodiment of the plug assembly 200. In this example, the plug body 202 is positioned to bear against or otherwise contact the lock ring 300, which may be responsive to rotation of the nut 316 to drive the plug body 202 toward the retaining plate 306. As shown, the elevator stud 314 is secured to the plug body 202, which may be via one or more threaded connections, an interference fit, a spring-loaded pin, or the like. As will be appreciated, the internal location of the connection may not be subjected to the particulate-laden or corrosive nature of the fluid utilized during operations.


The plug body 202 includes a top end 400, a first tapered profile 402, and a second tapered profile 404. It should be appreciated that additional tapers or steps may be included along the plug body 202 and that the illustrated configuration is by way of example. As shown, the first tapered profile 402 is arranged at a first profile angle 406 and the second tapered profile 404 is arranged at a second profile angle 408, with the first profile angle 406 being different from the second profile angle 408. It should be appreciated that in various embodiments the first profile angle 406 may be larger than the second profile angle 408, may be less than the second profile angle 408, or may be substantially equal to the second profile angle 408.


As shown, the respective tapered profiles 402, 404 of the plug body 202 engage mating profiles of the lock ring 300. For example, the illustrated segments 302 each include a first lock ring tapered profile 410 and a second lock ring tapered profile 412, which each of the first and second lock ring tapered profiles 410, 412 are arranged at respective first and second lock ring profile angles 414, 416, with the first lock ring profile angle 414 being different from the second lock ring profile angle 416. In various embodiments, the respective profiles 402, 404 may correspond to the profiles 410, 412 to facilitate engagement and movement of the arms 318 radially outward. That is, dimensions of the profiles 402, 404 may be particularly selected and based, at least in part, on the profiles 410, 412 to enable engagement between the plug body 202 and the lock ring 300 to drive the lock ring 300 radially outward responsive to an axial force applied to the plug body 202.


In the illustrated example, one or more limiting features may be included to prevent movement of one or more components beyond a predetermined location. By way of example, as noted above, the retaining plate 306 may be rigidly coupled or secured to the lock ring 300, and as a result, axial movement of the plug body 202 may be blocked by the retaining plate 306. Furthermore, as shown, the differences between the profile 402, 404 and the profiles 410, 412 may be particularly configured such that the pressures needed to move the second tapered profile 404 toward the first lock ring tapered profile 410 would exceed pressures utilized during operation of the pump. Furthermore, in various embodiments, one or more clamps or fasteners may secure the retaining plate 306 to a face of the fluid end, among other potential configurations, in order to provide additional prevention for axial movement of the plug body 202. Additionally, it should be appreciated that one or more components of the engagement system 312 may also be secured, at least in part, to a face of the fluid end.



FIGS. 5A and 5B illustrate an activation sequence 500 where the plug assembly 200 is transitioned from an deactivated position 502 to an activated position 504. It should be appreciated that the deactivated position 502 refers to a position where the plug body 202 is in a position where the arms 318 are engaged less than a threshold amount. FIG. 5A illustrates the plug body 202 coupled to the elevator stud 314 (or any other retaining mechanism). In this example, the plug body 202 is arranged within the bore 130 such that the seal groove 328 is not aligned with the bore wall 506. That is, the seal groove 328, which will receive a seal (not pictured) is positioned axially inward toward the pressure chamber 112 prior in the deactivated position 502. As will be described, the plug body 202 may then be axially driven outwardly along the retaining axis 304 to position the seal groove 328 in line with the bore wall 506.


Further shown in the deactivated position is engagement between the plug body 202 and the lock ring 300. Specifically, this example shows the first tapered profile 502 engaged with the first lock ring tapered profile 410. However, there is no engagement between the profiles 404, 412. As will be described, engagement between more areas of the plug body 202 and the lock ring 300 may be facilitated by an axial force applied to the plug body 202 to drive the plug body 202 along the retaining axis 304.


In various embodiments, the groove 206 is formed within the fluid end block 104 to receive the arms 318. In this example, at least a portion of the arms 318 extend within the groove 206. However, as shown in FIG. 5B, the outer taper 326 is not engaged with the groove 206 in the configuration of FIG. 5A, further illustrating the deactivated position 502. It should be appreciated that, in various embodiments, a distance the arms 318 extend into the grooves 206 may be particularly selected based, at least in part, on anticipated design configurations.



FIG. 5B illustrates the transition to the activated position 504. For example, in at least one embodiment, rotation of the nut 316 may apply an axial force to the plug body 202 to move the plug body 202 along the retaining axis 304 such that the groove 328 (and unpictured seal) are aligned with the bore wall 506. As the plug body 202 moves along the retaining axis 304, the first tapered profile 402 may slide along the first lock ring tapered profile 410, thereby driving the lock ring 300 radially outward with respect to the retaining axis 304. That is, the arm 318 is driven radially outward and into the groove 206. Furthermore, as shown, as the plug body 202 continues to move along the retaining axis 304 the second tapered profile 404 is engages the second lock ring tapered profile 412, which may further drive the arm 318 outward and into the groove 206. In this example, movement of the plug body 202 is stopped prior to reaching the retaining plate 306, but it should be appreciated that other embodiments may be configured such that the plug body 202 contacts the retaining plate 306.


Further shown in the illustrated embodiment is engagement between the body 320 and the fluid end block 104. In other words, the outward movement of the arms 318 also drives outward movement of the body 320 to engage the fluid end block 104. It should be appreciated that, in other configurations, the body 320 may not contact the fluid end block 104, and instead, the arms 318 may bend or otherwise bow outward such that the body 320 does not contact the fluid end block 104. Additionally, in various configurations, a coupling between the body 320 and the retaining plate 306 may block outward movement of the body 320, but enables bending or movement of the arm 318. Additionally, as noted above, in certain embodiments the body 320 is not coupled to the retaining plate 306, and rather geometric features may be utilized to maintain position of the various features of the plug assembly 200.


In the activated position 504, further axial forces from the pressure chamber 112 may drive the tapered profiles 402, 404 against the mating tapered profiles 410, 412 and further drive the arms 318 outward and into the groove, thereby locking or otherwise maintaining the plug body 202 position. As noted above, such a configuration may accommodate loading and load cycling without directly threading the lock ring 300 within the bore 130, thereby reducing a likelihood of failure at a threaded interface.



FIG. 6 is a flow chart of an embodiment of a method 600 for installing a plug within a bore. It should be appreciated for this method, and all methods described herein, that there may be more or fewer steps. Additionally, the steps may be performed in a different order, or in parallel, unless otherwise specifically stated. In this example, a plug body is positioned within a bore 602. In various embodiments, the plug body is positioned such that a seal of the plug body is not aligned with a sealing surface of the bore, for example, the plug body may be arranged within the bore such that the plug body is farther into the bore than in an operating condition. In at least one embodiment, an axial force is applied to the plug body 604. In at least one embodiment, the axial force is from a retaining assembly that may include one or more fasteners, such as a stud and nut, that may be utilized to apply an axial force to drive the plug out of the bore. By way of example, the plug may be driven out of the bore such that a seal aligns with a sealing surface of the bore. In at least one embodiment, driving the plug body outward causes one or more arms of a lock ring to extend into a groove 606. By way of example, mating tapered surfaces may contact one another to radially drive the arms outward and into the groove, thereby locking the plug body into position. In this manner, a self-locking plug may be installed within a bore, such as a bore associated with a pump.


This application is a continuation of U.S. Non-Provisional application Ser. No. 17/405,321, filed Aug. 18, 2021, titled “SELF-LOCKING PLUG,” now U.S. Pat. No. 11,846,356, issued Dec. 19, 2023, the disclosure of which is incorporated herein by reference in its entirety.


The foregoing disclosure and description of the disclosed embodiments is illustrative and explanatory of the embodiments of the disclosure. Various changes in the details of the illustrated embodiments can be made within the scope of the appended claims without departing from the true spirit of the disclosure. The embodiments of the present disclosure should only be limited by the following claims and their legal equivalents.

Claims
  • 1. A fluid end comprising: a plunger positioned to reciprocate within a first bore;one or more additional bores; andone or more plug assemblies associated with the one or more additional bores, each of the one or more plug assemblies comprising: a plug body positioned within the one or more additional bores, the plug body including a first tapered profile and a second tapered profile, anda lock ring having at least portions thereof positioned within the one or more additional bores, the lock ring including a first lock ring tapered profile and a second lock ring tapered profile, and the lock ring positioned such that the first tapered profile of the plug body engages the first lock ring tapered profile and the second tapered profile of the plug body engages the second lock ring tapered profile, thereby to drive the lock ring radially outward responsive to an axial force applied to the plug body.
  • 2. The fluid end of claim 1, further comprising: one or more retaining assemblies, each of the one or more retaining assemblies comprising: a retaining plate,a fastener extending through the retaining plate and coupled to the plug body of the one or more plug assemblies, anda nut positioned to apply the axial force to the plug body of the one or more plug assemblies and responsive to rotation about the fastener, thereby to drive the plug body out of the one or more additional bores.
  • 3. The fluid end of claim 1, wherein the lock ring includes a plurality of segments.
  • 4. The fluid end of claim 1, wherein the fluid end further comprises a groove positioned in the fluid end, and wherein the lock ring further includes: (a) a lock ring body, and (b) an arm extending radially outward from the lock ring body and positioned to engage the groove when the one or more plug assemblies is in an activated position.
  • 5. The fluid end of claim 1, wherein the plug body is positioned to be compressed against a seal positioned in the one or more additional bores, and wherein axial movement of the plug body in a direction toward an outlet of the one or more additional bores is restricted, at least in part, by the lock ring.
  • 6. The fluid end of claim 1, further comprising one or more retaining assemblies positioned to apply the axial force to the plug body to transition the plug body between a deactivated position and an activated position, and wherein the plug body has a seal positioned to be compressed against a wall of the one or more additional bores.
  • 7. The fluid end of claim 6, further comprising a fluid end body, and wherein the lock ring further includes a lock ring body positioned to engage at least a portion of the fluid end body when the one or more plug assemblies is in the activated position, and wherein the seal comprises a piston seal.
  • 8. The fluid end of claim 6, wherein at least a portion of the one or more retaining assemblies is coupled to a face of the lock ring, and wherein each of the one or more retaining assemblies comprises a retaining plate coupled to the face of the lock ring.
  • 9. The fluid end of claim 8, wherein the retaining plate comprises one or more of a solid plate, a ring, or a portion of a ring.
  • 10. The fluid end of claim 1, further comprising a pressure chamber, and wherein the one or more additional bores is positioned opposite of and aligned with the first bore, the first bore and the one or more additional bores coupled via the pressure chamber.
  • 11. The fluid end of claim 1, further comprising a pressure chamber, and wherein the one or more additional bores is substantially perpendicular to the first bore, the first bore and the one or more additional bores connected via the pressure chamber.
  • 12. A plug assembly comprising: a plug body including a first tapered profile and a second tapered profile;a lock ring positioned circumferentially about the plug body and including a first lock ring tapered profile and a second lock ring tapered profile, at least a portion of the lock ring positioned to overlap the plug body in both a deactivated position and an activated position;a retaining plate arranged proximate the lock ring; anda fastener coupled to the plug body, whereby the plug body is positioned to transition between the deactivated position and the activated position responsive to an axial force applied by the fastener to the plug body so as to drive the plug body toward the retaining plate and cause the first tapered profile of the plug body to engage the first lock ring tapered profile and the second tapered profile of the plug body to engage the second lock ring tapered profile.
  • 13. The plug assembly of claim 12, wherein the plug body includes a seal groove, and the plug assembly further comprises a seal arranged within the seal groove of the plug body.
  • 14. The plug assembly of claim 13, wherein the plug body is configured such that the seal is positioned out of alignment with a bore wall of a bore in the deactivated position and in alignment with the bore wall of the bore in the activated position.
  • 15. The plug assembly of claim 12, wherein the lock ring includes a plurality of segments and a lock ring arm, and wherein an arm outer diameter of the lock ring arm is greater than a retaining plate diameter of the retaining plate.
  • 16. The plug assembly of claim 12, wherein the fastener comprises a first fastener, and the plug assembly further comprises a second fastener, the first fastener including an elevator stud, and the second fastener including a nut.
  • 17. The plug assembly of claim 12, wherein the plug body includes a sealing surface positioned to engage a seal within a bore.
  • 18. A method comprising: positioning a plug body, in a deactivated position, within a bore, the plug body including a first tapered profile and a second tapered profile;applying an axial force to the plug body, the axial force being in a direction along an axis of the bore, thereby to move the plug body from the deactivated position to an activated position; andcausing, responsive to the movement of the plug body from the deactivated position to the activated position, contact between the first tapered profile of the plug body and a first lock ring tapered profile of a lock ring positioned about the plug body and between the second tapered profile of the plug body and a second lock ring tapered profile of the lock ring, the lock ring to transition, at least in part, radially outward in the bore.
  • 19. The method of claim 18, wherein a seal associated with the plug body is not aligned with a wall of the bore when the plug body is in the deactivated position, and the seal is aligned with the wall of the bore when the plug body is in the activated position.
  • 20. The method of claim 18, wherein the axial force is caused, at least in part, by one or more of: (a) rotation of a fastener, or (b) fluid pressure.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. Non-Provisional application Ser. No. 17/405,321, filed Aug. 18, 2021, titled “SELF-LOCKING PLUG,” now U.S. Pat. No. 11,846,356, issued Dec. 19, 2023, the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (637)
Number Name Date Kind
1316539 Ford Sep 1919 A
1364848 Walsh Jan 1921 A
1576269 Durant Mar 1926 A
1595459 Durant Aug 1926 A
1671139 Wilson May 1928 A
1836068 Goldsberry Dec 1931 A
1873318 Eason Aug 1932 A
1914737 Elms Jun 1933 A
1948628 Penick Feb 1934 A
1963684 Shimer Jun 1934 A
1963685 Shimer Jun 1934 A
2011547 Campbell Aug 1935 A
2069443 Hill Feb 1937 A
2103504 White Dec 1937 A
2143399 Abercrombie Jan 1939 A
2146709 Bird Feb 1939 A
2151442 Hardy Mar 1939 A
2163472 Shimer Jun 1939 A
2252488 Bierend Aug 1941 A
2304991 Foster Dec 1942 A
2506128 Ashton May 1950 A
2539996 Gleitz Jan 1951 A
2547831 Mueller Apr 1951 A
2713522 Lorenz Jul 1955 A
2719737 Fletcher Oct 1955 A
2745631 Shellman May 1956 A
2756960 Church Jul 1956 A
2898082 Almen Aug 1959 A
2969951 Walton Jan 1961 A
2977874 Ritzerfeld et al. Apr 1961 A
2982515 Clinton May 1961 A
2983281 Bynum May 1961 A
3049082 Barry Aug 1962 A
3053500 Atkinson Sep 1962 A
3063467 Roberts, Jr. Nov 1962 A
3224817 Carter Dec 1965 A
3276390 Bloudoff Oct 1966 A
3277837 Pangburn Oct 1966 A
3288475 Benoit Nov 1966 A
3459363 Miller Aug 1969 A
3474808 Elliott Oct 1969 A
3483885 Leathers Dec 1969 A
3489098 Roth Jan 1970 A
3489170 Leman Jan 1970 A
3512787 Kennedy May 1970 A
3590387 Landis Jun 1971 A
3640501 Walton Feb 1972 A
3698726 Schettler Oct 1972 A
3809508 Uchiyama May 1974 A
3847511 Cole Nov 1974 A
3907307 Maurer Sep 1975 A
3931755 Hatridge Jan 1976 A
4044834 Perkins Aug 1977 A
4076212 Leman Feb 1978 A
4184814 Parker Jan 1980 A
4219204 Pippert Aug 1980 A
4277229 Pacht Jul 1981 A
4306728 Huperz Dec 1981 A
4331741 Wilson May 1982 A
4395050 Wirz Jul 1983 A
4398731 Gorman Aug 1983 A
4440404 Roach Apr 1984 A
4508133 Hamid Apr 1985 A
4518359 Yao-Psong May 1985 A
4527806 Ungchusri Jul 1985 A
4565297 Korner Jan 1986 A
4662392 Vadasz May 1987 A
4754950 Tada Jul 1988 A
4763876 Oda Aug 1988 A
4768933 Stachowiak Sep 1988 A
4770206 Sjoberg Sep 1988 A
4807890 Gorman Feb 1989 A
4811758 Piper Mar 1989 A
4861241 Gamboa Aug 1989 A
4872395 Bennitt et al. Oct 1989 A
4919719 Abe Apr 1990 A
4951707 Johnson Aug 1990 A
5020490 Seko Jun 1991 A
5052435 Crudup Oct 1991 A
5061159 Pryor Oct 1991 A
5062450 Bailey Nov 1991 A
5073096 King et al. Dec 1991 A
5080713 Ishibashi Jan 1992 A
5088521 Johnson Feb 1992 A
5127807 Eslinger Jul 1992 A
5131666 Hutchens Jul 1992 A
5135238 Wells Aug 1992 A
5149107 Maringer Sep 1992 A
5201491 Domangue Apr 1993 A
5209495 Palmour May 1993 A
5249600 Blume Oct 1993 A
5267736 Pietsch Dec 1993 A
5273570 Sato Dec 1993 A
5299812 Brestel Apr 1994 A
5314659 Hidaka May 1994 A
5382057 Richter Jan 1995 A
5478048 Salesky Dec 1995 A
5493951 Harrison Feb 1996 A
5533245 Stanton Jul 1996 A
5540570 Schuller Jul 1996 A
5572920 Kennedy Nov 1996 A
5626345 Wallace May 1997 A
5636688 Bassinger Jun 1997 A
5674449 Liang Oct 1997 A
5834664 Aonuma Nov 1998 A
5859376 Ishibashi Jan 1999 A
5895517 Kawamura Apr 1999 A
5924853 Pacht Jul 1999 A
5949003 Aoki Sep 1999 A
6139599 Takahashi Oct 2000 A
6200688 Liang Mar 2001 B1
6209445 Roberts, Jr. Apr 2001 B1
6328312 Schmitz Dec 2001 B1
6340377 Kawata Jan 2002 B1
6382940 Blume May 2002 B1
6436338 Qiao Aug 2002 B1
6446939 Hoppe Sep 2002 B1
6460620 LaFleur Oct 2002 B1
6464749 Kawase Oct 2002 B1
6482275 Qiao Nov 2002 B1
6485678 Liang Nov 2002 B1
6544012 Blume Apr 2003 B1
6571684 Nov et al. Jun 2003 B1
6623259 Blume Sep 2003 B1
6634236 Mars Oct 2003 B2
6641112 Antoff Nov 2003 B2
6695007 Vicars Feb 2004 B2
6702905 Qiao Mar 2004 B1
6880802 Hara Apr 2005 B2
6910871 Blume Jun 2005 B1
6916444 Liang Jul 2005 B1
6951165 Kuhn Oct 2005 B2
6951579 Koyama Oct 2005 B2
6955181 Blume Oct 2005 B1
6959916 Chigasaki Nov 2005 B2
7000632 McIntire Feb 2006 B2
7036824 Kunz May 2006 B2
7144440 Ando Dec 2006 B2
7168440 Blume Jan 2007 B1
7186097 Blume Mar 2007 B1
7222837 Blume May 2007 B1
7290560 Orr Nov 2007 B2
7296591 Moe Nov 2007 B2
7335002 Vicars Feb 2008 B2
7341435 Vicars Mar 2008 B2
7398955 Weingarten Jul 2008 B2
7506574 Jensen Mar 2009 B2
7513483 Blume Apr 2009 B1
7513759 Blume Apr 2009 B1
7562675 Nomichi et al. Jul 2009 B2
7611590 Liang Nov 2009 B2
7681589 Schwegman Mar 2010 B2
7682471 Levin Mar 2010 B2
7726026 Blume Jun 2010 B1
7748310 Kennedy Jul 2010 B2
7754142 Liang Jul 2010 B2
7754143 Qiao Jul 2010 B2
7757396 Sawada Jul 2010 B2
7789133 McGuire Sep 2010 B2
7789161 Riley Sep 2010 B2
7793913 Hara Sep 2010 B2
7828053 McGuire Nov 2010 B2
7845413 Shampine Dec 2010 B2
7861738 Erbes Jan 2011 B2
7866346 Walters Jan 2011 B1
7891374 Vicars Feb 2011 B2
7954510 Schwegman Jun 2011 B2
7992635 Cherewyk Aug 2011 B2
8069923 Blanco Dec 2011 B2
8075661 Chen Dec 2011 B2
8083506 Maki Dec 2011 B2
8100407 Stanton Jan 2012 B2
8141849 Blume Mar 2012 B1
8147227 Blume Apr 2012 B1
8181970 Smith May 2012 B2
8261771 Witkowski Sep 2012 B2
8287256 Shafer Oct 2012 B2
8291927 Johnson Oct 2012 B2
8317498 Gambier Nov 2012 B2
8375980 Higashiyama Feb 2013 B2
8376723 Kugelev Feb 2013 B2
8402880 Patel Mar 2013 B2
8430075 Qiao Apr 2013 B2
D687125 Hawes Jul 2013 S
8479700 Qiao Jul 2013 B2
8511218 Cordes Aug 2013 B2
8522667 Clemens Sep 2013 B2
8528585 McGuire Sep 2013 B2
8529230 Colley, III et al. Sep 2013 B1
8534691 Schaffer Sep 2013 B2
8613886 Qiao Dec 2013 B2
D700682 Bayyouk et al. Mar 2014 S
8662864 Bayyouk Mar 2014 B2
8662865 Bayyouk Mar 2014 B2
8668470 Bayyouk Mar 2014 B2
8707853 Dille Apr 2014 B1
8733313 Sato May 2014 B2
8784081 Blume Jul 2014 B1
8828312 Yao Sep 2014 B2
8870554 Kent Oct 2014 B2
8893806 Williamson Nov 2014 B2
8894392 Blume Nov 2014 B1
8915722 Blume Dec 2014 B1
8940110 Qiao Jan 2015 B2
8978695 Witkowkski Mar 2015 B2
8998593 Vicars Apr 2015 B2
9010412 McGuire Apr 2015 B2
9103448 Witkowski Aug 2015 B2
9150945 Bei Oct 2015 B2
9157136 Chou Oct 2015 B2
9157468 Dille Oct 2015 B2
9206910 Kahn Dec 2015 B2
D748228 Bayyouk Jan 2016 S
9260933 Artherholt Feb 2016 B2
9261195 Toynbee Feb 2016 B2
9273543 Baca Mar 2016 B2
9284631 Radon Mar 2016 B2
9284953 Blume Mar 2016 B2
9285040 Forrest Mar 2016 B2
9291274 Blume Mar 2016 B1
9322243 Baca Apr 2016 B2
9334547 Qiao May 2016 B2
9340856 Otobe May 2016 B2
9359921 Hashimoto Jun 2016 B2
9365913 Imaizumi Jun 2016 B2
9371919 Forrest Jun 2016 B2
9376930 Kim Jun 2016 B2
9377019 Blume Jun 2016 B1
9382940 Lee Jul 2016 B2
9416887 Blume Aug 2016 B2
9435454 Blume Sep 2016 B2
9441776 Bryne Sep 2016 B2
9458743 Qiao Oct 2016 B2
9464730 Bihlet Oct 2016 B2
9500195 Blume Nov 2016 B2
9506382 Yeager Nov 2016 B2
9528508 Thomeer Dec 2016 B2
9528631 McCarty Dec 2016 B2
9534473 Morris Jan 2017 B2
9534691 Miller Jan 2017 B2
9556761 Koyama Jan 2017 B2
9568138 Arizpe Feb 2017 B2
9605767 Chhabra Mar 2017 B2
9631739 Belshan Apr 2017 B2
D787029 Bayyouk May 2017 S
9638075 Qiao May 2017 B2
9638337 Witkowski May 2017 B2
9650882 Zhang May 2017 B2
9651067 Beschorner May 2017 B2
9689364 Mack Jun 2017 B2
9695812 Dille Jul 2017 B2
9732746 Chandrasekaran Aug 2017 B2
9732880 Haines Aug 2017 B2
9745968 Kotapish Aug 2017 B2
9784262 Bayyouk Oct 2017 B2
9791082 Baxter et al. Oct 2017 B2
9822894 Bayyouk Nov 2017 B2
9845801 Shek Dec 2017 B1
9857807 Baca Jan 2018 B2
9915250 Brasche Mar 2018 B2
9920615 Zhang Mar 2018 B2
9927036 Dille Mar 2018 B2
9945362 Skurdalsvold Apr 2018 B2
9945375 Zhang Apr 2018 B2
9989044 Bayyouk Jun 2018 B2
10029540 Seeger Jul 2018 B2
D826281 Mead Aug 2018 S
10041490 Jahnke Aug 2018 B1
10082137 Graham Sep 2018 B2
10094478 Iijima Oct 2018 B2
10113679 Shuck Oct 2018 B2
10184470 Barnett, Jr. Jan 2019 B2
10190197 Baker Jan 2019 B2
10197172 Fuller Feb 2019 B2
10215172 Wood Feb 2019 B2
10221848 Bayyouk Mar 2019 B2
10240594 Barnhouse, Jr. Mar 2019 B2
10240597 Bayyouk Mar 2019 B2
10247182 Zhang Apr 2019 B2
10247184 Chunn Apr 2019 B2
10273954 Brown Apr 2019 B2
10288178 Nowell May 2019 B2
10316832 Byrne Jun 2019 B2
10330097 Skurdalsvold Jun 2019 B2
10344757 Stark Jul 2019 B1
10364487 Park Jul 2019 B2
D856498 Bayyouk Aug 2019 S
10378535 Mahmood Aug 2019 B2
10378538 Blume Aug 2019 B2
10378659 Scott et al. Aug 2019 B2
10393113 Wagner Aug 2019 B2
10400764 Wagner Sep 2019 B2
10415348 Zhang Sep 2019 B2
D861834 Foster et al. Oct 2019 S
10428406 Yao Oct 2019 B2
10428949 Miller Oct 2019 B2
10436193 Jahnke Oct 2019 B1
10443456 Hoeg Oct 2019 B2
10465680 Guerra Nov 2019 B1
10472702 Yeh Nov 2019 B2
10487528 Pozybill Nov 2019 B2
D871455 Crowsley Dec 2019 S
10519070 Sanders Dec 2019 B2
10519950 Foster Dec 2019 B2
10526862 Witkowski Jan 2020 B2
10527036 Blume Jan 2020 B2
10557446 Stecklein Feb 2020 B2
10557576 Witkowski Feb 2020 B2
10557580 Mendyk Feb 2020 B2
10563494 Graham Feb 2020 B2
10563649 Zhang Feb 2020 B2
10570491 Hong Feb 2020 B2
10576538 Kato Mar 2020 B2
10577580 Abbas Mar 2020 B2
10577850 Ozkan Mar 2020 B2
10591070 Nowell Mar 2020 B2
10605374 Takaki Mar 2020 B2
D880661 Foster et al. Apr 2020 S
10626856 Coldren Apr 2020 B2
10633925 Panda Apr 2020 B2
10634260 Said Apr 2020 B2
10640854 Hu May 2020 B2
10655623 Blume May 2020 B2
10663071 Bayyouk May 2020 B2
10670013 Foster Jun 2020 B2
10670153 Filipow Jun 2020 B2
10670176 Byrne Jun 2020 B2
10677109 Qiao Jun 2020 B2
10677240 Graham Jun 2020 B2
10677365 Said Jun 2020 B2
10711567 Buckley Jul 2020 B2
10711754 Nelson Jul 2020 B2
10711778 Buckley Jul 2020 B2
10718441 Myers Jul 2020 B2
10731523 Qu Aug 2020 B2
10731643 DeLeon Aug 2020 B2
10738928 Arizpe Aug 2020 B2
10753490 Fuller Aug 2020 B2
10753495 Bayyouk Aug 2020 B2
10767520 Hattiangadi Sep 2020 B1
10771567 Sundaresan Sep 2020 B2
10774828 Smith Sep 2020 B1
10781803 Kumar Sep 2020 B2
10787725 Fujieda Sep 2020 B2
10801627 Warbey Oct 2020 B2
10808488 Witkowski Oct 2020 B2
10808851 Surjaatmadja et al. Oct 2020 B1
10815988 Buckley Oct 2020 B2
10815989 Naedler et al. Oct 2020 B2
10830360 Frank Nov 2020 B2
10851775 Stark Dec 2020 B2
10865325 Nakao Dec 2020 B2
10895325 Nowell et al. Jan 2021 B2
D910820 Grassl Feb 2021 S
10907738 Nowell Feb 2021 B2
10914171 Foster Feb 2021 B2
10934899 Hattiangadi Mar 2021 B2
10941765 Nowell Mar 2021 B2
10941866 Nowell Mar 2021 B2
10954938 Stark Mar 2021 B2
10961607 Oshima Mar 2021 B2
10962001 Nowell Mar 2021 B2
D916240 Nowell Apr 2021 S
10968717 Tran Apr 2021 B2
10988834 Lee Apr 2021 B2
10989321 Hattiangadi Apr 2021 B2
10995738 Blume May 2021 B2
11009016 Berend May 2021 B2
11028662 Rhodes Jun 2021 B2
11041570 Buckley Jun 2021 B1
11073144 Hurst et al. Jul 2021 B1
11078903 Nowell Aug 2021 B2
11104981 Chen Aug 2021 B2
11105185 Spencer Aug 2021 B2
11105327 Hurst Aug 2021 B2
11105328 Bryne Aug 2021 B2
11105428 Warbey Aug 2021 B2
11111915 Bayyouk Sep 2021 B2
11131397 Yan Sep 2021 B2
D933104 Ellisor Oct 2021 S
D933105 Ellisor Oct 2021 S
D933106 Mullins Oct 2021 S
D933107 Mullins Oct 2021 S
11149514 Witkowski Oct 2021 B2
11156221 Stark et al. Oct 2021 B2
11162859 Lei Nov 2021 B2
11181101 Byrne Nov 2021 B2
11181108 Brooks Nov 2021 B2
11225963 Naedler et al. Jan 2022 B2
11231111 Hurst Jan 2022 B2
11242849 Smith Feb 2022 B1
D949202 Sharpstone Apr 2022 S
11353117 Smith Jun 2022 B1
11359615 Thomas et al. Jun 2022 B2
11384756 Smith Jul 2022 B1
11391374 Ellisor Jul 2022 B1
11421679 Mullins Aug 2022 B1
11421680 Smith Aug 2022 B1
11434900 Alex Sep 2022 B1
11441683 Mullins et al. Sep 2022 B2
11454321 Mullins et al. Sep 2022 B2
11473686 Bayyouk Oct 2022 B2
11566713 Poremski Jan 2023 B2
D980876 Smith Mar 2023 S
D986928 Smith et al. May 2023 S
D997992 Smith et al. Sep 2023 S
11746778 Bayyouk Sep 2023 B2
11761441 Alex et al. Sep 2023 B1
D1006059 Waniek Nov 2023 S
11846356 Ellisor Dec 2023 B1
11891988 Mullins et al. Feb 2024 B2
11920684 Xu et al. Mar 2024 B1
12038086 Shuck Jul 2024 B2
12049889 Ellisor et al. Jul 2024 B2
12055221 Ellisor et al. Aug 2024 B2
12140240 Xu Nov 2024 B1
20020084004 Takahashi Jul 2002 A1
20020124961 Porter Sep 2002 A1
20020159914 Yeh Oct 2002 A1
20030205864 Dietle Nov 2003 A1
20030233910 Jeong Dec 2003 A1
20040170507 Vicars Sep 2004 A1
20040194576 Ando Oct 2004 A1
20040234404 Vicars Nov 2004 A1
20040255410 Schonewille Dec 2004 A1
20040258557 Shun Dec 2004 A1
20050095156 Wolters May 2005 A1
20050200081 Stanton Sep 2005 A1
20050226754 Orr Oct 2005 A1
20060002806 Baxter Jan 2006 A1
20060027779 McGuire Feb 2006 A1
20060045782 Kretzinger Mar 2006 A1
20070086910 Liang Apr 2007 A1
20070154342 Tu Jul 2007 A1
20070261746 Nomichi et al. Nov 2007 A1
20070273105 Stanton Nov 2007 A1
20070295411 Schwegman Dec 2007 A1
20080031769 Yeh Feb 2008 A1
20080052014 Toyosada Feb 2008 A1
20080092384 Schaake Apr 2008 A1
20080240949 Tackett et al. Oct 2008 A1
20080279706 Gambier Nov 2008 A1
20090041611 Sathian Feb 2009 A1
20090278069 Blanco Nov 2009 A1
20090261575 Bull Dec 2009 A1
20100143163 Patel et al. Jun 2010 A1
20100230628 Stefina Sep 2010 A1
20100272597 Qiao Dec 2010 A1
20110079302 Hawes Apr 2011 A1
20110142701 Small Jun 2011 A1
20110189040 Vicars Aug 2011 A1
20110255993 Ochoa Oct 2011 A1
20110296982 Dille et al. Dec 2011 A1
20120141308 Saini Jun 2012 A1
20120163969 Ongole Jun 2012 A1
20120259593 El-Zein Oct 2012 A1
20120304821 Ando Dec 2012 A1
20130020521 Byrne Jan 2013 A1
20130037739 Millard Feb 2013 A1
20130202457 Bayyouk Aug 2013 A1
20130202458 Byrne Aug 2013 A1
20130263932 Baxter et al. Oct 2013 A1
20130319220 Luharuka Dec 2013 A1
20140083541 Chandrasekaran Mar 2014 A1
20140083547 Hwang Mar 2014 A1
20140196883 Artherholt Jul 2014 A1
20140260954 Young Sep 2014 A1
20140286805 Dyer Sep 2014 A1
20140322034 Bayyouk Oct 2014 A1
20140322050 Marette et al. Oct 2014 A1
20140348677 Moeller Nov 2014 A1
20150127308 Thomas, Jr. et al. May 2015 A1
20150132157 Whaley May 2015 A1
20150144826 Bayyouk May 2015 A1
20150147194 Foote May 2015 A1
20150219096 Jain Aug 2015 A1
20150300332 Kotapish Oct 2015 A1
20150368775 Baker Dec 2015 A1
20160201169 Vecchio Jul 2016 A1
20160215588 Belshan Jul 2016 A1
20160238156 Hubenschmidt Aug 2016 A1
20160245280 Todorov Aug 2016 A1
20160258433 Belshan et al. Sep 2016 A1
20160319626 Dille Nov 2016 A1
20160319805 Dille Nov 2016 A1
20160327165 Sundararajan Nov 2016 A1
20170067459 Bayyouk Mar 2017 A1
20170089334 Jahnke Mar 2017 A1
20170089470 Filipow et al. Mar 2017 A1
20170089473 Nowell Mar 2017 A1
20170097107 Hotz Apr 2017 A1
20170159655 Morreale Jun 2017 A1
20170175799 Arnold Jun 2017 A1
20170204852 Barnett, Jr. Jul 2017 A1
20170218951 Graham Aug 2017 A1
20170218993 Freed Aug 2017 A1
20170297149 Shinohara Oct 2017 A1
20170298932 Wagner Oct 2017 A1
20170314097 Hong Nov 2017 A1
20170342776 Bullock Nov 2017 A1
20170342976 Reddy Nov 2017 A1
20180017173 Nowell Jan 2018 A1
20180058431 Blume Mar 2018 A1
20180073653 Bayyouk Mar 2018 A1
20180202434 Barnhouse, Jr. Jul 2018 A1
20180298894 Wagner Oct 2018 A1
20180312946 Gigliotti, Jr. Nov 2018 A1
20180320258 Stewart Nov 2018 A1
20180340245 Kernion Nov 2018 A1
20180354081 Kalyani Dec 2018 A1
20190011051 Yeung Jan 2019 A1
20190017503 Foster Jan 2019 A1
20190024198 Hong Jan 2019 A1
20190024225 Tang Jan 2019 A1
20190032685 Foster Jan 2019 A1
20190032720 Bayyouk Jan 2019 A1
20190047049 Fujieda Feb 2019 A1
20190049052 Shuck Feb 2019 A1
20190063427 Nowell Feb 2019 A1
20190071755 Lee Mar 2019 A1
20190072088 DeLeon Mar 2019 A1
20190072089 Buckley Mar 2019 A1
20190085806 Meibgeier Mar 2019 A1
20190085978 Chase Mar 2019 A1
20190101109 Cortes Apr 2019 A1
20190107226 Bayyouk Apr 2019 A1
20190120389 Foster Apr 2019 A1
20190136842 Nowell May 2019 A1
20190145400 Graham May 2019 A1
20190145568 Nick May 2019 A1
20190154033 Brooks May 2019 A1
20190170137 Chase Jun 2019 A1
20190170138 Bayyouk Jun 2019 A1
20190194786 Chuang Jun 2019 A1
20190226058 Fujieda Jul 2019 A1
20190226476 Stark et al. Jul 2019 A1
20190063430 Byrne Aug 2019 A1
20190242373 Wernig Aug 2019 A1
20190247957 Stribling Aug 2019 A1
20190264683 Smith Aug 2019 A1
20190292633 Porret Sep 2019 A1
20190301314 Kamo Oct 2019 A1
20190301447 Skurdalsvold Oct 2019 A1
20190316685 Wang Oct 2019 A1
20190331245 Gable et al. Oct 2019 A1
20190360483 Nowell Nov 2019 A1
20190376508 Wagner Dec 2019 A1
20200056272 Hong Feb 2020 A1
20200063899 Witkowkski Feb 2020 A1
20200070034 Sukup et al. Mar 2020 A1
20200072369 Singley et al. Mar 2020 A1
20200080660 Dyer Mar 2020 A1
20200080661 Mullins Mar 2020 A1
20200157663 Yang May 2020 A1
20200158123 Chen May 2020 A1
20200173317 Keating Jun 2020 A1
20200023245 Blume Jul 2020 A1
20200208776 Bayyouk Jul 2020 A1
20200217424 Rasmussen Jul 2020 A1
20200232455 Blume Jul 2020 A1
20200240531 Nowell Jul 2020 A1
20200256149 Witkowski Aug 2020 A1
20200284253 Foster Sep 2020 A1
20200284365 Bayyouk Sep 2020 A1
20200290118 Chen Sep 2020 A1
20200291731 Haiderer Sep 2020 A1
20200300240 Nowell Sep 2020 A1
20200308683 Xue Oct 2020 A1
20200347843 Mullins Nov 2020 A1
20200355182 DeLeon Nov 2020 A1
20200362970 Hurst Nov 2020 A1
20200392613 Won Dec 2020 A1
20200393054 Fuller Dec 2020 A1
20200399979 Webster Dec 2020 A1
20200400003 Webster Dec 2020 A1
20200400130 Poehls Dec 2020 A1
20200400132 Kumar Dec 2020 A1
20200400140 Bayyouk Dec 2020 A1
20200400234 Mullins et al. Dec 2020 A1
20200400242 Spencer Dec 2020 A1
20210010113 Qiao Jan 2021 A1
20210010470 Blume Jan 2021 A1
20210017830 Witkowski Jan 2021 A1
20210017982 Bayyouk Jan 2021 A1
20210017983 Myers Jan 2021 A1
20210040836 Baskin Feb 2021 A1
20210054486 Kim Feb 2021 A1
20210102630 Nowell Apr 2021 A1
20210108734 Nowell Apr 2021 A1
20210130936 Wu May 2021 A1
20210146397 Mittag et al. May 2021 A1
20210148471 Murugesan May 2021 A1
20210180156 Kim Jun 2021 A1
20210190053 Wagner Jun 2021 A1
20210190223 Bayyouk Jun 2021 A1
20210197524 Maroli Jul 2021 A1
20210215071 Oikawa Jul 2021 A1
20210215154 Nowell Jul 2021 A1
20210230987 Tanner Jul 2021 A1
20210239111 Zitting Aug 2021 A1
20210246537 Maroli Aug 2021 A1
20210260704 Hu Aug 2021 A1
20210270261 Zhang Sep 2021 A1
20210285551 Renollett Sep 2021 A1
20210310484 Myers Oct 2021 A1
20210381504 Wagner Dec 2021 A1
20210381615 Riedel Dec 2021 A1
20210388832 Byrne Dec 2021 A1
20220026326 Wang Jan 2022 A1
20220034402 Kiani Feb 2022 A1
20220056906 Lawson et al. Feb 2022 A1
20220065063 Xu et al. Mar 2022 A1
20220163031 Chase May 2022 A1
20220163032 Chase May 2022 A1
20220243723 Herold et al. Aug 2022 A1
20220282719 Barnhouse Sep 2022 A1
20220349472 Ellisor Nov 2022 A1
20220390055 Ellisor Dec 2022 A1
20220403839 Mullins Dec 2022 A1
20230041201 Myers et al. Feb 2023 A1
20230129538 Miller et al. Apr 2023 A1
20230130824 Belshan et al. Jun 2023 A1
20230184241 Avey et al. Jun 2023 A1
20230220840 Avey et al. Jul 2023 A1
20230258175 Figgs et al. Aug 2023 A1
20230279991 Avey et al. Sep 2023 A1
20230332596 Chase Oct 2023 A1
20230383743 Brock et al. Nov 2023 A1
20230383859 Wiegand et al. Nov 2023 A1
20230407864 Alex et al. Dec 2023 A1
20240102460 Kachovskiy et al. Mar 2024 A1
20240200656 Avey Jun 2024 A1
20240200666 Leake Jun 2024 A1
20240369139 Ellisor Nov 2024 A1
20240376892 Ellisor Nov 2024 A1
20240376984 Ellisor Nov 2024 A1
20240418164 Peer Dec 2024 A1
Foreign Referenced Citations (26)
Number Date Country
2556355 Jun 2003 CN
201149099 Nov 2008 CN
102748483 Oct 2012 CN
202545162 Nov 2012 CN
203257342 Oct 2013 CN
204040978 Dec 2014 CN
104329464 Feb 2015 CN
204738957 Nov 2015 CN
205315253 Jun 2016 CN
109458326 Mar 2019 CN
209261799 Aug 2019 CN
110374522 Oct 2019 CN
209469613 Oct 2019 CN
111005695 Apr 2020 CN
111073186 Apr 2020 CN
102410194 Apr 2021 CN
102009001560 Sep 2010 DE
202012104058 Mar 2014 DE
0 414 955 Mar 1991 EP
0520567 Dec 1992 EP
3336356 Jun 2018 EP
3696408 Aug 2020 EP
2021195572 Sep 2021 WO
2022167341 Aug 2022 WO
2024026432 Feb 2024 WO
2024076786 Apr 2024 WO
Non-Patent Literature Citations (147)
Entry
U.S. Appl. No. 16/722,139, 104 pages.
U.S. Appl. No. 13/773,271, 250 pages.
U.S. Appl. No. 15/719,124, 183 pages.
U.S. Appl. No. 17/241,680 titled “Fluid End and Center Feed Suction Manifold” filed Apr. 27, 2021.
Karolczuk et al., “Application of the Gaussian Process for Fatigue Life Prediction Under Multiaxial Loading”, Mechanical Systems and Signal Processing 167 (2022), Nov. 14, 2021.
Carraro et al. “A Damage Based Model for Crack Initiation in Unidirectional Composites Under Multiaxial Cyclic Loading”, Composite Science and Technology 99 (2014), 154-163, May 16, 2014.
Albinmousa et al., “Cyclic Axial and Cyclic Torsional Behaviour of Extruded AZ31B Magnesium Alloy”, International Journal of Fatigue 33 (2011), 1403-1416, 2011.
Horstemeyer et al., “Universal Material Constants for Multistage Fatigue (MSF) Modeling of the Process-Structure-Property (PSP) Relations of A000, 2000, 5000, and 7000 Series Aluminum Alloys”, Integrating Materials and Manufacturing Innovation, vol. 9 (2020), 157-180, Jun. 22, 2020.
Guan et al., “Model Selection, Updating, and Averaging for Probabilistic Fatigue Damage Prognosis”, Journal of Structural Safety, Mar. 11, 2011.
Frick et al., “Orientation-Independent Pseudoelasticity in Small-Scale NiTi Compression Pillars”, Scripta Materialia 59(12), 7-10, 2008.
Naghipour et al., “Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach”, Ohio Aerospace Institute, Cleveland, 2016.
International Search Report and Written Opinion for international application No. PCT/US2023/066143, mailed Aug. 28, 2023.
U.S. Appl. No. 16/814,267, 194 pages.
U.S. Appl. No. 17/120,121, 110 pages.
U.S. Appl. No. 62/234,483, 45 pages.
U.S. Appl. No. 62/315,343, 41 pages.
U.S. Appl. No. 62/318,542, 44 pages.
U.S. Appl. No. 62/346,915, 41 pages.
U.S. Appl. No. 62/379,462, 24 pages.
International Search Report and Written Opinion for international application No. PCT/US2023/073458, mailed Feb. 1, 2024.
Flowserve, “Dynamic Balance Plug Valve and Double DB Plug Valve: Installation, Operation and Maintenance,” 2011, https://www.flowserve.com/sites/default/files/2016-07/NVENIM2005-00_0.pdf, 36 pages.
Weir Oil & Gas, “SPM Well Service Pumps & Flow Control Products TWS600S Fluid End Operation Instruction and Service Manual,” Feb. 27, 2017, https://www.global.weir/assets/files/oil%20and%20gas%20ebrochures/manuals/tws600s-fluid-end-2p121260.pdf, 41 pages.
White Star Pump Co., “Maintenance Manual: Triplex Pump WS-1300/1600,” 2005, http://www.whitestarpump.com/ES/docs/user_t.pdf, 45 pages.
KerrPumps, “Super Stainless Steel Better Than the Best,” http://kerrpumps.com/superstainless?gclid=EAlalQobChMlg47o482q6wlVilTlCh2XPA-qEAAYASAAEgKrxPD_BWE, 2013, last accessed: Aug. 21, 2020, 6 pages.
KerrPumps, “Frac One Pumps—Fluid End—Fracing,” http://kerrpumps.com/fracone, 2013, last accessed: Aug. 21, 2020, 3 pages.
KerrPumps, “KerrPumps—Frac Pump & Mud Pump Fluid End—Fluid End Pump,” http://kerrpumps.com/fluidends, 2013, last accessed: Aug. 21, 2020, 6 pages.
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/, 2019, last accessed: Aug. 21, 2020, 3 pages.
Vulcan Industrial, “Vulcan,” http://www.vulcanindustrial.com/fluid-ends/, 2019, last accessed: Aug. 21, 2020, 3 pages.
Covert Manufacturing, Inc., “Fluid End Block: Covert Manufacturing”, (site visited Jul. 30, 2021), covertmfg.com, URL: <http://www.covertmfg.com/our-capabilities/fluid-end-block/> (Year: 2021).
Kerr Pumps, “the most advanced fluid ends”, (site visited Aug. 5, 2021), Kerrpumps.com, URL: <http://kerrpumps.com/fluidends> (Year: 2021).
Shandong Baorun, 2250 Triplex Plunger Pump Fluid End Exchangeable with Spm, (site visited Aug. 5, 2021), made-in-china.com, URL: <https://sdbaorun.en.made-in-china.com/product/wNixlDXYrshL/China-2250-Triplex-Plunger-Pump-Fluid-End-Exchangeable-with-Spm.html> (Year: 2021).
John Miller, “The Reciprocating Pump, Theory, Design and Use,” 1995, 2nd Edition, Krieger Publishing Company, Malabar, Florida, 1 page.
“QIH-1000 HP Quintuplex,” Dixie Iron Works, 2017, https://web.archive.org/web/20171031221150/http:/www.diwmsi.com/pumping/qi-1000/.
Technical Manual MSI Hybrid Well Service Pump Triplex and Quintuplex Models, Dixie Iron Works, Mar. 12, 2019, 88 pages.
https://www.diwmsi.com/pumping/qi-1000/.
Carpenter, “CarTech Ferrium C61 Data Sheet,” 2015, 2 pages.
The American Heritage Dictionary, Second College Edition, 1982, 6 pages.
Matthew Bultman, “Judge in West Texas Patent Hot Spot Issues Revised Guidelines,” Sep. 23, 2020, Bloomberg Law News, 3 pages.
David L. Taylor, “Machine Trades Blueprint Reading: Second Edition,” 2005, 3 pages.
Caterpillar, “Cat Fluid Ends for Well Stimulation Pumps,” 2015, 2 pages.
Claim Chart for U.S. Pat. No. 6,544,012, 23 pages.
Claim Chart for U.S. Pat. No. 7,186,097, 22 pages.
Claim Chart for U.S. Pat. No. 7,845,413, 8 pages.
Claim Chart for U.S. Pat. No. 9,534,472, 8 pages.
Claim Chart for U.S. Pat. Pub. No. 2013/0319220, 17 pages.
Claim Chart for U.S. Pat. Pub. No. 2014/0348677, 10 pages.
Claim Chart for U.S. Pat. Pub. No. 2015/0132157, 23 pages.
Claim Chart for “GD-3000,” 9 pages.
Claim Chart for “NOV-267Q,” 14 pages.
Collins English Dictionary, “annular,” https://www.collinsdictionary.com/us/dictionary/english/annular, 2021, 4 pages.
Collins English Dictionary, “circumference,” https://www.collinsdictionary.com/us/dictionary/english/circumference, 2021, 7 pages.
Collins English Dictionary, “plug,” https://www.collinsdictionary.com/us/dictionary/english/plug, 2021, 17 pages.
Collins English Dictionary, “profile,” https://www.collinsdictionary.com/us/dictionary/english/profile, 2021, 10 pages.
Collins English Dictionary, “sleeve,” “therethrough,” “through,” “tube,” and “tubular,” 8 pages.
Collins English Dictionary, “space,” https://www.collinsdictionary.com/us/dictionary/english/space, 2021, 13 pages.
Collins English Dictionary, “stairstep,” https://www.collinsdictionary.com/us/dictionary/english/stairstep, 2021, 3 pages.
Congressional Record—Extensions of Remarks, Apr. 18, 2007, pp. E773-E775.
Congressional Record, Mar. 7, 2011, 31 pages.
“Declaration of Steven M. Tipton, Ph.D., P.E., Submitted with Patent Owner's Preliminary Response,” Sep. 11, 2020, 155 pages.
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,914,171,” Feb. 11, 2021, 308 pages.
“Declaration of William D. Marscher, P.E.—U.S. Pat. No. 10,591,070,” May 25, 2020, 209 pages.
Email dated Sep. 22, 2020 in PGR2020-00065, 3 pages.
Email dated Sep. 25, 2020 in Kerr Machine v Vulcan Industrial Holdings, 1 page.
Declaration of Duncan Hall from Internet Archive/Wayback Machine, Feb. 3, 2021, Kerr Plunger Pump Manuals, 20 pages.
Michael Agnes, Editor, Webster's New World College Dictionary, Fourth Edition, 1999, 5 pages.
Weir SPM Oil & Gas, Grooveless Fluid End, 2008, 1 page.
Weir SPM Oil & Gas, Weir SPM General Catalog, 2009, 40 pages.
Weir SPM Oil & Gas, Well Service Pump Reference Guide, 2008, 55 pages.
Intellectual Ventures I LLC v VMWare, Inc., Case No. 1:19-CV-01075-ADA, Document 91 (W.D. Tex Jun. 3, 2020), Defendant VMWare, Inc.'s Stipulation of Invalidity Contentions for U.S. Pat. No. 7,949,752, Jun. 3, 2020, 5 pages.
Lex Machina, 6:20-cv-00200-ADA, Kerr Machine Co. v. Vulcan Industrial Holdings, LLC Docket Entries, https://law.lexmachina.com/cases/2004206451#docket-entries, 6 pages.
Jonathan Maes, “Machining Square Inside Corners: Conquer the Nightmare!,” accessed Sep. 8, 2020, https://makeitfrommetal.com/machining-square-inside-corners-the-night . . . , 22 pages.
Ross Mackay, “Process Engineering: Properly seal that pump,” May 17, 2005, https://www.chemicalprocessing.com/articles/2005/465, 11 pages.
MSI Fluid End Components, https://www.scribd.com/document/421304589/Fluid-End, 1 page.
MSI Dixie Iron Works, Ltd., MSI QI-1000 Technical Manual for 1000 HP Quintuplex MSI QI-1000 Pump, Feb. 21, 2004, 90 pages.
MSI, Product Listing and Pricing, accessed Mar. 8, 2016, 19 pages.
National Oilwell Varco, 267Q-6M Quinuplex Plunger Pump: Parts List, Jul. 21, 2008, 13 pages.
Oil and Gas Well Servicing, Audit Procedures for Oil and Gas Well Servicing, May 2010, Texas Comptroller of Public Accounts, Audit Division, 68 pages.
Tony Atkins and Marcel Escudier, Oxford Dictionary of Mechanical Engineering, Oxford University Press, 2013, 10 pages.
Parker Hannifin Corporation and Autoclave Engineers, Technical Information, 2016, 16 pages.
Girdhar, Moniz and Mackay, “Chapter 5.4 Centrifugal pump design,” Plant and Process Engineering 360, 2010, pp. 519-536.
Parker Hannifin Corporation, PolyPak Seals for Hydraulic Applications Catalog EPS 5370_PolyPak, 2015, 38 pages.
Paresh Girdhar and Octo Moniz, “Practical Centrifugal Pumps—Design. Operation and Maintenance,” Newnes, 2005, 33 pages.
Reinhard Preiss, “Stress concentration factors of flat end to cylindrical shell connection with a fillet or stress relief groove subjected to internal pressure,” 1997, Int. J. Pres. Ves. & Piping, vol. 73, pp. 183-190.
Caterpillar, WS255 Quintuplex Well Stimulation Pump, 2 pages.
Gardner Denver Pumps, Redline Series Brochure, 3 pages.
Eaton Aerospace Group, Resilient Metallic Seals, TF100-35D, Oct. 2013, 60 pages.
Scott McKeown, “District Court Trial Dates Tend to Slip After PTAB Discretionary Denials—Patents Post-Grant,” Jul. 24, 2020, Ropes & Gray, accessed Sep. 23, 2020, 3 pages.
Ricky Smith and R. Keith Mobley, “Rules of Thumb for Maintenance and Reliability Engineers—Chapter 14: Packing and Seals,” Elsevier, 2008, pp. 239-250.
Schlumberger, Jet Manual 02—Reciprocating Pumps, Aug. 7, 2015, 63 pages.
Schlumberger, Treating Equipment Manual: Fluid Ends, Section 10, Apr. 2000, 87 pages.
SPM Oil & Gas, SPM QEM 3000 Frac Pump, 2021, 4 pages.
Supplemental Declaration of Steven M. Tipton, Ph.D., P.E.—Case PGR2020-00065, U.S. Pat. No. 10,591,070, Mar. 2, 2021, 35 pages.
Servagroup, TPD 600 Triplex Pump Brochure, Mar. 24, 2011, 2 pages.
Utex Industries, Inc., Well Service Products Catalog, Jun. 2017, 51 pages.
Utex Industries, Inc., Well Service Packing—Packing Assemblies Complete & Replacement, May 2013, 40 pages.
Vargus Ltd., Groove Milling High Precision Tools for Groove Milling, Dec. 2012, pp. 2-22.
Vulcan Industrial Holding, LLC et al. v. Kerr Machine Co. Case No. 4:21-cv-433, Document 1, Complaint for Declaratory Judgment of Patent Non-Infringement, Feb. 9, 2021, 17 pages.
Trilogy Enterprises, Inc., v. Trilogy Education Services, LLC, Case. No. 6: 19-cv-199-ADA-JCM, Document 35, Fifth Amended Scheduling Order, Sep. 8, 2020, 4 pages.
Dr. Corneliu Bolbocean v Baylor University, Case No. 6:19-CV-00465-ADA-JCM, Document 34, Scheduling Order, Apr. 6, 2020, 4 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 4, Plaintiff's Amended Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 30 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Jan. 19, 2021, 47 pages.
Kerr Machine Co., v Vulcan Energy Services, LLC, Vulcan Industrial Holdings, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:21-CV-00044-ADA, Document 10, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Feb. 1, 2021, 88 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20-CV-00200-ADA-24, Order Setting Trial Date, Jun. 14, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, Cizion, LLC, Case No. W-20-CV-00200-ADA-29, Order Setting Trial Date, Aug. 2, 2020, 1 page.
Kerr Machine Co., v. Vulcan Industrial Holdings, LLC, Case. No. 6:20-CV-00200-ADA, Affidavit of Service, Apr. 7, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Plaintiff's First Amended Complaint for Patent Infringement and Jury Demand, Jun. 4, 2020, 11 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 26, Defendant Cizion, LLC d/b/a Vulcan Industrial Manufacturing, LLC's Motion to Dismiss or Transfer, Jul. 22, 2020, 10 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Opposed Motion to Stay Litigation Pending the Outcome of the Pending Post-Grant Review Proceeding Before the Patent Trial and Appeal Board, Jul. 31, 2020, 14 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200-ADA, Plaintiff's Preliminary Infringement Contentions, May 22, 2020, 50 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Defendants' Preliminary Invalidity Contentions, Aug. 13, 2020, 29 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 34, Scheduling Order, Aug. 11, 2020, 3 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 38, Plaintiff's Second Amended Complaint for Patent Infringement and Jury Demand, Sep. 25, 2020, 11 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 5, Standing Order regarding Scheduled Hearings in Civil Cases in Light of Chief Judge Garcia's 24 Amended Order, Mar. 24, 2020, 4 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Civil Docket for Case No. 6:20-cv-00200-ADA, accessed Sep. 11, 2020, 7 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Document 54, Claim Construction Order, Dec. 3, 2020, 3 pages.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Vulcan Energy Services, LLC, and Cizion, LLC d/b/a/ Vulcan Industrial Manufacturing, Case No. 6:20-CV-00200-ADA, Docket Entry, Aug. 2, 2020, 1 page.
Kerr Machine Co., v Vulcan Industrial Holdings, LLC, Case No. 6:20-CV-00200, Document 1, Plaintiff's Original Complaint for Patent Infringement and Jury Demand, Mar. 19, 2020, 39 pages.
Adriana del Rocio Barberena-Rovira, et al., v Kuiper Dairy, LLC, et al., Case No. 6:20-CV-00250-ADA-JCM, Document 20, Scheduling Order, Jul. 22, 2020, 4 pages.
Acquanlan Deonshay Harris v. Cenlar, FSB, Case No. 6:20-CV-00271-ADA-JCM, Document 13, Scheduling Order, Aug. 20, 2020, 4 pages.
Senior Living Properties, LLC c. Ironshore Speciality, Insurance Company, Case No. 6:20-CV-00282-ADA-JCM, Document 12, Scheduling Order, Jul. 7, 2020, 4 pages.
Dionne Bracken, Individually and as Next Friend of A.M.B., v Michael D. Ashcraft and Envirovac Waste Transport Systems, Inc., Case No. 6:20-CV-00308-ADA-JCM, Document 17, Scheduling Order, Jul. 28, 2020, 4 pages.
Kendra Coufal v. Roger Lee Thomas and Apple Logistics, Inc., Case No. 6:20-CV-00356-ADA-JCM, Document 12, Scheduling Order, Jul. 28, 2020, 4 pages.
Tipton International, Inc., v. Vetbizcorp, LLC and Samuel Cody, Case No. 6:20-CV-00554-ADA-JCM, Document 8, Scheduling Order, Aug. 20, 2020, 4 pages.
Dynaenergetics GmbH & Co. KG and Dynaenergetics US, Inc., v. Hunting Titan, Ltd.; Hunting Titan, Inc.; and Hunting Energy Services, Inc., Case No. H-17-3784, Order, Sep. 4, 2020, 2 pages.
Slip Opinion, In re Sand Revolution LLC, Case No. 2020-00145 (Fed. Cir. Sep. 28, 2020), 3 pages.
In re Vulcan Industrial Holdings, LLC, Case No. 2020-00151 (Fed. Cir. Sep. 29, 2020), Petition for Writ of Mandamus, 43 pages.
Densys Ltd., v. 3Shape Trios A/S and 3Shape A/S, Case No. WA:19-CV-00680-ADA, Document 27, Scheduling Order, Apr. 8, 2020, 4 pages.
Kerr Machine Co. vs. Vulcan Industrial Holdings, LLC, Case No. WA:20-CV-00200-ADA, Order Setting Markman Hearing, May 29, 2020, 1 page.
Sur-Lock Liner Retention System—Product Brochure (p. 16) (Year: 2017).
Sur-Lock Liner Retention System—Video (https://premiumoilfield.com/performance-enhancements/sur-lock/sur-lock-liner-retention-system.html) (https://www.youtube.com/watch?v=6NZGeD5NkF8) (Year: 2017).
“Flush Free Sealing Benefits,” Oct. 3, 2011, http://empoweringpumps.com/flush-free-sealing-benefits/, accessed May 9, 2020, 5 pages.
Gardner Denver, Well Servicing Pump Model GD-3000—Operating and Service Manual, Apr. 2011, 44 pages.
Gardner Denver, Well Servicing Pump Model GD-1000Q—Fluid End Parts List, Sep. 2011, 24 pages.
Gardner Denver, Well Servicing Pump Model HD-2250—Operating and Service Manual, Jan. 2005, 44 pages.
Gardner Denver, GD 2500Q HDF Frac & Well Service Pump, 2 pages.
Cutting Tool Engineering, “Groove milling,” Aug. 1, 2012, https://www.ctemag.cojm/news/articles/groove-milling, accessed May 13, 2020, 11 pages.
VargusUSA, “Groovex Innovative Grooving Solutions—Groove Milling,” Dec. 12, 2011, http://www.youtube.com/watch?v=vrFxHJUXjvk, 68 pages.
Kerr Pumps, Kerr KA-3500B/KA-3500BCB Plunger Pump Parts and Service Manual, 41 pages.
Kerr Pumps, Kerr KD-1250B/KD-1250BCB Plunger Pump Service Manual, 38 pages.
Kerr Pumps, Kerr KJ-2250B and KJ-2250BCB Plunger Pump Service Manual, 38 pages.
Kerr Pumps, Kerr KM-3250B / KM-3250BCB Plunger Pump Service Manual, 35 pages.
Kerr Pumps, Kerr KP-3300B / KP-3300BCB Plunger Pump Service Manual, 41 pages.
Kerr Pumps, Kerr KT-3350B/BCB KT-3400BCB Plunger Pump Service Manual, 46 pages.
Kerr Pumps, Kerr triplex pump km3250bcb 10,000 psi @ 5.1 gmp, Feb. 2, 2021, http://imged.com/kerr-triplex-pump-km3250bcb-10-000-psi-5-1-gmp-8234739.html, 2 pages.
Lex Machina, 77 Federal district court cases for Alan D Albright of W.D. Tex., http://law.lexmachina.com/court/txwd/judge/5198506/cases?status=open&filed_on-from=2020-02-19&filed_on-to=2020-04-19&pending-, 7 pages.
Lex Machina, Motion Metrics Report for 834 orders issued by District Judge Alan D Albright (ADA) in 1,603 cases from the Search for federal district court cases before Judge Alan D Albright, https://law.lexmachina.com/motions/motion_metrics?cases_key=yyix9Y8-k2k, generated on Sep. 23, 2020, 1 page.
Vulcan, High-Impact Replacement Parts, Fortified Valves and Seats, found at: https://www.vulcanindustrial.com/energy-products/replacement-parts.
Related Publications (1)
Number Date Country
20240117882 A1 Apr 2024 US
Continuations (1)
Number Date Country
Parent 17405321 Aug 2021 US
Child 18540973 US