The present invention relates generally to pipette tip trays and, more particularly, to pipette tip tray and rack assemblies.
The presence of automated and robotic instruments has been, and continues to be, increasing in the modern-day laboratory. With the increased reliance on batch-mode processing by robotic instrumentation, there has developed a series of standardized structures, shapes, and sizes for consumable labware products that enable different instruments, perhaps by different manufacturers, to handle the same prepared samples.
With the drive to structural standards, there is a growing need to utilize basic components of a particular labware product in multiple commercially-available products. For example, pipetting tips are commercially-available in a wide range of sizes and volumes (ranges include volumes greater than 1 mL and as small as 1 μL). Each size of the commercially-available pipette tip may be stored in a tray and rack assembly for ease use.
However, the arrangement of the pipette tips with respect to the tray and rack may for one size and volume of pipette tip may vary significantly from another size and volume of pipette tip. Therefore, unique trays and/or racks are needed for each size and volume combination.
While some interchangeable pipetting tip tray and rack assemblies have been developed, the manufacturing methods are complex. That is, these conventional methods typically include complex tools and/or specialized adhesives for interfacing an interchangeable tray with a standardized rack and vice versa.
Thus, there exists a need to improve the adaptability of the basic components of tray and rack assemblies to promote further robotic integration while minimizing manufacture costs. Additionally, modes of manufacturing the adaptable rack assemblies should minimize the need for specialized tools, which will further reduce manufacturing costs.
The present invention overcomes the foregoing problems and other shortcomings, drawbacks, and challenges of interfacing a conventional pipette tip trays for use with a standardized rack. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. To the contrary, this invention includes all alternatives, modifications, and equivalents as may be included within the spirit and scope of the present invention.
In accordance with one embodiment of the present invention, a pipette tray includes an uppermost surface defining a first plane and a lower surface defining a second plane. A deck is located between the first and second planes and includes a plurality of shaft apertures extending therethrough. Each of the shaft apertures has a size or shape configured to receive a shaft of a pipette tip. The tray also includes a first locking element that is located below the second plane.
According to another embodiment of the present invention, a pipette rack assembly includes a pipette tip tray and a rack. The pipette tip tray includes an uppermost surface defining a first plane and a lower surface defining a second plane. A deck is located between the first and second planes and includes a plurality of shaft apertures extending therethrough. Each of the shaft apertures has a size or shape configured to receive a shaft of a pipette tip. The tray also includes at least one locking element that is located below the second plane. The rack has a surface and at least one sidewall that extends downwardly from the surface. At least one receiving element is on the surface of the rack and is vertically aligned with the at least one locking element of the pipette tip tray when the pipette tip tray is positioned over the rack. When the at least one locking element is coupled to the at least one receiving element, the pipette tip tray is secured to the rack.
Still another embodiment of the present invention is directed a variable pipette rack system that includes a plurality of pipette tip trays and a rack. Each of the pipette tip trays includes an uppermost surface defining a first plane and a lower surface defining a second plane. A deck is located between the first and second planes and includes a plurality of shaft apertures extending therethrough. Each of the shaft apertures has a size or shape configured to receive the shaft of a pipette tip. Each tray also includes a first locking element that is located below the second plane. The rack has a surface and at least one sidewall that extends downwardly from the surface. A plurality of receiving element is on the surface of the rack. At least one of the receiving elements is in vertical alignment with the at least one locking element of a select one of the plurality of pipette tip trays when the select one is positioned over the rack. When the at least one locking element of the select one of the plurality of pipette tip trays is coupled to a corresponding one of the plurality of receiving elements, the selected pipette tip tray is secured to the rack.
The above and other objects and advantages of the present invention shall be made apparent from the accompanying drawings and the descriptions thereof.
The present invention overcomes the foregoing problems and other shortcomings, drawbacks, and challenges of manufacturing a pipetting tip tray that is configurable and that may be coupled to a standardized rack while minimizing manufacturing costs. While the invention will be described in connection with certain embodiments, it will be understood that the invention is not limited to these embodiments. To the contrary, this invention includes all alternatives, modifications, and equivalents as may be included within the spirit and scope of the present invention.
Turning now to the figures, and particularly to
The deck 12 includes a plurality of apertures 24 having a size or shape that is configured to receive the shaft 26 of a pipette tip 28 (“shaft apertures” 24). While the illustrated embodiment herein includes 96-shaft apertures, it would be understood that the various features described herein may be applied to other pipette tip trays having other numbers of shaft apertures (for example, 384-shaft apertures).
The pipette tips 28 may be of any desired size, but are particularly illustrated as medium sized pipette tips, e.g., 20 μL to 300 μL sized pipette tips. Each pipette tip 28 includes a molded hub 30 on one end of the shaft 26, which is configured to create a seal with a pipetter (not shown), a distal tip end 32 on an opposing end of the shaft 26, and a lumen (not shown) extending therebetween. Generally, an outer surface 36 of the pipette tip 28 tapers from the about the hub 30 to the distal tip end 32 but for a shelf 38 at a distal end of the hub 30. The shelf 38 is configured to reside on the deck 12 and to create a positive stop for the pipette tip 28 with respect to the tray 10.
Thus, the shaft apertures 24 are generally sized and shaped to accommodate the particular pipette tip size and to reduce movement of the pipette tip 28 within the shaft aperture 24 when seating the pipetter shaft (not shown) with the hub 30 of the pipette tip 28.
The shaft apertures 24, as shown, are arranged into a plurality of rows, generally parallel to the pair of opposing longitudinal side edges 14, 16. One of ordinary skill in the art will readily appreciate that the number of shaft apertures 24 comprising each longitudinal row is not limited to the particular number of the illustrated embodiment in
The skirt 22 and the deck 12 may include one or more slots 40 extending inwardly from the side edges 14, 16, 18, 20 and that are shaped and sized to accommodate structural ribs 42 (
In
One or more recesses 54 may be provided between the skirt 22 and the annular sleeves 48 to reduce the weight of the tray 10 and to minimize manufacturing costs. It would be readily appreciated that other combinations of structures may be used. For instance, the deck 12 and the annular sleeves 48, if provided, may be constructed with a generally uniform thickness and the skirt may extend downwardly farther than the annular sleeves 48 and/or the bottom surface 50, for example. In this embodiment, the tip surface 47 of the tray 10 defines a first plane and the lowermost edge of the skirt 22 defines the second plane. Alternatively, the deck 12 may have a generally uniform thickness without being provided with the annular sleeves 48 or skirt 22. In this instance, the tip surface 47 of the tray 10 defines the first plane and the bottom surface 46 of the tray 10 defines the second plane.
The bottom view of the tray 10 (e.g.,
The locking elements 56 may be constructed as a unitary structure with the tray 10 or may be coupled to the tray 10 after molding is complete. The locking elements 56 are configured to secure the tray 10 to the rack 44, as provided in greater detail below.
While not required, deck 12 may include an opening 58 over each locking element 56. The opening 58 may provide access to the locking element 56 after the tray 10 is coupled to rack 44. In some embodiments, it may be preferable to not permit such access to the locking element 56 by the end user.
Referring now to
Generally, the rack 44 includes a recessed surface 64 having a plurality of apertures 66 therein. It would be ready appreciated that the plurality of apertures 66 is arranged in a manner that is generally similar to the arrangement of the shaft apertures 24 (
For example, in
The rack 44 may further include sidewalls 68 that are, again, sized in accordance with the standards described above. Generally, the sidewalls 68 are sufficiently tall to receive the distal tip ends 32 (
As alluded to previously, the rack 44 may be constructed from a molded polymer and include one or more ribs 42 for increased structural strength. The ribs 42 may extend the length of each sidewall 68, i.e., extending above the recessed surface 64. In another embodiment, the ribs 42 may extend only a portion of the length of the sidewall 68, within the volume of the rack 44 and up to, but not extending above, the recessed surface 64.
In the illustrative embodiment, the recess surface 64 includes a plurality of eyelets 72, wherein the central portion of each eyelet 72 may include a molded insert 74 that effectively closes the eyelet 72. While the plurality of eyelets 72 is shown to be aligned with the pair of lateral side edges 18, 20, it would be readily understood that the particular arrangement is not required and may vary in accordance with the particular laboratory application. The plurality of eyelets 72 may provide a number of alternate and/or additional functions, including for example, alignment within robotics, pipette tip identification. Specifically herein, the plurality of eyelets 72 is configured to be a receiving element for forming a locking engagement with locking elements 56, as described below.
Turning now to
With further advancement, each of the locking elements 56 resides above, and is adjacent to, a respective eyelet 72. Still further advancement causes the locking elements 56 to place a downwardly directed force onto the molded insert 74 of the eyelet 72, which is configured to be released, or snapped from the eyelet 72, with applied pressure from the locking element 56. As the molded insert 74 is released, the locking element 56 is biased slightly inwardly until the locking element 56 passes through the eyelet 72 and is released.
Turning now to
It would be readily understood that the molded inserted 74 could be snapped from the eyelet 72 prior to directing the tray 10 onto the rack 44. Furthermore, it would be understood that the bottom portion may be coupled to the sidewalls of the rack before or after the tray is coupled to the rack.
In
The pipette tip tray 104 of
In
The pipette tip trays and methods of using the same as provided by the various embodiment of the present invention greatly simplifies the conventional method of coupling a pipette tip tray to a rack while maintaining tray variability and customization. That is, the locking element provides a structurally secured system without the use of adhesives or specialized tools.
While the present invention has been illustrated by a description of various embodiments, and while these embodiments have been described in some detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The various features of the invention may be used alone or in any combination depending on the needs and preferences of the user. This has been a description of the present invention, along with methods of practicing the present invention as currently known. However, the invention itself should only be defined by the appended claims.