The present disclosure relates to steering column assemblies, and more particularly, to assemblies with telescope actuators.
Telescope actuators used for telescoping steering column assemblies may generally have an electric mode and a manual mode of operation. Such actuators when coupled to an energy absorbing (E/A) device may render the E/A device inoperable when the steering column assembly is in the manual mode, and/or may limit and/or complicate design options with regard to E/A devices.
Accordingly, it is desirable to provide a telescope actuator capable of both powered and manual modes of operation while utilizing a robust and simplified E/A device that is operable in both modes.
In one exemplary embodiment of the present disclosure, an extendable steering column assembly includes a steering shaft, an energy absorption device, and a self-locking telescope actuator. The steering shaft is configured to rotate about an axis, and includes a forward shaft portion mounted for rotation to a fixed support structure, and a rearward shaft portion mounted for rotation to a jacket. The rearward shaft portion is configured to axially translate with the jacket. The energy absorption device is engaged to the jacket. The telescope actuator includes a rod extending along a centerline, a nut threaded to the rod, and a casing in operable contact with the nut. Rotational motion along with axial translational motion is induced between the rod and the nut when at least in at least a power state.
In another embodiment, an extendable steering column assembly includes a steering shaft, an energy absorption device, and a telescope actuator. The steering shaft is configured to rotate about an axis, and includes a forward shaft portion mounted for rotation to a support structure, and a rearward shaft portion mounted for rotation to a jacket. The rearward shaft portion is configured to axially translate with the jacket and with respect to the support structure and the forward shaft portion. The energy absorption device is engaged to the jacket. The telescope actuator includes a screw engaged to the support structure and extending along a centerline. The shuttle assembly is engaged between the energy absorption device and the screw. At least a portion of the shuttle assembly is configured to translate axially along the centerline with the energy absorption device, the rearward shaft portion, and the jacket when in a power state and when in a manual state. At least the portion of the shuttle assembly is configured to generally not translate when in an energy absorption state.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and, other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Referring now to the Figures, where the invention will be described with reference to specific embodiments, without limiting same, an extendable steering column assembly 20 is illustrated as one, non-limiting, example of an application for a self-locking telescope actuator 22. The steering column assembly 20 with incorporation of the self-locking telescope actuator 22 may be adapted for an autonomous vehicle. For example, the steering column assembly 20 may be, or may be part of, a steering wheel on-demand system. In this application, the self-locking telescope actuator 22 may be adapted to decouple, thus facilitating the driver acquisition of a steering wheel from a stowed position. When the self-locking telescope actuator 22 is in the decoupled state, the actuator 22 may be further configured to lock for enhancement of crashworthiness protections since the load to move the column when decoupled is much less than energy absorption (E/A) loads. It is further contemplated and understood that the self-locking telescope actuator 22 may be applied to any telescoping steering column assembly.
Referring to
The axial slip junction 34 is configured to permit rotation of the steering shaft 26 about an axis 42 while enabling axial extension and retraction of the shaft. The axial slip junction 34 may be splined, and is carried between the rearward end segment 40 of the forward shaft portion 30 and the forward end segment 36 of the rearward shaft portion 32. In operation and as the steering column assembly 20 retracts from an axially extended position, an axial overlap of the forward shaft portion 30 to the rearward shaft portion 32 increases, and vice versa.
In one embodiment, the forward shaft portion 30 may be mounted for rotation to the lower jacket 24, and may not translate axially with respect to axis 42. The upper jacket 28 may be supported by the lower jacket 24, may translate axially with respect to the lower jacket 24, and may not rotate.
The E/A strap 29 is adapted to absorb energy when a substantial axial force is applied in an axial forward direction to, for example, the steering wheel, during an energy absorption event. One end of the E/A strap 29 may be mounted to the self-locking telescope actuator 22, and an opposite end of the strap may be mounted to the upper jacket 28.
Referring to
The shuttle 47 of the shuttle assembly 46 may be mounted between the screw 44 and the E/A strap 29. More specifically, the shuttle assembly 46 is threadably mounted to the screw 44 for axial translation along the screw, and may be rigidly fixed to the E/A strap 29. In operation and when the electric motor 48 is rotating the screw 44, the shuttle assembly 46 axially translates along the rotating screw 44. During this axial translation, the rearward shaft portion 32 of the steering shaft 26 (see
Referring to
The clutch device 58 may be mounted to the casing 56 and facilitates rotational decoupling of the nut 50 from the casing 56 (and/or shuttle 47). The clutch device 58 may include an electric servo 60 and a bolt 62. The servo 60 may be mounted to an exterior of the casing 56 and functions to move the bolt 62 into and out of at least one recess 64 defined by an external and circumferentially continuous surface of the nut 50. In one example, the recesses 64 may be axially extending grooves.
In the present example, the casing 56 may be an integral part of the shuttle assembly 46 (i.e., one-piece), and thus axially translates with the shuttle assembly 46. The nut 50, the bearings 52, and the spring 54 may be mounted to the screw 44 inside the casing 56. The nut 50 is threaded to the screw 44 such that rotation of the screw 44 about centerline 59 causes the casing 56 and shuttle assembly 46 to axially translate along the screw 44. A first bearing 52 may be axially located between a first spring 54 and a forward end (i.e. annular face) of the nut 50. A second bearing 52 may be axially located between a second spring 54 and a rearward end of the nut 50.
In operation and when the steering column assembly 20 is in the powered state and the clutch device 58 is engaged, the forward and rearward bearings 52 minimize any friction produced between the springs 54 and the respective ends of the nut. The axial forces produced by the torque placed upon the screw 44 by the electric motor 48 when in the powered state are not sufficient to overcome the compressive force of the springs 54 (i.e., the springs do not compress axially).
When the steering column assembly 20 is in the decoupled state (i.e., not powered by the electric motor 48), the clutch device 58 is not engaged (i.e., the servo 60 is de-energized). A manual axial force produced by the driver to axially extend and or retract the steering column assembly 20 may cause the nut 50 to free-wheel (i.e., back spin) upon the, now stationary, screw 44 enabling the shuttle assembly 46 to axially translate.
Referring to
In order to efficiently and immediately lock the nut 50 to the casing 56, thus effectively causing a rigid engagement of the upper jacket 28 to the lower jacket 24 via the E/A strap 29, the forward and rearward locking stops 68, 70 are implemented. For example, an E/A event that applies a sufficient axial force to the rearward shaft portion 32 in a forward direction will have sufficient force (i.e., definition of E/A event) to overcome the spring constant of the forward spring 54. Forward spring 54 thus compresses axially and the nut 50 rotates slightly upon the screw 44 until the forward locking stop 68 locks the nut upon the casing 56. Once locked, the E/A strap 29 may function as intended.
In operation of the manual state, the nut 50 is uncoupled from the electric motor 48 through the clutch device 58. Forces are then applied by the driver to the steering wheel causing the lead screw 44 to back drive the nut 50, where the nut is suspended between two spring loaded bearings 52. The force to compress the springs 54 is greater than the force to move the steering column. The nut 50 spins on the lead screw 44 allowing manual adjustment of the telescope position.
In operation of the power state, the nut 50 is coupled to the electric motor 48 through the clutch device 58. Forces are applied by the electric motor 48 causing the screw 44 to rotate and the nut 50 to translate along the screw 44. The translating nut 50 causes the upper jacket 28 to move along the telescope axis 42. The nut 50 remains suspended between the two spring loaded bearings 52. The force to compress the springs 54 is greater than the force to move the steering column.
Rotation of the screw 44 may only be accomplished when the electric motor 48 (i.e., drive means) is running. If the nut 50 is locked (i.e., bolt 62 is engaged with the peripheral slot 64), rotation of the screw 44 via the electric motor 48, when in the powered state, may cause the nut 50 to move the shuttle assembly 46 axially, and with it, the upper jacket 28. Any manual forces applied to the steering column when in the powered state may not result in steering column motion.
If the nut 50 is not locked (i.e., bolt 62 is not engaged with the peripheral slot 64) then the back spinning of the nut facilitates the manual, axial, movement of the steering wheel, upper jacket 28, shuttle assembly 46, and nut 50 along the screw 44. This manual movement is generally the manual state, and manual forces applied to the steering column when in the manual state may result in steering column motion.
Referring to
In operation of the self-locking telescope actuator 22′, the worm 82 drives the gear portion of the nut 50′. The rotation of the nut 50′ propels the screw 44′ (i.e., moves or translates the screw axially). During the manual mode, the worm 82 may not be connected to the motor 80 of the drive means 48′. The driver may apply a force to the steering column with the steering wheel. This force may cause the screw 44′ to overhaul (i.e., back-drive) the nut and back-drive the worm 82. The axial force on the nut 50′ is not sufficient to compress either spring 54′.
In operation, and regardless of whether the self-locking telescope actuator 22′ is in the power or manual states, the nut does not backspin upon the screw 44′. Any axial loads applied to the steering wheel of the steering column (i.e., an E/A event), may apply a force into the screw 44′ that compresses the spring 54′. This may enable the nut 50′ (i.e. helical gear) to translate in the casing 56′. This axial translation of the nut 50′ causes the engagement of the stops 68′, 70′, which prevents rotation of the nut. Because the screw 44′ is rotationally fixed, and the nut within this scenario is now rotationally fixed, the actuator 22′ is locked in an axial position. This axially locked condition holds the shuttle assembly 46′ stationary causing the shearing of the attachment between the shuttle assembly and the upper jacket 28′. Any subsequent axial motion between the shuttle assembly 46′ and the upper jacket 28′ will deform the E/A device 29′.
In-other-words and during an E/A event, the forces applied to the screw 44′ are sufficient to compress one of the springs 54′ and allow the nut 50′ to engage the casing 56′. This engagement at the stops 68′, 70′ prevents translation of the screw 44′. When this is accomplished, the shuttle assembly 46′ may shear from the upper jacket 28′ and deform the E/A device 29′. This deformation of the E/A device 29′ provides controlled axial motion between the now stationary shuttle assembly 46′ and the mobile upper jacket 28′.
Referring to
The shuttle assembly 46″ may further include a nut 50″, a bearing 52″, a resilient member 54″ (e.g., a coiled spring or a disc spring), a casing 56″, and a clutch bearing 86 that generally replaces one of the bearings 52 of the first embodiment. The clutch bearing 86 enables the nut 50″ to rotate relative to the casing 56″ in one rotational direction (i.e., clockwise or counterclockwise). The clutch bearing 86 may be rotationally constrained by a keyway 88 on an outer diameter (i.e., radially outward facing surface). In a similar manner, the clutch bearing 86 may be rotationally constrained by a similar keyway (not shown) on an inner diameter. The clutch bearing 86 may rotate freely in one direction permitting the nut 50″ to free-wheel upon the screw 44″ thus enabling the shuttle 47″ to axially translate, and with it, the rearward segment of the steering shaft (not shown), upper jacket, and hand steering wheel. In operation, and if the direction of free-wheel is attempted in reverse, the clutch bearing 86 will prevent rotation between the inner and outer races. The inability to rotate prevents the free-wheeling of the nut 50″ and locks the shuttle in an axial position along the screw 44″ so long as the force is applied.
Referring to
Referring to
Referring to
In operation, rotation of the screw 44″ may only be accomplished when a motor is running (not shown, but see drive means 48 in the self-locking telescope actuator 22,
If the nut 50″ is not locked (i.e., bolt 62″ is not engaged with the peripheral groove 64″) then the back spinning of the nut 50″ facilitates the manual, axial, movement of the steering wheel, upper jacket, shuttle assembly 46″, and nut 50″ along the screw 44″. This manual movement is generally the manual state, and manual forces applied to the steering column when in the manual state may result in steering column motion. The clutch bearing 86 may limit the direction of motion allowed when in the manual state.
Benefits and advantages of the present disclosure may include a telescope actuator capable of being uncoupled during application of an E/A event via a self-locking feature. Loads may therefore be applied to the E/A strap to absorb energy form, for example, the driver.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.
This patent application claims priority to U.S. Provisional Patent Application Ser. No. 62/352,809 filed Jun. 21, 2016 which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1795567 | Maurice | Mar 1931 | A |
3386309 | Reed et al. | Jun 1968 | A |
3396600 | Zeigler et al. | Aug 1968 | A |
3782492 | Hollins | Jan 1974 | A |
4138167 | Ernst et al. | Feb 1979 | A |
4315117 | Kokubo et al. | Feb 1982 | A |
4337967 | Yoshida et al. | Jul 1982 | A |
4476954 | Johnson et al. | Oct 1984 | A |
4503300 | Lane, Jr. | Mar 1985 | A |
4503504 | Suzumura et al. | Mar 1985 | A |
4559816 | Ebert et al. | Dec 1985 | A |
4561323 | Stromberg | Dec 1985 | A |
4598604 | Sorsche et al. | Jul 1986 | A |
4602520 | Nishikawa | Jul 1986 | A |
4633732 | Nishikawa et al. | Jan 1987 | A |
4661752 | Nishikawa | Apr 1987 | A |
4669325 | Nishikawa | Jun 1987 | A |
4691587 | Farrand et al. | Sep 1987 | A |
4785684 | Nishikawa | Nov 1988 | A |
4836566 | Birsching | Jun 1989 | A |
4881020 | Hida et al. | Nov 1989 | A |
4893518 | Matsumoto | Jan 1990 | A |
4901544 | Jang | Feb 1990 | A |
4901593 | Ishikawa | Feb 1990 | A |
4921066 | Conley | May 1990 | A |
4941679 | Baumann et al. | Jul 1990 | A |
4962570 | Hosaka et al. | Oct 1990 | A |
4967618 | Matsumoto et al. | Nov 1990 | A |
4976239 | Hosaka | Dec 1990 | A |
5048364 | Minamoto et al. | Sep 1991 | A |
5240284 | Takada et al. | Aug 1993 | A |
5295712 | Omura | Mar 1994 | A |
5319803 | Allen | Jun 1994 | A |
5488555 | Asgari et al. | Jan 1996 | A |
5590565 | Palfenier et al. | Jan 1997 | A |
5613404 | Lykken et al. | Mar 1997 | A |
5618058 | Byon | Apr 1997 | A |
5668721 | Chandy | Sep 1997 | A |
5690362 | Peitsmeier et al. | Nov 1997 | A |
5737971 | Riefe et al. | Apr 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5813699 | Donner et al. | Sep 1998 | A |
5890397 | Stoner et al. | Apr 1999 | A |
5893580 | Hoagland et al. | Apr 1999 | A |
5911789 | Keipert et al. | Jun 1999 | A |
5931250 | Kagawa et al. | Aug 1999 | A |
5941130 | Olgren et al. | Aug 1999 | A |
6041677 | Reh et al. | Mar 2000 | A |
6070686 | Pollmann | Jun 2000 | A |
6079513 | Nishizaki et al. | Jun 2000 | A |
6142523 | Bathis | Nov 2000 | A |
6170862 | Hoagland et al. | Jan 2001 | B1 |
6220630 | Sundholm et al. | Apr 2001 | B1 |
6227571 | Sheng et al. | May 2001 | B1 |
6234040 | Weber et al. | May 2001 | B1 |
6264239 | Link | Jul 2001 | B1 |
6301534 | McDermott, Jr. et al. | Oct 2001 | B1 |
6354622 | Ulbrich et al. | Mar 2002 | B1 |
6354626 | Cartwright | Mar 2002 | B1 |
6360149 | Kwon et al. | Mar 2002 | B1 |
6373472 | Palalau et al. | Apr 2002 | B1 |
6381526 | Higashi et al. | Apr 2002 | B1 |
6390505 | Wilson | May 2002 | B1 |
6460427 | Hedderly | Oct 2002 | B1 |
6571587 | Dimig et al. | Jun 2003 | B2 |
6578449 | Anspaugh et al. | Jun 2003 | B1 |
6612198 | Rouleau | Sep 2003 | B2 |
6612393 | Bohner et al. | Sep 2003 | B2 |
6819990 | Ichinose | Nov 2004 | B2 |
7021416 | Kapaan et al. | Apr 2006 | B2 |
7025380 | Arihara | Apr 2006 | B2 |
7048305 | Muller | May 2006 | B2 |
7062365 | Fei | Jun 2006 | B1 |
7140213 | Feucht et al. | Nov 2006 | B2 |
7159904 | Schafer | Jan 2007 | B2 |
7213842 | Uehle et al. | May 2007 | B2 |
7258365 | Kahlenberg | Aug 2007 | B2 |
7261014 | Arihara | Aug 2007 | B2 |
7290800 | Schwarzbich et al. | Nov 2007 | B2 |
7295904 | Kanevsky et al. | Nov 2007 | B2 |
7308964 | Hara et al. | Dec 2007 | B2 |
7410190 | Sawada | Aug 2008 | B2 |
7428944 | Gerum | Sep 2008 | B2 |
7461863 | Muller | Dec 2008 | B2 |
7495584 | Sorensen | Feb 2009 | B1 |
7533594 | Menjak et al. | May 2009 | B2 |
7628244 | Chino et al. | Dec 2009 | B2 |
7719431 | Bolourchi | May 2010 | B2 |
7735405 | Parks | Jun 2010 | B2 |
7758073 | Chou | Jul 2010 | B1 |
7775129 | Oike et al. | Aug 2010 | B2 |
7784830 | Ulintz | Aug 2010 | B2 |
7793980 | Fong | Sep 2010 | B2 |
7862079 | Fukawatase et al. | Jan 2011 | B2 |
7975569 | Klos | Jan 2011 | B2 |
7894951 | Norris et al. | Feb 2011 | B2 |
7909361 | Oblizajek et al. | Mar 2011 | B2 |
8002075 | Markfort | Aug 2011 | B2 |
8011265 | Menjak | Sep 2011 | B2 |
8027767 | Klein et al. | Sep 2011 | B2 |
8055409 | Tsuchiya | Nov 2011 | B2 |
8069745 | Strieter et al. | Dec 2011 | B2 |
8079312 | Long | Dec 2011 | B2 |
8146945 | Born et al. | Apr 2012 | B2 |
8161839 | Warashina | Apr 2012 | B2 |
8170725 | Chin et al. | May 2012 | B2 |
8260482 | Szybalski et al. | Sep 2012 | B1 |
8352110 | Szybalski et al. | Jan 2013 | B1 |
8466382 | Donicke | Jun 2013 | B2 |
8479605 | Shavrnoch et al. | Jul 2013 | B2 |
8548667 | Kaufmann | Oct 2013 | B2 |
8606455 | Boehringer et al. | Dec 2013 | B2 |
8634980 | Urmson et al. | Jan 2014 | B1 |
8650982 | Matsuno et al. | Feb 2014 | B2 |
8670891 | Szybalski et al. | Mar 2014 | B1 |
8695750 | Hammond et al. | Apr 2014 | B1 |
8733201 | Okano et al. | May 2014 | B2 |
8818608 | Cullinane et al. | Aug 2014 | B2 |
8825258 | Cullinane et al. | Sep 2014 | B2 |
8825261 | Szybalski et al. | Sep 2014 | B1 |
8843268 | Lathrop et al. | Sep 2014 | B2 |
8874301 | Rao et al. | Oct 2014 | B1 |
8880287 | Lee et al. | Nov 2014 | B2 |
8881861 | Tojo | Nov 2014 | B2 |
8899623 | Stadler et al. | Dec 2014 | B2 |
8909428 | Lombrozo | Dec 2014 | B1 |
8948993 | Schulman et al. | Feb 2015 | B2 |
8950543 | Heo et al. | Feb 2015 | B2 |
8955407 | Sakuma | Feb 2015 | B2 |
8994521 | Gazit | Mar 2015 | B2 |
9002563 | Green et al. | Apr 2015 | B2 |
9031729 | Lathrop et al. | May 2015 | B2 |
9032835 | Davies et al. | May 2015 | B2 |
9039041 | Buzzard et al. | May 2015 | B2 |
9045078 | Tovar et al. | Jun 2015 | B2 |
9073574 | Cuddihy et al. | Jul 2015 | B2 |
9080895 | Martin et al. | Jul 2015 | B2 |
9092093 | Jubner et al. | Jul 2015 | B2 |
9108584 | Rao et al. | Aug 2015 | B2 |
9134729 | Szybalski et al. | Sep 2015 | B1 |
9150200 | Urhahne | Oct 2015 | B2 |
9150224 | Yopp | Oct 2015 | B2 |
9164619 | Goodlein | Oct 2015 | B2 |
9174642 | Wimmer et al. | Nov 2015 | B2 |
9186994 | Okuyama et al. | Nov 2015 | B2 |
9193375 | Schramm et al. | Nov 2015 | B2 |
9199553 | Cuddihy et al. | Dec 2015 | B2 |
9227531 | Cuddihy et al. | Jan 2016 | B2 |
9233638 | Lisseman et al. | Jan 2016 | B2 |
9235111 | Davidsson et al. | Jan 2016 | B2 |
9235987 | Green et al. | Jan 2016 | B2 |
9238409 | Lathrop et al. | Jan 2016 | B2 |
9248743 | Enthaler et al. | Feb 2016 | B2 |
9260130 | Mizuno | Feb 2016 | B2 |
9290174 | Zagorski | Mar 2016 | B1 |
9290201 | Lombrozo | Mar 2016 | B1 |
9298184 | Bartels et al. | Mar 2016 | B2 |
9308857 | Lisseman et al. | Apr 2016 | B2 |
9308891 | Cudak et al. | Apr 2016 | B2 |
9333983 | Lathrop et al. | May 2016 | B2 |
9352752 | Cullinane et al. | May 2016 | B2 |
9360108 | Pfenninger et al. | Jun 2016 | B2 |
9360865 | Yopp | Jun 2016 | B2 |
9421994 | Agbor et al. | Aug 2016 | B2 |
9487228 | Febre et al. | Nov 2016 | B2 |
9550514 | Schulz et al. | Jan 2017 | B2 |
9616914 | Stinebring | Apr 2017 | B2 |
9643641 | Stinebring | May 2017 | B1 |
9663136 | Stinebring | May 2017 | B2 |
9744983 | Stinebring | Aug 2017 | B2 |
9828016 | Lubischer et al. | Nov 2017 | B2 |
9845106 | Bodtker | Dec 2017 | B2 |
9849904 | Rouleau | Dec 2017 | B2 |
9852752 | Chou et al. | Dec 2017 | B1 |
9862403 | Rouleau et al. | Jan 2018 | B1 |
9919724 | Lubischer | Mar 2018 | B2 |
10065655 | Bendewald et al. | Sep 2018 | B2 |
20020171235 | Riefe et al. | Nov 2002 | A1 |
20030046012 | Yamaguchi | Mar 2003 | A1 |
20030094330 | Boloorchi et al. | May 2003 | A1 |
20030146037 | Menjak et al. | Aug 2003 | A1 |
20030188598 | Cartwright | Oct 2003 | A1 |
20030227159 | Muller | Dec 2003 | A1 |
20040016588 | Vitale et al. | Jan 2004 | A1 |
20040046346 | Eki et al. | Mar 2004 | A1 |
20040046379 | Riefe | Mar 2004 | A1 |
20040099083 | Choi et al. | May 2004 | A1 |
20040099468 | Chernoff et al. | May 2004 | A1 |
20040129098 | Gayer et al. | Jul 2004 | A1 |
20040204808 | Satoh et al. | Oct 2004 | A1 |
20040262063 | Kaufmann et al. | Dec 2004 | A1 |
20050001445 | Ercolano | Jan 2005 | A1 |
20050081675 | Oshita et al. | Apr 2005 | A1 |
20050197746 | Pelchen et al. | Sep 2005 | A1 |
20050242562 | Ridgway et al. | Nov 2005 | A1 |
20050263996 | Manwaring et al. | Dec 2005 | A1 |
20050275205 | Ahnafield | Dec 2005 | A1 |
20060005658 | Armstrong et al. | Jan 2006 | A1 |
20060186658 | Yasuhara et al. | Aug 2006 | A1 |
20060219499 | Organek | Oct 2006 | A1 |
20060224287 | Izawa et al. | Oct 2006 | A1 |
20060237959 | Dimig et al. | Oct 2006 | A1 |
20060244251 | Muller | Nov 2006 | A1 |
20060283281 | Li et al. | Dec 2006 | A1 |
20070021889 | Tsuchiya | Jan 2007 | A1 |
20070029771 | Haglund et al. | Feb 2007 | A1 |
20070046003 | Mori et al. | Mar 2007 | A1 |
20070046013 | Bito et al. | Mar 2007 | A1 |
20070096446 | Breed | May 2007 | A1 |
20070158116 | Peppler | Jul 2007 | A1 |
20070241548 | Fong | Oct 2007 | A1 |
20070284867 | Cymbal et al. | Dec 2007 | A1 |
20080009986 | Lu et al. | Jan 2008 | A1 |
20080047382 | Tomaru | Feb 2008 | A1 |
20080079253 | Sekii | Apr 2008 | A1 |
20080216597 | Iwakawa et al. | Sep 2008 | A1 |
20080238068 | Kumar et al. | Oct 2008 | A1 |
20090024278 | Kondo et al. | Jan 2009 | A1 |
20090056493 | Dubay et al. | Mar 2009 | A1 |
20090107284 | Lucas et al. | Apr 2009 | A1 |
20090229400 | Ozsoylu et al. | Sep 2009 | A1 |
20090256342 | Cymbal et al. | Oct 2009 | A1 |
20090266195 | Tanke et al. | Oct 2009 | A1 |
20090276111 | Wang et al. | Nov 2009 | A1 |
20090280914 | Kakutani et al. | Nov 2009 | A1 |
20090292466 | McCarthy et al. | Nov 2009 | A1 |
20100152952 | Lee et al. | Jun 2010 | A1 |
20100218637 | Barroso | Sep 2010 | A1 |
20100222976 | Haug | Sep 2010 | A1 |
20100228417 | Lee et al. | Sep 2010 | A1 |
20100228438 | Buerkle | Sep 2010 | A1 |
20100280713 | Stahlin et al. | Nov 2010 | A1 |
20100286869 | Katch et al. | Nov 2010 | A1 |
20100288567 | Bonne | Nov 2010 | A1 |
20110098922 | Ibrahim | Apr 2011 | A1 |
20110153160 | Hesseling et al. | Jun 2011 | A1 |
20110167940 | Shavrnoch et al. | Jul 2011 | A1 |
20110187518 | Strumolo et al. | Aug 2011 | A1 |
20110266396 | Abildgaard et al. | Nov 2011 | A1 |
20110282550 | Tada et al. | Nov 2011 | A1 |
20120136540 | Miller | May 2012 | A1 |
20120205183 | Rombold | Aug 2012 | A1 |
20120209473 | Birsching et al. | Aug 2012 | A1 |
20120215377 | Takemura et al. | Aug 2012 | A1 |
20120247259 | Mizuno et al. | Oct 2012 | A1 |
20120287050 | Wu | Nov 2012 | A1 |
20130002416 | Gazit | Jan 2013 | A1 |
20130325202 | Howard et al. | Jan 2013 | A1 |
20130087006 | Ohtsubo et al. | Apr 2013 | A1 |
20130104689 | Marutani et al. | May 2013 | A1 |
20130133463 | Moriyama | May 2013 | A1 |
20130158771 | Kaufmann | Jun 2013 | A1 |
20130174686 | Hirche et al. | Jul 2013 | A1 |
20130199866 | Yamamoto et al. | Aug 2013 | A1 |
20130205933 | Moriyama | Aug 2013 | A1 |
20130218396 | Moshchuk et al. | Aug 2013 | A1 |
20130233117 | Read et al. | Sep 2013 | A1 |
20130325264 | Alcazar et al. | Dec 2013 | A1 |
20140028008 | Stadler et al. | Jan 2014 | A1 |
20140046542 | Kauffman et al. | Feb 2014 | A1 |
20140046547 | Kaufmann et al. | Feb 2014 | A1 |
20140111324 | Lisseman et al. | Apr 2014 | A1 |
20140300479 | Wolter et al. | Apr 2014 | A1 |
20140116187 | Tinnin | May 2014 | A1 |
20140137694 | Sugiura | May 2014 | A1 |
20140277896 | Lathrop et al. | Sep 2014 | A1 |
20140309816 | Stefan et al. | Oct 2014 | A1 |
20150002404 | Hooton | Jan 2015 | A1 |
20150014086 | Eisenbarth | Jan 2015 | A1 |
20150032322 | Wimmer | Jan 2015 | A1 |
20150051780 | Hahne | Jan 2015 | A1 |
20150120142 | Park et al. | Jan 2015 | A1 |
20150210273 | Kaufmann et al. | Feb 2015 | A1 |
20150060185 | Feguri | Mar 2015 | A1 |
20150246673 | Tseng et al. | Apr 2015 | A1 |
20150137492 | Rao et al. | May 2015 | A1 |
20150203145 | Sugiura et al. | Jul 2015 | A1 |
20150251666 | Attard et al. | Jul 2015 | A1 |
20150283998 | Lind et al. | Sep 2015 | A1 |
20150324111 | Jubner et al. | Sep 2015 | A1 |
20160009332 | Sirbu | Jan 2016 | A1 |
20160016604 | Johta et al. | Jan 2016 | A1 |
20160075371 | Varunkikar et al. | Mar 2016 | A1 |
20160082867 | Sugioka et al. | Mar 2016 | A1 |
20160200246 | Lisseman et al. | Mar 2016 | A1 |
20160114828 | Tanaka et al. | Apr 2016 | A1 |
20160185387 | Kuoch | Jun 2016 | A1 |
20160200343 | Lisseman et al. | Jun 2016 | A1 |
20160200344 | Sugioka et al. | Jul 2016 | A1 |
20160207538 | Urano et al. | Jul 2016 | A1 |
20160209841 | Yamaoka et al. | Jul 2016 | A1 |
20160229450 | Basting et al. | Jul 2016 | A1 |
20160231743 | Bendewald et al. | Jul 2016 | A1 |
20160244070 | Bendewald et al. | Aug 2016 | A1 |
20160244086 | Moriyama | Aug 2016 | A1 |
20160318540 | King | Nov 2016 | A1 |
20160318542 | Pattok et al. | Nov 2016 | A1 |
20160347347 | Lubischer | Dec 2016 | A1 |
20160347348 | Lubischer | Dec 2016 | A1 |
20160362084 | Martin et al. | Dec 2016 | A1 |
20160362117 | Kaufmann et al. | Dec 2016 | A1 |
20160362126 | Lubischer | Dec 2016 | A1 |
20160368522 | Lubischer | Dec 2016 | A1 |
20160375770 | Ryne et al. | Dec 2016 | A1 |
20160375860 | Lubischer | Dec 2016 | A1 |
20160375923 | Schulz | Dec 2016 | A1 |
20160375924 | Bodtker et al. | Dec 2016 | A1 |
20160375925 | Lubischer et al. | Dec 2016 | A1 |
20160375926 | Lubischer et al. | Dec 2016 | A1 |
20160375927 | Schulz et al. | Dec 2016 | A1 |
20160375928 | Magnus | Dec 2016 | A1 |
20160375929 | Rouleau | Dec 2016 | A1 |
20160375931 | Lubischer | Dec 2016 | A1 |
20170029009 | Rouleau | Feb 2017 | A1 |
20170029018 | Lubischer | Feb 2017 | A1 |
20170097071 | Galehr | Apr 2017 | A1 |
20170106894 | Bodtker | Apr 2017 | A1 |
20170113589 | Riefe | Apr 2017 | A1 |
20170113712 | Watz | Apr 2017 | A1 |
20170151975 | Schmidt et al. | Jul 2017 | A1 |
20170294120 | Ootsuji | Oct 2017 | A1 |
20170297606 | Kim et al. | Oct 2017 | A1 |
20170341677 | Buzzard et al. | Nov 2017 | A1 |
20170361863 | Rouleau | Dec 2017 | A1 |
20170369091 | Nash | Dec 2017 | A1 |
20180029628 | Sugishita | Feb 2018 | A1 |
20180050720 | King et al. | Feb 2018 | A1 |
20180072339 | Bodtker | Mar 2018 | A1 |
20180079441 | McKinzie et al. | Mar 2018 | A1 |
20180086378 | Bell et al. | Mar 2018 | A1 |
20180148084 | Nash et al. | May 2018 | A1 |
20180154932 | Rakouth et al. | Jun 2018 | A1 |
20180251147 | Heitz | Sep 2018 | A1 |
20190111960 | Freudenstein | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
1449952 | Oct 2003 | CN |
1550395 | Dec 2004 | CN |
1722030 | Jan 2006 | CN |
1736786 | Feb 2006 | CN |
101037117 | Sep 2007 | CN |
101041355 | Sep 2007 | CN |
101049814 | Oct 2007 | CN |
101291840 | Oct 2008 | CN |
101402320 | Apr 2009 | CN |
101596903 | Dec 2009 | CN |
201534560 | Jul 2010 | CN |
101954862 | Jan 2011 | CN |
102161346 | Aug 2011 | CN |
102452391 | May 2012 | CN |
102523738 | Jun 2012 | CN |
102574545 | Jul 2012 | CN |
202337282 | Jul 2012 | CN |
102806937 | Dec 2012 | CN |
103085854 | May 2013 | CN |
103419840 | Dec 2013 | CN |
103569185 | Feb 2014 | CN |
103587571 | Feb 2014 | CN |
203793405 | Aug 2014 | CN |
204222957 | Mar 2015 | CN |
4310431 | Oct 1994 | DE |
19523214 | Jan 1997 | DE |
19923012 | Nov 2000 | DE |
19954505 | May 2001 | DE |
10212782 | Oct 2003 | DE |
102005032528 | Jan 2007 | DE |
102005056438 | Jun 2007 | DE |
102006025254 | Dec 2007 | DE |
1020081057313 | Oct 2009 | DE |
102010025197 | Dec 2011 | DE |
102013110865 | Apr 2015 | DE |
102015216326 | Sep 2016 | DE |
1559630 | Aug 2005 | EP |
1783719 | May 2007 | EP |
1932745 | Jun 2008 | EP |
2384946 | Nov 2011 | EP |
2426030 | Mar 2012 | EP |
2489577 | Aug 2012 | EP |
2604487 | Jun 2013 | EP |
1606149 | May 2014 | EP |
2862595 | May 2005 | FR |
3016327 | Jul 2015 | FR |
S60157963 | Aug 1985 | JP |
H05162652 | Jun 1993 | JP |
2007253809 | Oct 2007 | JP |
20100063433 | Jun 2010 | KR |
101062339 | Sep 2011 | KR |
2006099483 | Sep 2006 | WO |
2010082394 | Jul 2010 | WO |
2010116518 | Oct 2010 | WO |
2014208573 | Dec 2014 | WO |
Entry |
---|
China Patent Application No. 201510204221.5 Second Office Action dated Mar. 10, 2017, 8 pages. |
CN Patent Application No. 201210599006.6 First Office Action dated Jan. 27, 2015, 9 pages. |
CN Patent Application No. 201210599006.6 Second Office Action dated Aug. 5, 2015, 5 pages. |
CN Patent Application No. 201310178012.9 First Office Action dated Apr. 13, 2015, 13 pages. |
CN Patent Application No. 201310178012.9 Second Office Action dated Dec. 28, 2015, 11 pages. |
CN Patent Application No. 201410089167 First Office Action and Search Report dated Feb. 3, 2016, 9 pages. |
EP Application No. 14156903.8 Extended European Search Report, dated Jan. 27, 2015, 10 pages. |
EP Application No. 14156903.8 Office Action dated Nov. 16, 2015, 4 pages. |
EP Application No. 14156903.8 Office Action dated May 31, 2016, 5 pages. |
EP Application No. 14156903.8 Partial European Search Report dated Sep. 23, 2014, 6 pages. |
EP Application No. 15152834.6 Extended European Search Report dated Oct. 8, 2015, 7 pages. |
European Application No. 12196665.9 Extended European Search Report dated Mar. 6, 2013, 7 pages. |
European Search Report for European Application No. 13159950.8; dated Jun. 6, 2013; 7 pages. |
Gillespie, Thomas D.; “Fundamentals of Vehicle Dynamics”; Society of Automotive Enginers, Inc.; published 1992; 294 pages. |
Kichun, et al.; “Development of Autonomous Car-Part II: A Case Study on the Implementation of an Autonomous Driving System Based on Distributed Architecture”; IEEE Transactions on Industrial Electronics, vol. 62, No. 8, Aug. 2015; 14 pages. |
Van der Jagt, Pim; “Prediction of Steering Efforts During Stationary or Slow Rolling Parking Maneuvers”; Ford Forschungszentrum Aachen GmbH.; Oct. 27, 1999; 20 pages. |
Varunjikar, Tejas; Design of Horizontal Curves With DownGrades Using Low-Order Vehicle Dynamics Models; A Theisis by T. Varunkikar; 2011; 141 pages. |
English translation regarding DE102015216326B4, ThyssenKrupp AG; 21 pgs. Sep. 8, 2016. |
Chinese Office Action & Search Report for Chinese Application No. 201610427896.0 dated Oct. 27, 2017, 16 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201610609647.3 dated Mar. 12, 2018, 5 pages, no English translation available. |
Chinese Office Action & Search Report for Chinese Application No. 201610620335.2 dated Jan. 22, 2018, 15 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201610642300.9 dated Feb. 7, 2018, 22 pages, English Translation Only. |
Chinese Office Action & Search Report for Chinese Application No. 201610651953.3 dated Jan. 25, 2018, 12 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201610830809.6 dated Mar. 12, 2018, 11 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201610830810.9 dated Jan. 31, 2018, 18 pages, English Translation Included. |
Chinese Office Action & Search Report for Chinese Application No. 201611113746.9 dated May 4, 2018, 11 pages, English Translation Included. |
CN Chinese Office Action & Search Report for Chinese Application No. 201610620335.2 dated Aug. 7, 2018, 16 pages, English Translation Included. |
Number | Date | Country | |
---|---|---|---|
20170361863 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62352809 | Jun 2016 | US |