The invention relates to a self-oscillating pulse-width modulator and a method for adjusting a self-oscillating pulse-width modulator.
A self-oscillating pulse-width modulator has the aim of generating a signal of a particular frequency. In Kikkert, C. J. et al., “Asynchronous Delta Sigma Modulation”, IEEE Proceedings, Apr. 1975, pages 83 to 88, examples of self-oscillating pulse-width modulators are disclosed which are shown in
The self-oscillating modulator 1 shown in
For the self-oscillating modulator 1 shown in
The self-oscillating pulse-width modulator 21 shown in
However, adjusting the hysteresis of the comparator 5 of the modulator 1 shown in
The invention provides a self-oscillating pulse-width modulator comprising an input, an output and a control loop comprising a forward branch connected between the input and the output and comprising a feedback loop, wherein the forward branch comprises a comparator, the feedback loop loops back to the input a feedback signal which depends on the output signal present at the output, and the phase shift of the open control loop is 180° at the frequency of an oscillation to be generated by means of the modulator. At least a part of the phase shift is implemented in the forward branch by means of at least one delay element. Due to the fact that the phase shift is implemented in the forward branch by means of the at least one delay element, it is possible to use a comparator without hysteresis.
The delay element may comprise, for instance, at least one latch. If the comparator, according to a preferred embodiment of the modulator according to the invention, comprises the delay element, the inventive modulator can be constructed in a relatively simple manner.
To amplify the output signal of the comparator, the modulator may comprise a driver stage following the comparator. This driver stage may particularly comprise the delay element.
The driver stage may be a so-called current-starved inverter. A current-starved inverter is known to the skilled person, in principle, for example from Christiansen, J. “An Integrated High Resolution CMOS Timing Generator Based on an Array of Delay-Locked Loops”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 7, Jul. 1996, pages 952 to 957. An advantage of a current-starved inverter is that it can be used for adjusting the time delay in a relatively simple and accurate manner. As a result, the modulator according to the invention can be adjusted not only relatively quickly but also relatively precisely.
The inverter can be a differential amplifier. A current-starved inverter as differential amplifier is known to the skilled person, for example from Maneatis, J. G., “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, Nov. 1996, pages 1723 to 1733.
The invention also provides a method for adjusting a self-oscillating pulse-width modulator comprising an input, an output and a control loop which has a forward branch connected between the input and the output and a feedback loop, wherein the forward branch comprises a comparator with at least one downstream current-starved inverter as driver stage and the feedback loop loops back to the input a feedback signal which depends on the output signal present at the output, comprising the following method step: adjusting the comparator and/or the current-starved inverter in such a manner that the phase shift of the open control loop is 180° at the frequency of an oscillation to be generated by means of the modulator. The inverter can be, in particular, a differential amplifier.
The modulator 31 also comprises a feedback loop 33 which loops back to the input E3 of the modulator 31 a feedback signal r3 which depends on the output signal a3 of the modulator 31. The feedback signal r3 is subtracted from the input signal e3 present at the input E3 of the modulator 31. The resultant difference signal w3, in turn, is supplied to the forward branch 32 of the modulator 31.
In the case of the present illustrative embodiment, the feedback branch 33 comprises a low-pass filter 37 and an amplifier element 38 following the low-pass filter 37. The low-pass filter 37 reduces high-frequency components of the output signal a3 of the modulator 31.
The inverter 40 comprises two further complementary MOSFETs 44 and 45, the MOSFET 45 being connected to a voltage source with positive voltage Vc and the other MOSFET 44 being connected to earth. The gates of the two MOSFETs 44 and 45 are connected to a control device 48 via electrical lines 46 and 47. The control device 48 can be used for varying the voltage present at the MOSFETs 44 and 45, as a result of which the resistances of the MOSFETs 44 and 45 can be varied. In combination with a capacitance of the downstream inverted amplifier element 41, the input signal of the inverter 40, which is also the input signal of the driver stage 36, is delayed in time, i.e. the output signal of the driver stage 36 is delayed in time relative to the input signal of the driver stage.
For the self-oscillating modulator 31 shown in
Although the present invention has been described by means of a preferred illustrative embodiment, the invention is not restricted to this but can be modified in many ways. In particular, it is possible for the driver stage 36 to comprise a number of cascaded inverters 40. In particular, it is also possible for the inverter 40 to be constructed as a differential amplifier. In principle, a current-starved inverter as differential amplifier is known to the expert, e.g. from Maneatis, J. G., “Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques”, IEEE Journal of Solid-State Circuits, Vol. 31, No. 11, Nov. 1996, pages 1723 to 1733. It is also possible for the delay of the signal of the forward branch 32 to be implemented by means of the comparator 35 or for a part of this delay to be implemented by means of the comparator 35 and a part of the delay to be implemented by means of the driver stage. Further, the delay can be achieved by at least one latch circuit.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 045 584 | Sep 2005 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4531096 | Yokoyama | Jul 1985 | A |
4591810 | Mackenzie et al. | May 1986 | A |
4952884 | Tokumo et al. | Aug 1990 | A |
5451900 | Haga et al. | Sep 1995 | A |
5910743 | Baskin | Jun 1999 | A |
6016075 | Hamo | Jan 2000 | A |
6351184 | Miao et al. | Feb 2002 | B1 |
6489841 | Takagishi | Dec 2002 | B2 |
6778011 | Noro et al. | Aug 2004 | B2 |
7075803 | Eberlein | Jul 2006 | B2 |
7183840 | Maejima | Feb 2007 | B2 |
20070069814 | Giotta et al. | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
05152867 | Jun 1993 | JP |
Number | Date | Country | |
---|---|---|---|
20070069933 A1 | Mar 2007 | US |