1. Field of the Invention
The present invention relates to the use of cables to interconnect computer hardware. More specifically, the present invention is an apparatus for coupling a cable to a difficult to reach connector in a computer system.
2. Description of the Related Art
Computer systems have many component parts designed to operate cooperatively and there are various types of connections between the component parts that may be required. For example, server systems will often have several electronic circuit boards that each have electronic components, including a processor, that perform operations in communication with each other. While an electronic circuit board may be connected directly to a connector on a second electronic circuit board, electronic circuit boards are often connected with cables that allow communication there between.
The scalability of certain types of computer systems, including blade servers, facilitates the addition of new components or the reconfiguration of existing components in a data center. Scalability, however, relies upon the ability to interconnect multiple chassis via cables. This interconnection can be complicated due to the fact that chassis that house blade servers or other computer system components are often configured very close to each other in order to conserve space in a data center environment. Furthermore, even the components within the chassis are very tightly configured to provide a high component density. In fact, some computer components may be positioned in such a manner within a chassis that reaching a desired connector is difficult without removal of numerous components from the chassis.
Some systems that contain difficult to reach components may include a cable interposer, or a run of cable that is connected to a difficult to reach component in order to provide a connector that is more readily accessible. However, the usage of a cable interposer adds undesirable signal losses and a cable connected deep within the chassis will have a latch at the connector that is unreachable by the user. Furthermore, the depth of the connection typically precludes the use of rigid cables that may exit perpendicularly from a chassis.
Still, high speed performance is a critical factor in some computer systems. Therefore, it is desirable to configure components for optimum communication and operational speed. Long runs of communication cable between components can cause signal losses or lags in performance. Consequently, it is often desirable to minimize the length of cable between components in order to optimize performance.
Therefore, there is a need for an apparatus to facilitate a cable connection with a difficult to reach component having a deep plug. It would be desirable if the apparatus also facilitated latching and unlatching of the cable without removal of adjacent components. Furthermore, it would be even more desirable if the apparatus did not require a redesign of exiting scalability cables or connectors for receiving the cables.
The present invention provides a method and apparatus for aligning, connecting and latching, a cable having a second connector with a first connector located deep within a chassis. The apparatus comprises a plurality of flexibly connected trough segments that collectively form a cable trough that secures a cable. The trough segments preferably share one or more common lateral dimension that cooperates with a chassis guide to align the first and second connectors.
The plurality of trough segments includes a distal segment having a retainer capable of receiving a second connector and maintaining the second connector in a desired orientation. A proximal segment comprises a latch element which, when coupled with a fixed structure, selectively secures the cable trough in place once the second connector is received into the first connector. The latch may be selectively unlatched by a user for removal of the cable trough and disengagement of the connectors.
The chassis guide slidably receives the trough segments and is positioned in a manner to align the first and second connectors when the cable trough is inserted within the chassis guide. The chassis guide comprises a proximal opening for receiving the trough segments and a distal opening aligned with the first connector, wherein the guide selectively positions the cable trough for the first and second connectors to mate.
The present invention provides an apparatus for aligning, connecting and latching a first connector located in a chassis with a second connector on a cable. The apparatus comprises a plurality of flexibly connected trough segments that collectively form a cable trough capable of housing a cable. The trough segments preferably share one or more common dimension with a guide used to align the first and second connectors. The trough segments are preferably composed of a lightweight and strong material, such as a plastic.
The flexible connection between trough segments may include a pivotal hinge, a swivel, a flexible material, or any connection that will allow the trough segments to articulate with respect to each other. The preferred connection will allow the trough segments to articulate in at least one plane relative to an adjacent trough segment while also being relatively incompressible along the axis of the trough, to provide rigidity when pushed from the proximal end.
The cable trough further comprises a retainer and a latch. The retainer is generally located near the distal end of the cable trough and is capable of receiving the second connector, which forms part of a cable, and maintaining the second connector in a desired position and orientation. Further, the retainer may be formed to receive the second connector, or be coupled with a fastener to maintain the second connector in place. The latch is generally located near the proximal end of the cable trough and selectively secures the trough in place within the chassis guide once the second connector has been received into the first connector. A user may selectively secure the trough in place by latching the trough to a guide, a chassis, or any other stable structure.
The chassis guide slidably receives the trough segments and is positioned in a manner to align the first and second connectors when the cable trough is inserted within the chassis guide. The chassis guide comprises a proximal opening for receiving the trough segments and a distal opening aligned with the first connector.
The trough segments are preferably biased to predispose the segments to a specific relational configuration, such as a straight or curved line. The bias may be a physical property of the material used to the make the trough segments or the bias may be provided by incorporation of a separate biasing member, such as a plastic rod, a thin metal piece, or any other biasing member spanning two or more trough segments. The biasing member acts as a spring when the trough segments are moved in relation to one another, causing the trough segments to tend toward a specific relationship.
A chassis guide 16 receives the cable trough 8 formed by the trough segments 10, 15, 17 by inserting the cable trough into a proximal opening 18 of the guide 16. The guide 16 is fixed in position such that a distal opening 20 of the guide 16 is aligned with a first connector 52 on a component 50 within a chassis. A cable 22 is seated within the trough formed collectively by the trough segments 10, 15, 17. Furthermore, the cable 22 comprises the connector 24, which is seated within the retainer 14. An optional fastener 26 may hold the second connector 24 in place in the retainer 14. Also, an optional fastener 28 may hold the cable 22 within the trough. Preferably the fasteners are integral to the segments and can be reused should the cable require replacement.
The trough segments 10, 15, 17 preferably share one or more common dimension with the interior walls of the chassis guide. In this example, a rib 11 extends outward to the side of the trough segments 10, 15, 17. These ribs 11 extend to about the same width as the inner width of the guide 16 so that the ribs are slidably received in the guide, but prevent significant lateral or rotational movement of the trough segments 10, 15, 17 relative to the guide. Further, this example shows trough segments 10, 15, 17 that have an extension 13 which extends to about the same height as the inner height of the guide 16.
The trough segments 10, 15, 17 can be freely articulated while they are outside the guide, thereby allowing the cable trough to be fed into the proximal opening 18 of the guide 16 from a variety of angles. However, as the trough segments are inserted into the guide 16, the trough segments 10, 15, 17 are sequentially constrained by the ribs 11 and extensions 13 to maintain an orientation as specified by the path of the guide 16. While the rib 11 constrains movement laterally, the extension 13 constrains vertical movement. This ensures that the first and second connectors 52, 24 are properly aligned. It should be recognized that trough segments should slide easily through the guide without requiring large forces to overcome friction. It should also be recognized that slightly undersizing the trough segments allows the guide to include gently curved paths that the cable trough can follow without binding.
The terms “comprising,” “including,” and “having,” as used in the claims and specification herein, shall be considered as indicating an open group that may include other elements not specified. The terms “a,” “an,” and the singular forms of words shall be taken to include the plural form of the same words, such that the terms mean that one or more of something is provided. The term “one” or “single” may be used to indicate that one and only one of something is intended. Similarly, other specific integer values, such as “two,” may be used when a specific number of things is intended. The terms “preferably,” “preferred,” “prefer,” “optionally,” “may,” and similar terms are used to indicate that an item, condition or step being referred to is an optional (not required) feature of the invention.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Name | Date | Kind |
---|---|---|---|
4367967 | Albert | Jan 1983 | A |
5037175 | Weber | Aug 1991 | A |
5451171 | Dickie | Sep 1995 | A |
5685736 | Lung | Nov 1997 | A |
6447170 | Takahashi et al. | Sep 2002 | B1 |
6733322 | Boemmel et al. | May 2004 | B2 |
6773297 | Komiya | Aug 2004 | B2 |
6926551 | Schulz et al. | Aug 2005 | B1 |
7029311 | Peloza | Apr 2006 | B2 |
20040014352 | Boemmel et al. | Jan 2004 | A1 |
20040043654 | Lee et al. | Mar 2004 | A1 |
20040077207 | Ice | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
3821017 | Jan 1989 | DE |