The present application claims priority to Japanese patent application serial numbers 2014-205005 and 2014-205006, both filed on Oct. 3, 2014, the contents of which are incorporated fully herein by reference.
The present invention relates to a self-propelled, dust-collecting robot or autonomous floor cleaning robot powered by one or more rechargeable battery packs designed for power tools.
Self-propelled sweepers or robotic vacuum cleaners that collect dust from the surface of a floor are known and include a built-in motor that rotationally drives its wheels. As disclosed, for example, in Japanese Unexamined Utility Model Application Publication No. H5-88472, such a sweeper may comprise a rotary brush that is rotated by the drive of a motor and is disposed forward of a suction port. The sweeper gathers or sweeps up dust from the surface of the floor using the rotary brush.
Known self-propelled, dust-collecting robots, sweepers or floor cleaning robots typically have a power supply that is designed as a built-in, dedicated rechargeable battery. Such a design necessitates the preparation (design and manufacture) of batteries that differ by model, which incurs costs as well as time and labor to manage the variety of battery designs.
In addition, because known floor cleaning devices utilize only one battery (or one set of battery cells connected in series and/or in parallel), the continuous usage (run) time is relatively short, which means that the charging (recharging) frequency is high. Furthermore, the center of gravity is offset by the arrangement of the battery, and consequently some designs can not stably move (travel along the floor) during a floor cleaning operation.
Therefore, in one aspect of the present teachings, a self-propelled, dust-collecting robot or autonomous floor cleaning robot contains at least one rechargeable battery (battery pack) that is versatile and thereby does not incur costs or time and labor to manage a plurality of battery designs for different models of the robot.
In another aspect of the present teachings, a self-propelled, dust-collecting robot or autonomous floor cleaning robot may have a relatively long continuous usage time (run time), convenient handling (maneuverability) properties, and/or suitable stability while running (moving).
In another aspect of the present teachings, a self-propelled, dust-collecting robot is powered by a power tool battery pack that is configured or designed to supply electric power to a power tool such as, e.g., a driver-drill, an impact driver, a circular saw, a jig saw, an orbital sander, etc.
Because batteries (battery packs) designed for power tools can be used as the power supply, there is no need to prepare (design, manufacture) batteries that differ by model, which increases versatility and avoids costs and/or time and labor for battery management.
In addition or in the alternative, the following features may be utilized to achieve additional effects and/or advantages.
For example, a cover or cover body may be designed to be opened and simultaneously expose both the dust-collection box and the battery pack(s). In such an embodiment, the dust-collection box and the battery pack(s) can be put in (inserted or installed) and taken out (removed) with a single operation of the cover body, which increases convenience when performing maintenance on the robot.
The battery pack(s) and (a) mounting part(s) of the robot may be designed with engageable rails that extend vertically. In such an embodiment, the battery pack(s) can be easily mounted from above.
In some embodiments, the battery pack(s) can be disposed at the outermost part of the robot along the external shape (periphery) of the main-body part, and thereby the space inside the main-body part can be effectively utilized without creating any wasted space on the outer side of the battery pack(s).
The robot may be designed to be alternately powered by a plurality of battery packs. In such embodiments, the continuous run (usage) time may be increased, and the frequency of charging is reduced, thereby increasing convenience of operation. In addition, stability while running (traveling along the floor) is achieved.
In some embodiments, the two battery packs may be provided at the front or at the rear of the robot. Such a design utilizes an ideal number and arrangement of battery packs with regard to weight and balance while running (traveling along the floor).
In some embodiments, a notched part may be provided so that the rear part of the robot does not interfere with (contact) the floor surface when the front part of the main-body part is lifted up to move the dust-collecting robot (roll it along the floor), thereby making manual movement more convenient.
In some embodiments, the motor for driving a suction fan may be interposed between two battery packs, which provides a well balanced design.
As shown in
Dust-collecting robots 1 according to the present teachings are also known in the art as an autonomous floor-cleaning robot, autonomous floor cleaner, autonomous floor sweeper, vacuum cleaning robot, coverage robot, floor coverage robot, cleaning roller, roller cleaning system, robotic vacuum cleaner, robot cleaning system, etc. Generally speaking, these terms may be interchangeably used in the present teachings, although terms containing the word “vacuum” are typically only applicable to floor cleaning devices capable of generating a suction force in order draw (suck) in dust and dirt using a suction force.
The main-body part (chassis) 2 comprises a lower-side housing 8, which is formed (extends) from the bottom surface to a rear surface, and an upper-side housing 9, which is formed (extends) from an upper surface to a side surface. A plurality of sensors 10a are designed to contactlessly detect obstacles or objects in front of the robot 1 and are provided on an inner side of a front-part circumferential surface of the main-body part 2. Furthermore, a sensor cover 10 is movably mounted such that retracts (is pushed back relative to the housings 8, 9) when it contacts an obstacle (object) and thereby turns ON a not-shown switch.
A bottom-surface cover 11 has a rectangular suction port 12 that extends laterally in the left-right direction. The cover 11 is screw-fastened to the lower-side housing 8 at a front-side lower part of the main-body part 2. The suction port 12 communicates with a dust-collection path 13, which is provided above the lower-side housing 8 and rises diagonally toward its rear upper side. Inside the dust-collection path 13 are provided: a rotary shaft 15, which extends in the left-right direction, and a main brush 14, which comprises a plurality of brushes 16 embedded in the outer circumference thereof and extend radially and helically with respect to the rotational axis of the rotary shaft 15. The brushes 16 of the main brush 14 protrude downward from the suction port 12 and rotate, when rotationally driven by a motor (not shown), in the direction of the arrow shown in
In addition, two side brushes 17 are respectively provided on the left and right of the suction port 12. Each of the side brushes 17 includes three brushes 20, 20 that are radially embedded in a lower end of a rotary shaft 18 and are joined to a discoidal (disk-shaped) brush base 19. The rotating inner side areas of brushes 20 overlap the suction port 12 in plan view and are designed to guide (sweep) dust towards the suction port 12. Each of the rotary shafts 18 passes through the bottom-surface cover 11 and is axially supported in the up-down direction. The side brushes 17 are respectively rotated by one or more motors (not shown) in the direction of arrows A shown in
The dust-collection box 7 is divided into two parts, namely: a main body 7a, which is located on the lower side, and a cover 7b, which closes up the upper surface of the main body 7a. The main body 7a and the cover 7b are sealed along a sealing material 7c, such as a gasket or elastic ring. The dust-collection box 7 is set (designed) such that it can be mounted (inserted) in and removed from a housing part 8a formed at the center of the lower-side housing 8, and such that a forward inlet 21 formed (defined) in the main body 7a communicates with an outlet of the dust-collection path 13. Protruding parts 8b are formed in a bottom part of the housing part 8a, and recessed parts 7d are formed in a bottom part of the main body 7a. When the protruding parts 8b are respectively mated with the recessed parts 7d, the dust-collection box 7 is prevented from rattling during operation.
A filter box 22 comprises a filter 23 that can be attached to and detached from the upper surface of the dust-collection box 7. A motor box 24 is provided rearward of the filter box 22 and is disposed such that the motor box 24 communicates with the filter box 22. The dust-collection motor 6, which comprises a suction fan 26 located at a front end of an output shaft 25, is housed inside the motor box 24. Exhaust ports 27 communicate with the interior of the motor box 24 and are formed at the center of a rear surface of the lower-side housing 8.
Referring now to
As used herein, the expression “immediately below” is intended to encompass embodiments, in which the entirety of each castor fits, in plan view, within the outer shape of its corresponding battery (battery pack), as well as embodiments, in which part or the entirety of each castor juts out (protrudes), in plan view, from the outer shape of its corresponding battery (battery pack), as long as the castor is positioned such that the load added to the main-body part centered on the battery (battery pack) can be supported.
The batteries (battery packs) 3 respectively mounted in the mounting parts 28 may preferably be lithium ion battery packs that have a nominal (rated) output voltage of 12-36 volts, preferably about 18 volts, and are also designed to be used as the detachable, rechargeable power supply for known power tools, such as driver-drills, impact drivers, circular saws, jig saws, orbital sanders, etc.
Furthermore, in addition to the battery cells 60, a thermistor (not shown) may be provided inside the case 31 and the thermistor may detect the temperature of a fuse, the battery cells 60, etc. within the battery pack 3, all of which are electrically connected to a control circuit board 65 provided inside the coupling part 32. One or more control devices 66, such as a microcontroller, a power FET, etc., is/are mounted on the control circuit board 65, and are designed to detect the temperature, the voltage, the electric current, etc. of the battery cells 60 and/or to control the supply of current from the battery cells 60 to the electrically-powered components of the robot 1. The control circuit (e.g., microprocessor) is further designed to stop discharging of the battery calls 60 by operating (opening or disconnecting) the power FET if an abnormality is detected during the discharging. The cell temperature information can be externally output via the connector 35.
Thus, the mounting parts 28 for holding (receiving) the batteries (battery packs) 3 have the same structure as the corresponding battery pack mounting parts provided on known power tools. That is, as shown in
In addition, a recessed part (recess) 41, which is designed to engage with the hook 36, is provided upward of each terminal block 39. That is, by engaging the retractable hook 36 in the recess 41, the battery pack 3 can thereby be securely latched in/to the mounting part 28 so that it does not move during operation.
Further description concerning battery packs that may be utilized with the present teachings are provided in US Patent Publication No. 2014/0302353, which is incorporated herein by reference in its entirety.
Each mounting part 28 has an inner surface that is tilted or angled from (relative to) the front-rear direction such that the inner surface of the mounting part 28, which includes the guide rails 38 and the terminal block 39, follows along (is generally parallel to) a tangential direction (tangent) of the outer circumference of the main-body part 2. That is, such angled inner surface extends in a horizontal plane at an angle to the front-rear centerline of the robot 1. The mounting part 28 is set (designed) such that, when the battery pack 3 is mounted therein, the coupling part 32 faces towards the center of the main-body part 2. By thusly tilting the battery packs 3 and mounting them radially with respect to the dust-collection box 7, the battery packs 3 can be disposed at the outermost part along the external shape (periphery) of the main-body part 2, and thus there is no wasted space on the outer side of the battery pack 3. That is, the bottom surface of the battery packs 3 may be nearly flush with the outer circumference of the lower housing part 8
Furthermore, because the two battery packs 3 are disposed with good left and right balance with respect to the centerline extending in the front-rear direction of the main-body part 2, a shifting of the center of gravity does not result even though two battery packs 3 are utilized. In particular, because the castors 30 are respectively located immediately below the mounted battery packs 3, 3, stability while running (moving along the floor) is good and tracking remains straight even if one of the battery packs 3 is not mounted (installed). In addition, when the front end of the main-body part 2 is lifted up by hand and the castors 30 contact the ground as shown in
Furthermore, the cover body 42 is pivotably coupled to the upper-side housing 9 and opens (pivots) upward away from the housing part 8a and the mounting parts 28, 28. When the cover body 42 is pivoted upward, the dust-collection box 7 and the batteries 3 can be put in (inserted) and taken out (removed). The cover body 42 comprises an upper plate part 43 that covers, as viewed from above, an area that includes the area from the housing part 8a to the left and right mounting parts 28, 28. The cover body 42 further comprises two rear plate parts 44 that bend (project) downward from a rear-end edge of the upper plate part 43 and cover the rear part of the upper-side housing 9 including portions located rearward of the mounting parts 28, 28 on lateral sides of the motor box 24. A front end 43a (see
It is noted that, as shown in
In the above-described dust-collecting robot 1, when the batteries (battery packs) 3 are mounted in their respective mounting parts 28 and the dust-collecting robot 1 is placed on the floor surface, the brushes 16 of the main brush 14 and the brushes 20 of the side brushes 17 each make contact with the floor surface. When a run (ON/OFF) switch disposed on an operation panel (not shown), which may be provided on the upper surface of the upper-side housing 9 or on the cover body 42, is pressed, the motors 4, 4 begin to run and rotationally drive the wheels 5. Then, the dust-collecting robot 1 travels on (along) the floor surface in accordance with one or more programs stored in the controller 45 (
When the main brush 14 and the side brushes 17 rotate and the dust-collection motor 6 simultaneously rotationally drives (rotates) the suction fan 26, dust on the floor surface is brushed (swept) towards the dust-collection path 13 by the rotating main brush 14, is suctioned via the suction port 12 by the suction force produced by the suction fan 26, and is then conveyed to the rearward dust-collection box 7 via the dust-collection path 13. Large dust particles fall to the bottom of and accumulate in the dust-collection box 7, whereas small dust particles are trapped by the filter 23 because the suctioned-in air passes through the filter 23 (where the small particles are trapped), transits the motor box 24, and is discharged via the exhaust ports 27. At the same time, dust located laterally outward of the main body part 2 is also gathered (swept) towards the main brush 14 by the side brushes 17, which expand the range (span) over which dust can be collected and make it possible to collect dust even in corners or near walls.
In one embodiment of the present teachings, the batteries (battery packs) 3 disclosed herein may be configured (adapted) to be used (discharged) sequentially (i.e. one at a time) as the power supply, and the remaining charge (charge level) of each of the batteries 3 may be displayed by a display (e.g., an LCD or one or more LEDs) provided on the operation panel, as was mentioned above. In such an embodiment, if the charge of one of the batteries 3 runs out (is depleted) before the charge of the other, then the cover body 42 can be opened and the depleted (discharged) battery 3 can be removed from its mounting part 28 to be recharged by an external battery charger. In this case, the dust-collecting robot 1 can continue to run (operate) with just the other battery 3. Furthermore, because the castors 30 are provided in a left-right symmetrical manner as was discussed above, the dust-collecting robot 1 can travel (move along the floor) stably via the left and right castors 30 even if the center of gravity of the main-body part 2 shifts because only one of the batteries 3 is mounted (installed).
Thus, according to the dust-collecting robot 1 of the above-described embodiment, batteries (battery packs) 3 designed for power tools are used as the power supply, and consequently there is no need to prepare (design, manufacture) batteries that differ by model, versatility is improved, and neither costs nor time and labor for battery management are incurred.
In addition or in the alternative, each of the batteries (battery packs) 3 preferably comprises the case 31, the battery cells 60 built into (installed in) the case 31, the terminals 63 for discharging, and the control circuit board 65, which is built into the case 31 and monitors for any discharge errors. Therefore, the battery packs 3 can be reliably used as an excellent power supply.
In addition or in the alternative, because the main-body part 2 is provided with the cover body 42, which is capable of pivoting to expose both the dust-collection box 7 and the batteries 3 at the same time, the dust-collection box 7 and the batteries 3 can be put in (inserted) and taken out (removed) with a single operation of the cover body 42, which improves the convenience of operating and maintaining the robot 1.
In addition or in the alternative, because the batteries (battery packs) 3 are provided with the pair of rails 33 designed for coupling to a power tool and because the guide rails (engaging portion) 38, which are capable of coupling with the rails 33 from (along) the up-down direction, are formed in the mounting parts 28 of the main-body part 2, the batteries 3 can be easily mounted (inserted) from above.
Thus, because the guide rails 38 are provided, in plan view, on the outer side of the main-body part 2 in the radial direction thereof, the batteries 3 can be disposed at the outermost part along the external shape of the main-body part 2. Consequently, the space inside the main-body part 2 can be effectively utilized without wasting any space on the outer side of the batteries 3.
In addition or in the alternative, because two of the batteries (battery packs) 3 are provided, continuous use over a longer time becomes possible, the frequency of charging is reduced, and consequently convenience of use is greatly improved.
In addition or in the alternative, because the castors 30 are respectively disposed immediately below the batteries 3 (or preferably only partially laterally offset therefrom), the stability of operation (movement) is improved. In addition or in the alternative, two of the batteries 3 and two of the castors 30 are utilized, with one each on the left and right sides of a front-rear centerline, which is the ideal number and arrangement from the standpoint of weight and balance while running (moving along the floor).
In addition or in the alternative, by disposing the batteries 3 on the left and right of the dust-collection motor 6 such that they sandwich the dust-collection motor 6 (i.e. the dust-collection motor 6 is interposed between the batteries 3), a well-balanced arrangement is provided even though the dust-collection motor 6 is present.
In addition or in the alternative, because the notched part 29 is formed in the rear part of the main-body part 2 such that the rear part bottom surface is higher than the front part bottom surface of the main-body part 2, the rear part does not interfere with the floor surface when the front part of the main-body part 2 is lifted up to move the dust-collecting robot 1 as was discussed above, thereby increasing convenience when it is necessary to manually move the robot 1.
In the above-described embodiment, the rotation of the suction fan 26 produced by the dust-collection motor 6 generates a suction force that sucks in dust. However, in other embodiments of the present teachings, dust may be collected (drawn/swept into the robot 1) solely by the rotation of the main brush 14, the side brushes 17, etc., i.e. without provide such a motor, a fan, etc. for generating a suction (partial vacuum) force. In addition or in the alternative, the main brush 14 is not limited to one in which the rotary shaft is oriented in the left-right direction, and it is possible to configure the main brush 14 such that the rotary shaft is oriented in the up-down direction or is tilted, such as with a forward-tilted attitude, as will be further described in the following.
In the dust-collecting robot 1A of the modified embodiment, a forward portion of a dust-collection box 50 in the lower-side housing 8 is designed as a rising (vertical) part 52, which rises upward along a front wall of the dust-collection box 50. Furthermore, an upper end of the rising part 52 reaches a receiving port 51 located in a front surface of the dust-collection box 50. A guide part 53, which tilts downward in the front direction, is continuous with an upper end of the rise part 52. A front end of the guide part 53 is formed into a V-shape in plan view, wherein the center of the front end is located closer to the rear side than the left and right ends are, which makes it easy to scoop (sweep) up dust into the guide part 53.
Moreover, a support plate 54 is attached inside the main-body part 2 above and parallel to the guide part 53. A dust-collection path 55, which has a tilted shape and connects from a lower surface of the main-body part 2 to the receiving port 51 of the dust-collection box 50, is formed between the support plate 54 and the guide part 53. Furthermore, a pair of main brushes 56, 56 is respectively provided on the left and right of the guide part 53. The main brushes 56 comprise a drive unit 57, which comprises a drive motor 58 and a reduction gear 59 that reduces the rotational speed of the motor shaft of the motor 58. Furthermore, in each main brush 56, a discoidal brush base 61, which has two or more brushes 62 embedded in a conical shape on the outer circumference thereof, is coupled to a rotary shaft 60, which protrudes downward from the reduction gear 59. The drive unit 57 is assembled (mounted) onto the upper side of the support plate 54, and the brush bases 61 are located downward of the support plate 54. In addition, downward of the brush bases 61, a drive pulley 63 is coaxially coupled to the rotary shaft 60.
Thus, the brush bases 61 of each main brush 56 have a forward-tilted attitude that is parallel to the guide part 53 because they are assembled (mounted) onto the tilted support plate 54. In addition, the brushes 62 of the left and right main brushes 56 are located at a spacing (are spaced apart) such that they overlap the guide part 53 in plan view, and the brushes 62 protrude diagonally downward from the dust-collection path 55. Furthermore, the main brushes 56 rotate in rotational directions opposite one another as indicated by the arrows shown in
Furthermore, the side brushes 17 are provided on the bottom-surface cover 11 at both outer sides of the main brushes 56. The rotary shaft 18 of each of the side brushes 17 is provided with a follower pulley (not shown) on the upper side of the bottom-surface cover 11. The rotation of the rotary shaft 60 can be transmitted to the rotary shafts 18 via a belt (not shown), which is provided in a tensioned state between the follower pulleys and the drive pulley 63 provided on the rotary shaft 60 of the main brush 56.
Referring now to
Referring now to
In this manner, the dust-collecting robot 1A according to the above-mentioned modified example, which does not utilize a dust-collection motor (suction fan), likewise can use the batteries 3 designed for a power tool as the power supply. Consequently there is no need to prepare (design, manufacture) batteries that differ by model, versatility is improved, and costs and the time and labor of battery management are not incurred.
In all of the above-described embodiments and modified examples, two batteries (battery packs) 3 are utilized. However, in other aspects of the present teachings, it is also possible to use only one or three or more batteries (battery packs), as long as it/they is/are arranged with good left and right balance. In addition, the present teachings are equally applicable to robots in which the travel direction is the reverse of the above-described embodiments and modified examples. That is, the present teachings may be applied to self-propelled, dust-collecting robots wherein the batteries and the castors are located at the front part of the main-body part, and the suction port is located at the rear part of the main-body part.
In addition or in the alternative, the configuration of the batteries and the structure by which the batteries are mounted to the mounting parts likewise can be appropriately modified. For example, the battery (battery pack) can be designed to be inserted from the rear instead of from above. In addition or in the alternative, the engaging portions of the guide rails and the like can be provided in (on) the inner surface on the outer side in the radial direction instead of the inner surface on the inner side in the radial direction. In addition or in the alternative, the engaging portions can be provided on the inner surface along the radial direction. Furthermore, embodiments of the present teachings can also be designed such that the terminals contact one another by a simple plug-in structure instead of the rails and the guide rails that engage one another.
In addition or in the alternative, the batteries (battery packs) of the present teachings are not limited to batteries or battery packs designed to power a portable power tool that drives a tool accessory, such as a driver drill, a circular saw, a grinder, and an impact driver. The present teachings are also applicable to batteries or battery packs that are utilized with electrical equipment that does not employ a motor, such as a light, a lantern, a camera, a radio, a sensor, and the like, a tank-type dust collector with castors, such as a portable cleaner, a blower, or the like, and clothing, such as a heated jacket.
In addition or in the alternative, the number of castors is not limited to two, and it is also possible to use only one or three or more castors. Furthermore, the castors do not have to fit within the external shape (periphery) of the batteries in plan view as in the above-described embodiments. Instead, for example, the castors can also be arranged such that part or all of each castor juts out (protrudes or projects) from the external shape (periphery) of its corresponding battery in plan (top) view, as long as the castors are balanced on the left and right sides.
In addition or in the alternative, the cover body is not limited to a structure wherein the housing of the dust-collection box and the batteries open and close simultaneously. Instead, for example, it is also possible to provide separate cover bodies for the dust-collection box and the batteries.
In addition or in the alternative, to facilitate movement carried out by manually lifting up the front part of the main-body part, it is also possible (i) to form a hole, a recessed part, or the like in the lower surface of the main-body part that can be grasped with a finger, and/or (ii) to provide a grasping part, such as a band or a handle, in the upper surface of the main-body part, etc.
In the present teachings, the embodiments may alternately be referred to as an “autonomous robotic vacuum cleaner” or “autonomous robotic sweeper” or any of the other terms mentioned above.
Representative, non-limiting examples of the present invention were described above in detail with reference to the attached drawings, and additional examples are provided below. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Furthermore, each of the additional features and teachings disclosed above and below may be utilized separately or in conjunction with other features and teachings to provide improved self-propelled, dust-collecting robots, autonomous robotic vacuum cleaners, autonomous robotic sweepers, autonomous floor-cleaning robots, etc.
Moreover, combinations of features and steps disclosed in the above detailed description, as well as in the below additional examples, may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the invention. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
Although the above-described embodiments primarily concern autonomous floor cleaning robots capable of sweeping and/or vacuuming dust/dirt, the present teachings are equally applicable to autonomous floor cleaning robots capable of scrubbing and/or mopping floors by providing the robot with one or more of a liquid-dispensing device, one or more scrubbers, one or more mopping cloths and/or one or more squeegees.
Although some aspects of the present invention have been described in the context of a device or apparatus, it is to be understood that these aspects also represent a description of a corresponding method, so that a block or a component of a device or apparatus is also understood as a corresponding method step or as a feature of a method step. In an analogous manner, aspects which have been described in the context of or as a method step also represent a description of a corresponding block or detail or feature of a corresponding device.
Depending on certain implementation requirements, components of the exemplary embodiments, such as the controller 45 of the robot 1 and/or the microcontroller 66 of the battery (battery pack) 3, may be implemented in hardware and/or in software. The implementation can be performed using a digital storage medium, for example one or more of a ROM, a RAM, a PROM, an EPROM, an EEPROM or a flash memory, on which electronically readable control signals (programs and stored values) are stored, which interact or can interact with a programmable hardware component such that the respective method is performed.
The programmable hardware component can be formed by or comprised of one or more of a processor, a computer processor (CPU=central processing unit), a graphics processor (GPU=graphics processing unit), a computer, a computer system, an application-specific integrated circuit (ASIC), an integrated circuit (IC), a system-on-a-chip (SOC), a programmable logic element, a field programmable gate array (FGPA) and/or a microprocessor.
The digital storage medium can therefore be machine- or computer readable. Some exemplary embodiments thus comprise a data carrier or non-transient computer readable medium which includes electronically readable control signals capable of interacting with a programmable computer system or a programmable hardware component such that one of the methods described herein is performed. An exemplary embodiment is thus a data carrier (or a digital storage medium or a non-transient computer-readable medium) on which the program(s) for performing one of the methods described herein is (are) recorded.
In general, exemplary embodiments of the present teachings may be implemented as a program, firmware, computer program, or computer program product including a program, or as data, wherein the program code or the data is operative to perform one of the methods if the program runs on a processor (e.g., a microprocessor) or other programmable hardware component. The program code or the data can for example also be stored on a machine-readable carrier or data carrier. The program code or the data can be, among other things, source code, machine code, bytecode or another intermediate code.
A further exemplary embodiment is a data stream, a signal sequence, or a sequence of signals which represents the program for performing one of the methods described herein. The data stream, the signal sequence, or the sequence of signals can for example be configured to be transferred via a data communications connection, for example via the Internet or another network. Exemplary embodiments are thus also signal sequences which represent data, which are intended for transmission via a network or a data communications connection, wherein the data represent the program.
A program according to an exemplary embodiment can implement one of the methods during its performance, for example, such that the program reads storage locations or writes one or more data elements into these storage locations, wherein switching operations or other operations are induced in transistor structures, in amplifier structures, or in other electrical, optical, magnetic components, or components based on another functional principle. Correspondingly, data, values, sensor values, or other program information can be captured, determined, or measured by reading a storage location. By reading one or more storage locations, a program can therefore capture, determine or measure sizes, values, variable, and other information, as well as cause, induce, or perform an action by writing in one or more storage locations, as well as control other apparatuses, machines, and components, and thus for example also perform complex processes using displays, projectors, etc.
Additional embodiments of the present teachings include, but are not limited to:
1. A self-propelled, dust-collecting robot operable by a power tool battery capable of supplying electric power to a power tool.
2. A self-propelled, dust-collecting robot, comprising a main-body part comprising a dust-collection box; and a battery capable of being mounted in and removed from the main-body part, wherein the battery comprises a case, one or more battery cell built into the case, a discharge terminal, and a control circuit board that is built into the case and monitors for discharge abnormalities.
3. The self-propelled, dust-collecting robot according to above-mentioned embodiment 2, wherein a cover body, which is capable of simultaneously exposing the dust-collection box and the battery, is provided on the main-body part.
4. The self-propelled, dust-collecting robot according to above-mentioned embodiment 1 or 2, wherein the battery is provided with a pair of rails for coupling to a power tool; and an engaging portion, to which the rails can couple from an up-down direction, is formed on the main-body part.
5. The self-propelled, dust-collecting robot according to above-mentioned embodiment 4, wherein the engaging portion is provided such that, in plan view, it faces the outer side of the main-body part.
6. The self-propelled, dust-collecting robot according to any of the above-mentioned embodiments, wherein a plurality of the batteries is provided.
7. A battery capable of being used in a self-propelled, dust-collecting robot, a portable cleaner, and a tank-type dust collector with castors.
8. A battery capable of being used in a self-propelled, dust-collecting robot, a power tool that drives a tool accessory using a motor, and electrical equipment wherein a motor is not used.
9. A self-propelled, dust-collecting robot, comprising a main-body part; a dust-collection unit provided on the main-body part; and a plurality of batteries disposed inside the main-body part.
10. A self-propelled, dust-collecting robot, comprising a main-body part; a dust-collection unit provided on the main-body part; a battery disposed inside the main-body part; and a castor provided in a lower part of the main-body part, wherein the castor is disposed immediately below the battery.
11. The self-propelled, dust-collecting robot according to above-mentioned embodiment 10, wherein two of the batteries are disposed in the main-body part, either at a rear part or at a front part of the main-body part, and each of the batteries houses a plurality of cells inside a case; and two of the castors are disposed in the main-body part, either at the rear part or at the front part of the main-body part.
12. The self-propelled, dust-collecting robot according to above-mentioned embodiment 10 or 11, wherein a notched part, the rear part bottom surface of which is higher than the bottom surface of the front part of the main-body part, is formed in the rear part of the main-body part.
13. The self-propelled, dust-collecting robot according to any of the above-mentioned embodiments 9-12, wherein the dust-collection unit comprises a dust-collection motor; and the batteries are disposed such that they sandwich the dust-collection motor on the left and right thereof.
14. A self-propelled, dust-collecting robot, comprising a main-body part; a dust-collection unit provided in the main-body part; a battery disposed inside the main-body part; and a plurality of castors provided in the lower part of the main-body part.
Number | Date | Country | Kind |
---|---|---|---|
2014-205005 | Oct 2014 | JP | national |
2014-205006 | Oct 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5109566 | Kobayashi et al. | May 1992 | A |
5995884 | Allen et al. | Nov 1999 | A |
6553612 | Dyson | Apr 2003 | B1 |
6581239 | Dyson et al. | Jun 2003 | B1 |
7492124 | Johnson et al. | Feb 2009 | B2 |
7769490 | Abramson | Aug 2010 | B2 |
9532688 | Ebrahimi Afrouzi | Jan 2017 | B1 |
20030060928 | Abramson et al. | Mar 2003 | A1 |
20080052867 | Park | Mar 2008 | A1 |
20080062618 | Frank | Mar 2008 | A1 |
20080276407 | Schnittman et al. | Nov 2008 | A1 |
20080281470 | Gilbert, Jr. et al. | Nov 2008 | A1 |
20090307865 | Williamson | Dec 2009 | A1 |
20100088843 | Reed | Apr 2010 | A1 |
20120011668 | Schnittman et al. | Jan 2012 | A1 |
20120112689 | Sever | May 2012 | A1 |
20120265343 | Gilbert, Jr. et al. | Oct 2012 | A1 |
20130117952 | Schnittman et al. | May 2013 | A1 |
20150214758 | Toya et al. | Jul 2015 | A1 |
20150366133 | Nojiri et al. | Dec 2015 | A1 |
Number | Date | Country |
---|---|---|
69910252 | Jul 2004 | DE |
10 2011 004 319 | Aug 2012 | DE |
S63311923 | Dec 1988 | JP |
H02241423 | Sep 1990 | JP |
H0453515 | Feb 1992 | JP |
H0588472 | Dec 1993 | JP |
2002532178 | Oct 2002 | JP |
2002360479 | Dec 2002 | JP |
2002360480 | Dec 2002 | JP |
2006043302 | Feb 2006 | JP |
2008155041 | Jul 2008 | JP |
2013239259 | Nov 2013 | JP |
2014030484 | Feb 2014 | JP |
2014036750 | Feb 2014 | JP |
2014083241 | May 2014 | JP |
2014111190 | Jun 2014 | JP |
2014147904 | Aug 2014 | JP |
2014180501 | Sep 2014 | JP |
0036962 | Jun 2000 | WO |
WO 0038255 | Jun 2000 | WO |
2014021116 | Feb 2014 | WO |
2014119160 | Aug 2014 | WO |
2014119732 | Aug 2014 | WO |
2014155904 | Oct 2014 | WO |
Entry |
---|
Müheloses Gärtnem, Bosch-Gartengeräte 2013, Robert Bosch GmbH Power Tools, D-70745 Leinfelden Echterdingen (p. 69). |
Office Action from the German Patent Office dated Nov. 2, 2017 in related German application No. 10 2015 011 905.2, and translation thereof. |
iRobot® Roomba® 400 Series Owner's manual having created date of Mar. 29, 2010. |
iRobot® Roomba® 500 Series Owner's manual having created date of Mar. 22, 2010. |
iRobot® Roomba® 600 Series Owner's manual having created date of Sep. 20, 2012. |
iRobot® Roomba® 700 Series Owner's manual having created date of Dec. 17, 2012. |
iRobot® Roomba® 800 Series Owner's manual having created date of Mar. 7, 2014. |
Office Action from the Japanese Patent Office dated Oct. 31, 2017 in related Japanese application No. 2014-205005, and machine translation of substantive portions thereof. |
Office Action from the Japanese Patent Office dated Oct. 31, 2017 in related Japanese application No. 2014-205006, and machine translation of substantive portions thereof. |
Search Report from the Japanese Patent Office dated Sep. 14, 2017 in related Japanese application No. 2014-205005, and machine translation of substantive portions thereof. |
Search Report from the Japanese Patent Office dated Sep. 14, 2017 in related Japanese application No. 2014-205006, and machine translation of substantive portions thereof. |
Office Action from the Chinese Patent Office dated Dec. 28, 2018 in counterpart Chinese application No. 201510632139, and machine translation thereof. |
Search Report from the Chinese Patent Office dated Dec. 20, 2018 in counterpart Chinese application No. 201510632139. |
Office Action from the German Patent & Trademark Office dated Jun. 7, 2019 in counterpart German patent application No. 10 2015 011 905.2, including English translation thereof, examined claims 1-11 and English translation of the examined claims 1-11. |
Number | Date | Country | |
---|---|---|---|
20160095487 A1 | Apr 2016 | US |