The invention relates to a self-propelled ship. The invention relates in particular to a self-propelled ship assigned to navigation over a prescribed distance situated between a departure point and an arrival point. Such ships are for example marine or river ferries. The ship is for example of the ferry type or any other ship for transporting travelers or cargo.
One of the problems of self-propelled ships is their CO2 footprint and the cost of fossil fuels. In fact, ships usually operate with diesel engines. Numerous alternative systems to diesel engines are known for ships. Document WO 2005/012 079 describes a ship with photovoltaic cells arranged on a sail, as well as batteries and/or capacitors for storing the electricity collected by the cells. This ship is of the recreational sailboat type, without a diesel engine, and cannot be generalized to the scale of a large size ship such as a ferry in regular service. Document EP-B-1 341 694 concerns a ship equipped with a main Diesel engine and an electrical motor supplied with electricity by a generator set equipped with another Diesel engine. Document EP-A-1 531 125 describes a ship provided, for its propulsion, with an electric motor supplied with electricity by Diesel engines and by a fuel battery.
The invention seeks to obtain a ship that dispenses with internal combustion engines, partially or totally, for its propulsion. To this end, a first object of the invention is a self-propelled ship assigned to navigation over a prescribed distance situated between a departure point and an arrival point, the ship comprising at least a first shipboard electric network, at least one main electrical supply bus, propulsion means, at least one drive motor for driving said propulsion means, and supply means for supplying with electricity the first shipboard electric network and said at least one drive motor through said main electrical supply bus,
wherein
the supply means comprise at least
one set of electric capacitors having a capacitance sized so as to provide, at their nominal electrical charge, a ratio equal to at least 5% of both of the nominal supply of said at least one first shipboard electric network over the prescribed distance and of the nominal electrical supply of said at least one electrical drive motor allowing travel over the prescribed distance through said main electrical supply bus, and,
electrical connection means arranged on board the ship to connect the set of electric capacitors to another electric network located at the arrival point and/or departure point for the purpose of recharging the capacitors to their nominal charge and for supplying the first shipboard electric network during a stop at the arrival point and/or the departure point.
The invention also concerns a self-propelled ship assigned to navigation over a prescribed distance situated between a departure point and an arrival point, the ship comprising at least a first shipboard electric network, at least one main electrical supply bus, propulsion means, at least one drive motor for driving said propulsion means, and supply means for supplying with electricity the first shipboard electric network and said at least one drive motor through said main electrical supply bus,
wherein
the supply means comprise at least
one set of electric capacitors having a capacitance sized so as to provide, at their nominal electrical charge, a ratio equal to at least 25% of both of the nominal supply of said at least one first shipboard electric network over the prescribed distance and of the nominal electrical supply of said at least one electrical drive motor allowing travel over the prescribed distance through said main electrical supply bus, and,
electrical connection means arranged on board the ship to connect the set of electric capacitors to another electric network located at the arrival point and/or departure point for the purpose of recharging the capacitors to their nominal charge and for supplying the first shipboard electric network during a stop at the arrival point and/or the departure point.
The invention also relates to a self-propelled ship, the ship comprising at least a first shipboard electric network (5), at least one main electrical supply bus (11, 104), propulsion means (3), at least one drive motor (4, 1004) for driving said propulsion means (3), and supply means for supplying with electricity the first shipboard electric network (5) and said at least one drive motor (4, 1004) through said main electrical supply bus (11, 104),
wherein
the supply means comprise at least
one set (10) of electric capacitors having a capacitance sized so as to provide, at their nominal electrical charge, both of the nominal supply of said at least one first shipboard electric network (5) over a prescribed distance and of the nominal electrical supply of said at least one electrical drive motor (4, 1004) allowing travel over the prescribed distance through said main electrical supply bus (11, 104), and,
electrical connection means (25, 111) arranged on board the ship to connect the set (10) of electric capacitors to another electric network located at the arrival point and/or departure point of the ship for the purpose of recharging the capacitors to their nominal charge and for supplying the first shipboard electric network during a stop at the arrival point and/or the departure point.
The invention also relates to a self-propelled ship, the ship comprising at least a first shipboard electric network (5), at least one main electrical supply bus (11, 104), propulsion means (3), at least one drive motor (4, 1004) for driving said propulsion means (3), and supply means for supplying with electricity the first shipboard electric network (5) and said at least one drive motor (4, 1004) through said main electrical supply bus (11, 104),
wherein
the supply means comprise at least
one set of electric capacitors (10) having a capacitance sized so as to provide, at their nominal electrical charge, at least temporarily, both of the nominal supply of said at least one first shipboard electric network (5) and of the nominal electrical supply of said at least one electric drive motor (4, 1004) through said main electrical supply bus (11, 104), and
electrical connection means (25, 111) arranged on board the ship for connecting the set of electric capacitors (10) to another electric network located at an arrival point and/or at a departure point of the ship, for the purpose of recharging the capacitors to their nominal charge and to supply the first shipboard electric network (5) during a stop at the arrival point and/or at the departure point.
The invention also relates to a self-propelled ship, the ship comprising at least a first shipboard electric network (5), at least one main electrical supply bus (11, 104), propulsion means (3), at least one drive motor (4, 1004) for driving said propulsion means (3), and supply means for supplying with electricity the first shipboard electric network (5) and said at least one drive motor (4, 1004) through said main electrical supply bus (11, 104),
wherein
the supply means comprise at least
one set (10) of electric capacitors having a capacitance sized so as to provide, at their nominal electrical charge, both of the nominal supply of said at least one first shipboard electric network (5) and of the nominal electrical supply of said at least one electrical drive motor (4, 1004) through said main electrical supply bus (11, 104) for a translation speed of the ship less than or equal to a specified speed, which may be for example 5 knots, and,
electrical connection means (25, 111) arranged on board the ship to connect the set (10) of electric capacitors to another electric network located at an arrival point and/or a departure point of the ship for the purpose of recharging the capacitors to their nominal charge and for supplying the first shipboard electric network during a stop at the arrival point and/or the departure point.
For example, said at least one set of electric capacitors has a capacitance sized so as to provide, at their nominal electrical charge, 100% of both of the nominal supply of said at least one first shipboard electric network (5) and of the nominal electrical supply of said at least one electrical drive motor (4, 1004), allowing navigation where it is subject to an imposed specified speed limit, of the order of 5 knots for example, as for example in ports, port access channels (excepting local regulations) and in the 300 meter littoral strip (measured from the high water line), through said main electrical supply bus (11, 104).
According to embodiments of the invention:
The connection means on board the ship comprise conductors capable of being put into contact, during docking of the ship at the departure point and/or at the arrival point, with external conductors carried by mechanical means located at the departure point and/or at the arrival point for compensating differences in height, compensating for the distance between the ship and a dock at the departure and/or arrival point, and establishing electrical contact between the ship and the dock.
Or the connection means on board the ship comprise conductors carried by mechanical means arranged so as to compensate for differences in height between the ship and a dock at the departure and/or arrival point and to compensate for the distance between the ship and the dock, and arranged so as to be put into electrical contact, upon docking the ship at the departure point and/or at the arrival point, with electrical conductors provided on the dock.
The conductors of the ship's connection means are so arranged as to be put into contact, upon docking the ship at the departure point and/or at the arrival point, with external conductors carried by at least one pantograph located at the departure point and/or at the arrival point, the pantograph being capable of compensating for height differences, compensating for the distance between the ship and a dock at the departure and/or arrival point and establishing electrical contact between the ship and the dock.
The electrical connection means are provided on board the ship for connecting the set of electric capacitors to another electric network located at the arrival point and/or at the departure point, for the purpose of recharging the capacitors to their nominal charge and to supply the first shipboard electric network and said at least one electric drive motor during a stop at the arrival point and/or at the departure point.
The set of capacitors is of the supercapacitor type.
The supply means comprise at least one generator set for support and for emergency use driven by at least one internal combustion engine supplied from an on-board fuel reserve.
The set of electric capacitors has a capacitance sized so as to provide, at its nominal electrical charge, both a ratio equal to at least 50% of the nominal supply of said at least one shipboard electric network over the prescribed distance and of the nominal electrical supply of said at least one electric drive motor, allowing travel over the prescribed distance, through said main electrical supply bus.
The set of electric capacitors has a capacitance sized so as to provide, at their nominal electrical charge, both a ratio greater than or equal to 100% of the nominal supply of said at least one first shipboard electric network over the prescribed distance and of the nominal electrical supply of said at least one electric drive motor allowing travel over the prescribed distance, through said main electrical supply bus.
The set of electric capacitors has a capacitance sized to provide, at their nominal electrical charge, both a ratio greater than or equal to 130% of the nominal supply of said at least one first shipboard electric network over the prescribed distance and of the nominal electric supply of the at least one electric drive motor, allowing travel over the prescribed distance, through said main electrical supply bus.
The set of electric capacitors has a capacitance sized to provide, at their nominal electrical charge, both a ratio greater than or equal to 260% of the nominal supply of said at least one first shipboard electric network over the prescribed distance and of the nominal electric supply of the at least one electric drive motor, allowing travel over the prescribed distance, through said main electrical supply bus.
The set of electric capacitors has a capacitance sized so as to provide, at their nominal electrical charge, stored energy with a value greater than or equal to the following value Emin:
with
L=Waterline length of the ship's underwater hull in meters,
B=Waterline width of the ship's underwater hull in meters,
T=Full load draft of the ship in meters,
V=the highest service speed, in meters per second, that the ship can maintain when it is at its maximum displacement,
ρ=mass density of the water in ton/m3,
DSPL=Full load displacement of the ship in m3,
cb=Block coefficient=DSPL/(L×B×T),
Cwp=Buoyancy coefficient,
Aw=Full load waterline area in m2,
Cwp=Aw/(L×B),
Cm=Main section coefficient=Transverse main section/(B×T);
Transverse main section=greatest transverse section of the ship below the waterline in m2 at full load,
D=prescribed distance in meters,
Emin in Joules being defined for each hull of the ship, and the total stored energy, in the case of a multihull ship, being equal to the sum of the energies defined for each hull.
The set of capacitors is in the form of a plurality of modules, each module containing supercapacitor type components so that each module forms an equivalent capacitance greater than 10 F.
The set of capacitors is in the form of a plurality of modules, each module containing supercapacitor type components so that each module has a nominal charge voltage of at least 25 V.
The set of capacitors is in the form of a plurality of modules, each module containing supercapacitor type components so that each module has a nominal charge voltage of at least 100 V.
The supercapacitors have a nominal allowable number of cycles greater than or equal to 100,000.
The set of capacitors comprises means for connecting several modules in series.
The set of capacitors comprises a plurality of branches, means for connecting the branches in parallel, each branch comprising several modules capable of being connected in series.
The ship is provided with electric circuit means sized to allow the set of capacitors's nominal charge to be reached from zero charge in a time less than or equal to 10 minutes.
The set of capacitors is connected to said direct current bus connected to the first DC side of at least one DC-AC converter, the AC side of which is connected to said at least one electric drive motor and to said first shipboard electric network to supply them with alternating current, the DC bus being also connected to the first DC side of at least one other DC-AC converter, the second AC side of which is connected to input conductors for connection to an external source of alternating current for recharging the capacitors.
Or the set of capacitors is connected to the first DC side of at least a first DC-DC converter, the second DC side of which is connected to said direct current bus connected to the first DC side of at least one DC-AC converter, the AC side of which is connected to said at least one electric drive motor and to said first shipboard electric network to supply them with alternating current, the direct current bus being also connected to the first DC side of at least one DC-DC converter, the second DC side of which is connected to input conductors for connection to an external source of direct current for recharging the capacitors.
Or the set of capacitors is connected to the first DC side of at least a first DC-AC converter, the second AC side of which is connected to said alternating current bus, the set of capacitors being also connected to the first DC side of at least a second DC-AC converter, the second AC side of which is connected to input conductors for connection to an external source of alternating current for recharging the capacitors and supplying the shipboard network, the alternating current bus being directly connected to the first shipboard electric network, the alternating current bus being connected to the first AC side of at least one AC-AC converter, the second AC side of which is connected to said at least one electric drive motor to supply it with alternating current.
Or the set of capacitors is connected to said direct current bus connected to the first DC input side of at least one DC-DC converter, the second DC output side of which is connected to said at least one DC electric drive motor to supply it with direct current, the direct current bus also being connected to the first DC side of at least a first DC-AC converter, the AC side of which is connected to said first shipboard electric network to supply it with alternating current, the direct current bus also being connected to the first DC side of at least one other DC-AC converter, the second AC side of which is connected to input conductors for connection to an external source of alternating current for recharging the capacitors.
Or the set of capacitors is connected to the first DC side of at least a first DC-AC converter, the second AC side of which is connected to said alternating current bus, the set of capacitors also being connected to the first DC side of at least a second DC-AC converter, the second AC side of which is connected to input conductors for connection to an external source of alternating current for recharging the capacitors and supplying the shipboard network, the alternating current bus being connected to the first AC side of at least one AC-DC converter, the second DC side of which is connected to said at least one DC electric drive motor to supply it with direct current.
Or the set of capacitors (10) is connected to the first DC side (42) of at least one DC-DC converter (41), the second DC side (43) of which is connected to said direct current bus (11) connected to the first DC side (12, 15, 18) of at least one DC-AC converter (13, 16, 19), the AC side (14, 17, 20) of which is connected to said at least one electric drive motor (4) and to said first shipboard electric network (5) to supply them with alternating current, the direct current bus (11) also being connected to the first DC side (22) of at least one other DC-AC converter (23), the second AC side (24) of which is connected to input conductors (25) for connection to an external source (100, S) of alternating current for recharging the capacitors.
Or the set of capacitors (10) is connected to the first DC side (42) of at least one DC-DC converter (41), the second DC side (43) of which is connected to said direct current bus (11) connected to the first DC input side of at least one DC-DC converter (1005, 1006), the second DC output side of which is connected to said at least one DC electric drive motor (1004) to supply it with direct current, the direct current bus (11) also being connected to the first DC side (12) of at least a first DC-AC converter (13), the AC side (14) of which is connected to said first shipboard electric network (5) to supply it with alternating current, the direct current bus (11) also being connected to the first DC side (22) of at least one other DC-AC converter (23), the second AC side (24) of which is connected to input conductors (25) for connection to an external source of alternating current (100, S) for recharging the capacitors.
Or the bus (11) carries direct current; the set of capacitors (10) is connected to the bus (11) through at least one DC-DC converter (41).
Said electrical connection means on board the ship are located near its docking area and comprise conductors capable of being put into contact with complementary conductors remaining at the departure point and/or at the arrival point, for recharging the capacitors.
The ship's so-called quick connectors are arranged so as to be put into contact, upon docking the ship, with said external electrical conductors carried by an arm and/or a mobile pantograph located at the departure point and/or at the arrival point.
The pantographs held in position near the departure point are capable of being put into contact, upon docking the ship at the departure point and/or at the arrival point, with said bare conductors of connection means (catenaries) located on posts positioned near the docking points on the ship.
Or the so-called quick connectors of the ship are carried on a mechanical arm and/or a mobile pantograph and arranged so as to be put into contact, upon docking the ship, with said external conductors located at the departure point and/or at the arrival point.
The invention will be better understood upon reading the description that follows, presented only as a non-limiting example, with reference to the annexed drawings, in which:
In the figures, ship 1 comprises a hull 2 and means 3 for propulsion through the water, such as for example one or more propellers 3. Propulsion means 3 are set in motion by one or more electric motors 4. Ship 1 also comprises a shipboard electric network 5 comprising for example lighting 5c, heating 5d, safety and navigation systems, machinery controls, living spaces and all the electrical installations on board the ship other than the motor(s) 4 used for propulsion.
According to the invention, the shipboard electric network 5 and the electric propulsion motor(s) 4 are supplied with electricity from an on-board set 10 of electric capacitors and optionally by engine-generator sets. The electrical capacitance of the set 10 is sized to be able to provide from 5 to 100% of the nominal capacitance corresponding to the propulsion of the ship 1 over a prescribed distance corresponding to travel between a departure point and an arrival point, this arrival point being either different from or identical to the departure point.
The electrical capacitance and the nominal electrical charge of the set of capacitors 10 are calculated so as to provide a ratio R of from 5 to 100% endurance in electricity supply to the ship's propulsion motor(s) 4 and to provide the electricity consumed during the trip by the shipboard electric network 5. Generally, 5%≦R≦100%. More particularly, R≧25%, or R≧50%. For greater safety, 100%≦R≦130% or 130%≦R≦260%, or 100%≦R≦260%, or R≧260%, considering that 100% corresponds to a one-way trip from the departure point to the arrival point or a return trip from the arrival point to the departure point, 30% to a one-way trip safety margin, 200% to a round trip and 60% to a safety margin for a round trip.
In particular, the set of capacitors 10 comprises supercapacitor type components capable of being very rapidly recharged during the limited time available during the stops, then being slowly discharged during the crossing from the departure point and/or the arrival point. The capacitors in set 10 are for example grouped into several distinct modules, each having a distinct outer case. Set 10 thus comprises for example several banks of supercapacitors.
A sizing example for a ship assigned to traveling a fixed prescribed distance is the following:
for a ferry of 2,300 tons and about 100 meters long, having to transport up to 350 passengers, 115 cars and 10 heavy trucks over a prescribed distance of 2 to 3 nautical miles at a speed of about 12 to 13 knots, a one-way trip over this prescribed distance requires an energy of 185 kWh;
to take wind, waves and maneuvers at the departure and at the arrival point into account, a margin of 30% is added, which gives a nominal energy to be stored in the capacitors of 240 kWh;
the voltage of the electric motor(s) 4 is from 500 to 1,000 V, typically 690 V;
2,650 capacitor modules are used to make up the set 10, each module having a capacitance of 63 F, the modules having an equivalent electrical capacitance of 2,520 F; each module has a nominal voltage of 125 V; these capacitor modules have a weight of 150 tons out of the 2,300 tons of the ferry.
The supercapacitor modules are for instance modules with the catalog number BMOD0063-125V from the firm MAXWELL TECHNOLOGIES, each having a nominal capacitance of 63 F and a nominal operating voltage of 125 V, based on BOOSTCAP BCAP3000 supercapacitors having a capacitance of 3,000 F and an operating voltage of 2.7 V.
This type of capacitor can be charged to its nominal charge voltage in about 5 minutes. This stop period at the departure point and at the arrival point can be used for loading and unloading of passengers and vehicles.
This sizing takes into account about 12 minutes' travel between the departure point and the arrival point, and of a total of 2 to 3 minutes of maneuver time for docking at the departure point and at the arrival point.
This examplary set of capacitors 10 allows a complete cycle of 20 minutes to be completed, allowing travel over the prescribed distance of 2 to 3 miles and recharging of the capacitors for undertaking a new cycle. Of course, the ship can be other than a ship assigned to travel over a prescribed distance.
Of course, the capacitors could be used to travel only a part of the distance, the rest of the distance being traveled while supplied from one or more Diesel engines provided on the ship. A system can be provided on the ship for switching between supply by the set of capacitors 10 and supply by Diesel engine(s). One possibility in particular is to travel a port entrance distance and/or departure distance from port, that is in the zone near the port, by being supplied uniquely from the set of capacitors 10, to avoid pollution due to Diesel engines. This zone extends for example less than a nautical mile from the port, for example about 0.3 nautical miles. The set of capacitors 10 can for example be used for supply at low translation speeds, for example less than a prescribed speed, being possibly of the order of 5 knots, which corresponds generally to the speed limit in ports, port access channels and the littoral strip.
In the embodiment of
The direct-current bus 11 is also connected on the ship 1 by electrical conductors 21 to the first DC side 22 of a fourth DC-AC converter 23, the second AC side 24 of which is connected to second electrical conductors 25 carrying alternating current. These conductors 25 are for connection to a source of alternating current when the ship is at the departure point and/or arrival point.
To this effect, the departure point and/or arrival point, which comprises for instance a dock, comprises a shore electric network S capable of providing alternating electrical current over external output conductors 100 not incorporated into the ship. When the ship is stopped at the departure point and/or at the arrival point equipped with these output conductors 100, conductors 25 are connected to the output conductors 100 to receive alternating current from the source located at that departure point and/or at that arrival point.
In the embodiment of
The connection means located at the departure point and/or at the arrival point comprises a means 202, in the form of a post 202 for example, which supports at least one pantograph 203. For example, in
The ship's strut 140 supports a means for connecting conductors 25, 111 to pantograph 204 upon docking. These connection means are constituted, for example, of two bare and separate conductors (catenaries) 130, 131 tightened in front of strut 140 located at the front and rear of the ship, allowing conductors 204 of pantograph 203 to slide on conductors 130, 131 and to compensate the motion of ship 1 due to its loading and the motions of the water's surface. Bare conductors 130 and 131 extend over a range 132 having a prescribed height, so that pantograph conductors 204 may rise and fall within this height range 132 in compliance with the ship's motions. The pantograph makes possible a horizontal displacement of these conductors 204 with respect to stanchion 202 by constraining its conductors 204 to be applied to conductors 130 and 131, in compliance with the ship's motions. The pantograph also gives its conductors 204 a degree of freedom in height with respect to stanchion 202, in compliance with the ship's motions.
Once the boat has docked, the conductors 130 and 131 of ship 1 are constantly in contact with conductors 204 of pantograph 203 for recharging the set of capacitors 10 for a prescribed time from source S. The alternating current supplied by source S to conductors 25, 111 is high voltage alternating current with for example an RMS voltage on the order of 20,000 V. The pantograph allows adjustment to the fore and aft motions of the ship, and an adjustment to water motion. Posts 202 are for example provided on a lateral extension 205 of dock 207. For example, two lateral extensions 205 and 206 are provided, between which is the loading and unloading zone 207 on the dock for passengers and/or vehicles, the distance between the two extensions 205 and 206 being greater than the width of the ship at its stern and/or at its bow for docking by the stern or by the bow to dock 207.
In another embodiment, the pantograph described above could be provided on the ship, conductors 25 or 111 being connected on the ship to conductors 204 of pantograph 203, and conductors 130, 131 being connected to current source S and being provided at the departure point and/or at the arrival point. In another embodiment, connection means 25, 111 and 100 could also be in the form of a robot or of a mechanical arm on the ship and/or on the dock.
The supercapacitors, or ultracapacitors or modules used have an allowable number of cycles greater than or equal to 100,000, even 500,000 or 1,000,000. The supercapacitors used in set 10 have the advantage of a large number of possible working charge and discharge cycles, which is one million in the sizing example given above. This improves the life of the ship's electrical supply. Thus, in the case of a ferry which has to carry out 25 round trips per day, or 50 crossings, the life of the set of capacitors is about 30 years.
The supercapacitors, or ultracapacitors or modules used are used with an on-board electrical circuit sized for the ship allowing a nominal charge in a time less than or equal to 10 minutes, even less than or equal to 5 minutes or 3 minutes, so that charging can be carried out during a stop at the departure point and/or at the arrival point. The electrical circuit at the departure point and/or the arrival point is also sized to allow this charging time, with a transformer adequately sized for reaching the connection means.
The modules are for example arranged in series to reach a required full-charge voltage of for example 960 V DC in the numerical example given above, where 8 modules are arranged in series, each contributing 120 to 125V. For example, at least two or three modules are in series. Several branches, with at least two or three modules in series in each branch, are for example arranged in parallel in set 10, for example 320 branches of 8 modules each in series in the numerical example above.
The connection means described with reference to the figures ensures rapid connection of the ship for recharging the capacitors. In one embodiment, the ship comprises at least one diesel engine for support and for emergency use, and a fuel reserve sufficient for conveying and for dealing with hazards at sea.
Under normal navigation conditions over a prescribed crossing between a departure point and an arrival point, the set of supercapacitors 10 can be sized to provide the total energy source needed for the crossing. The diesel engine can be used for support or for emergency supply for the set (10), the power bus 11 or 104, as well as the ship's shipboard system 5, but it is not the sole main energy source. Depending on the embodiment, the ship is also equipped with at least one generator set which can supply power bus 11 and shipboard electric network 5.
Compared with a ship propelled by diesel engines based on fossil fuels, the ship can have as a main energy source over prescribed crossings electricity provided by the dock. This will considerably reduce the CO2 footprint of the ship and will considerably reduce the fuel costs for the Diesel engine. According to the invention, the supply means comprise a set (10) of electrical capacitors having a capacitance sized to provide, at their nominal charge, at least 25% of the energy needs of the ship over the prescribed distance.
Upon docking at the port, the ship connects itself to another electric network located at the arrival point and/or at the departure point for the purpose of recharging the capacitors to their nominal charge and to supply power bus 11 or 104 and shipboard electric network 5. In the foregoing, the set of capacitors 10 can be connected to the rest of the electrical circuit by at least one DC-DC converter.
The embodiment of
The embodiment of
Number | Date | Country | Kind |
---|---|---|---|
0857681 | Nov 2008 | FR | national |
This application is a National Phase Entry of International Application No. PCT/EP2009/064832, filed on Nov. 9, 2009, which claims priority to French Application 0857681, filed on Nov. 13, 2008, both of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/064832 | 11/9/2009 | WO | 00 | 12/6/2010 |