The present invention belongs to the field of heat exchange apparatuses, and more specifically to machines for heat exchange between fluids having the same or different characteristics, applicable in different sectors, such as the food sector, pharmaceutical sector, health sector, etc.
The main object of the present invention is a heat exchange unit which fundamentally stands out because it provides a self-pumping effect and keeps the exchange surface clean at all times, improving the heat transfer coefficient and allowing a substantial reduction in head losses through its inner and outer tubes.
Machines for heat exchange between fluids which generally have at least one inner tube through which the “product fluid”, i.e., fluid to be heated or cooled, circulates and an outer tube or shell, through which the “service fluid”, i.e., heat transfer fluid, circulates are known today.
More specifically, heat exchangers the inner conduits of which are provided with cleaning means, thus providing a self-cleaning effect on their inner surface and allowing maintenance and a prolonged service life of said heat exchangers, reducing the dead time thereof, are known in the current state of the art. An example of the aforementioned exchangers can be found in Spanish patent application ES2158752. Nevertheless, current machines for heat exchange between fluids have several problems and drawbacks among which the following stand out:
The present invention solves the aforementioned drawbacks by providing a self-pumping heat exchange unit which successfully reduces head loss through its conduits, substantially optimizing the heat transfer coefficient, and also allowing regulating and obtaining different pumping flow rates for the product fluid, i.e., fluid to be heated or cooled.
More particularly, the heat exchange unit object of the invention is of the type comprising an outer shell provided with an inlet and an outlet for a “service” fluid, i.e., a heat carrier fluid, being able to be glycol or cold water vapor, thermal oil, etc.; at least one hollow inner tube housed inside the outer shell and also linked to an inlet and an outlet for a product fluid, i.e., fluid to be heated or cooled; an elongated rotary rod arranged inside the at least one inner tube and having cleaning means for cleaning the inner wall of the at least one inner tube
Therefore, the heat exchange unit described herein stands out fundamentally because it additionally comprises: scraping elements linked to the rotary rod and suitable for scraping and detaching the product fluid accumulated or fixed on the inner wall of the at least one inner tube; and an endless spiral also linked to the rotary rod, dimensionally suitable for running along and surrounding the rod longitudinally through the spaces existing between the scraping elements, said endless spiral being suitable for displacement of the product fluid circulating through the at least one inner tube, generating a self-pumping effect.
The scraping elements preferably have an elongated planar configuration, thus allowing covering the entire the inner surface of the inner tubes, increasing cleaning efficiency.
According to a preferred embodiment, the heat exchange unit comprises three inner tubes. So by means of varying the rotational speed of the rods existing in the inner tubes, and therefore of the endless spiral, it is possible to achieve different pumping flow rates for the product fluid circulating through said inner tubes, which allows improving the heat transfer coefficient and reducing the head losses generated by friction of the actual inner walls of the tubes.
On the other hand, in relation to the drive of the rotational movement of each of the rotary rods, the arrangement of a geared motor connected through a central shaft with a main gear to which secondary gears connected with the ends of each of the rotary rods are linked, has been envisaged. Integral movement and synchronized rotation of the rods are thus achieved. The aforementioned main gear is also preferably made of stainless steel, whereas the secondary gears are manufactured from a plastic material, thus preventing the irritating noises produced by the transmissions of the gears, while at the same time said secondary gears are a fuse element as a means for protecting against surge currents.
Finally, it must be pointed out that the heat exchange unit herein described has been envisaged to be applicable in the food sector, health sector, environmental sector or industrial sector. It can be also used as a regenerative unit, i.e., using one and the same product fluid in both parts of the unit, namely, the shell and the inner tubes, thus recovering the actual energy of the product fluid.
Therefore, the present invention provides a heat exchange unit which, in addition to efficiently removing residues from the inner wall of the tubes, reducing head loss and substantially improving the heat transfer coefficient, also stands out for obtaining a “self-pumping effect” of the product fluid circulating through said inner tubes, which makes it possible for the requirements of the outer pump to be lower, even to the extent of being able to dispense with said outer pump in some cases, being a more efficient, economical and viable alternative solution than the self-cleaning systems of current heat exchangers.
To complement the description that is being made and for the purpose of aiding to better understand the features of the invention according to a preferred practical embodiment thereof, a set of drawings is attached as an integral part of said description in which the following has been depicted with an illustrative and non-limiting character:
A preferred embodiment is described below with reference to the aforementioned drawings, without this limiting or reducing the scope of protection of the present invention.
Furthermore, as can be seen in
Said
Finally, the improvements and advantages obtained by means of the heat exchange unit of the present invention must be mentioned:
Number | Date | Country | Kind |
---|---|---|---|
P201330088 | Jan 2013 | ES | national |