A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the United States Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more implementations relate generally to fire sprinkler systems, and some embodiments relate to a self-recharging fire sprinkler system.
A fire sprinkler system may be “charged”, e.g., filled to a predefined water pressure. After a fire sprinkler system is charged, the water pressure may drop over time due to incremental leaks in the piping system and/or through backflow through a valve, such as an anti reverse check valve. If the water pressure falls too low, a fire pump controller may respond as if a fire sprinkler were opened—the fire pump may be activated to pump water to the sprinkler heads and an alarm may signal a remote monitoring station (to notify qualified personnel of an alarm monitoring service that the fire pump (e.g., the main fire pump) has operated into a run condition). The fire pump may be set so that it can only be stopped via the manual stop feature located on the door of the fire pump controller. Service personnel may be dispatched to manually stop the fire pump using this stop feature. To avoid this type of “false” alarms (specifically alarms triggered by leakage as opposed to an open sprinkler head), the fire sprinkler system may be serviced regularly, say weekly, to replenish the water pressure.
The frequency of service to avoid the type of false alarms described above may be reduced by installing a “jockey pump” (also called a “pressure maintenance pump”) in the fire sprinkler system. However, the presence of this additional pump in the fire sprinkler system may increase the chance of a pump failure in the fire sprinkler system, and may be another component with moving parts that may need to be replaced or serviced over time (not to mention the additional pipe, valves, fittings, and electrical wiring required for the installation of the additional pump, which all may be new points of failure for the fire sprinkler system).
Also, although a jockey pump may output a fraction of the pumping capacity as the fire pump (say 10%); the total cost for adding the jockey pump may be a significant portion of the total cost of some fire sprinkler systems. Fire sprinkler systems may include 5 to 700 horsepower fire pumps ranging from 50 gallon a minute to 5000 gallons a minute. In a small fire sprinkler system, such as a residential fire sprinkler system having a 5-10 horsepower fire pump with a capability of 50 to 200 gallons a minute, the additional of the jockey pump can increase the total cost of a new system by as much as 20% (besides possible additions in repair/replacement costs related to the additional pump).
The included drawings are for illustrative purposes and serve to provide examples of possible structures and operations for the disclosed inventive systems, apparatus, methods and computer-readable storage media. These drawings in no way limit any changes in form and detail that may be made by one skilled in the art without departing from the spirit and scope of the disclosed implementations.
Examples of systems, apparatus, computer-readable storage media, and methods according to the disclosed implementations are described in this section. These examples are being provided solely to add context and aid in the understanding of the disclosed implementations. It will thus be apparent to one skilled in the art that the disclosed implementations may be practiced without some or all of the specific details provided. In other instances, certain process or method operations, also referred to herein as “blocks,” have not been described in detail in order to avoid unnecessarily obscuring the disclosed implementations. Other implementations and applications also are possible, and as such, the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific implementations. Although these disclosed implementations are described in sufficient detail to enable one skilled in the art to practice the implementations, it is to be understood that these examples are not limiting, such that other implementations may be used and changes may be made to the disclosed implementations without departing from their spirit and scope. For example, the blocks of the methods shown and described herein are not necessarily performed in the order indicated in some other implementations. Additionally, in some other implementations, the disclosed methods may include more or fewer blocks than are described. As another example, some blocks described herein as separate blocks may be combined in some other implementations. Conversely, what may be described herein as a single block may be implemented in multiple blocks in some other implementations. Additionally, the conjunction “or” is intended herein in the inclusive sense where appropriate unless otherwise indicated; that is, the phrase “A, B or C” is intended to include the possibilities of “A,” “B,” “C,” “A and B,” “B and C,” “A and C” and “A, B and C.”
Some implementations described and referenced herein are directed to systems, apparatus, computer-implemented methods and computer-readable storage media for self-recharging fire sprinkler system.
Some examples include circuitry such as a processor to control self-charging by a fire sprinkler system. The circuitry may be integrated into the fire pump controller, or alternatively the circuitry may be located in a separate electronic device to control operations of the fire pump controller. The circuitry may control operations of the fire pump controller and/or may directly or indirectly control the fire pump to charge the fire sprinkler system without requiring the installation of a separate/additional pump (e.g., without a jockey pump) and/or without requiring a service call for every recharging of the fire sprinkler system. False alarms due to a drop in water pressure may be avoided inexpensively and in some examples without the use of additional moving parts and/or plumbing that may add points of failure to a fire sprinkler system.
The circuitry may monitor the rate of change when system pressure drops. If the rate of change is slow, indicating a slow leak and not a true system demand (e.g., open sprinkler head), the circuitry may command the fire pump controller to activate the fire pump to start, omit generation or transmission of a signal for the alarm, and automatically stop after a short time period as long as the system pressure has been raised above a threshold, such as at least to a predefined stop value. If the system pressure drops, and the rate of change is rapid, indicating a true system demand (e.g., an open sprinkler head due to, for instance, a fire), the one or more operations may be bypassed which may result in the fire pump starting, the pump run alarm output being activated (fire pump may be stopped via the manual stop feature on the fire pump controller door and/or the pump can stop automatically after a user selectable 10 minute minimum running time as long as the system stop pressure requirement has been met).
In some embodiments, a system to self-charge a fire sprinkler system may include a timer to begin counting at a predefined event, such as when discharge pressure feedback is falling and drops below the predefined stop value. The timer may count an amount time from this event until the feedback drops below a predefined start value. In some embodiments, if the timer operates for a predetermined duration, say 10-30 minutes, prior to a time that water pressure of the fire sprinkler system reaches the predefined start value, then the circuitry may initiate a system recharge.
In a system recharge, the circuitry may transmit a control signal to the fire pump and/or its controller to cause the fire pump to run for a minimum recharge time (a minimum recharge time may be a predefined value for instance 30 seconds, selectable at say installation or service, that may define the minimum fire pump run time for a system recharge). The circuitry may cause the fire pump to stop so long as the fire pump has run for at least the minimum recharge time and a measurement of the water pressure is at least equal to a threshold (such as the predefined stop value).
For a typical system recharge, the pump run alarm output may not activate. However, the circuitry may cause the pump run alarm output to activate if the threshold water pressure is not met at a predetermined time (such as at the end of the minimum recharge time). The circuitry may record a first value in an event log (e.g., system recharge) in the case that the threshold pressure is reached at the predetermined time.
The electronic device 25 may include a memory 26 to store settings for the fire sprinkler system 100. The memory 26 may be a same memory to store instructions executable to transform a general purpose processor into the processor 11 (which may be a special purpose processing device), or may include a separate memory such as one or more registers. The memory 26 may store a first predetermined stop value 1 and a second predetermined start value 2 (e.g., pressure values). The second predetermined start value 2 may be a pressure at which the fire pump 15 is to start. The first predetermined stop value 1 may be any value in a range between the predetermined start value 2 and a maximum pressure capability of the fire sprinklers 17. The memory 26 memory 16 may also store a value 3 (e.g., a time value and/or a count value) to be compared with a count of the counter 12. The memory 26 may also store a minimum recharge time 4. Some or all of the values 1-4 may be user selectable in various embodiments. The memory 26 may also include an event log 5 to store logging data generated by the processor 11.
In some examples, the processor 11 may be configured to initiate the counter 12 after or once a fire sprinkler system 100 is charged to a water pressure at least equal to the predefined stop value 1. Various start points for the counter 12 are possible and practical (e.g., a timer may be started responsive to completing a charging/re-charging of the fire sprinkler system 100, detecting water pressure dropping below the predetermined stop value 2, etc.) A event or condition for starting the counter 12 may be selected to determine a rate of change of the water pressure.
The processor 11 may be configured to (after starting the count) at intervals, e.g., periodically, obtain water pressure measurements 21 from a pressure sensor (not shown) to measure water pressure in plumbing/piping (e.g., between the check valve 18 and the sprinkler heads). The processor 11 may be configured to monitor the measurements 21 to identify any measurement that is not greater than a threshold (e.g., less than the second predefined start value).
The processor 11 may be configured to identify a value of the count in response to identifying one of the measurements 21 that is not greater than the second predefined start value 2. The processor 11 may be configured to compare the identified value to the value 3 and initiate a system recharge based on the comparison. The comparison is to indicate whether a rate of change of the water pressure is greater than a threshold (in which case the processor 11 may bypass a system recharge). In some embodiments, if the identified value is greater than the value 3 (which may be associated with a slow leak), the processor 11 may initiate the system recharge to attempt to recharge the fire sprinkler system 100.
The processor 11 may initiate a system recharge by commanding the fire pump 15 to activate. In some embodiments, the processor 11 may perform this commanding by transmitting a control signal to the fire pump controller to cause the controller to activate the fire pump (e.g., assert a pump on signal 22), in some embodiments. During the system recharge, the processor 11 may obtain one or more additional water pressure measurements from the sensor (e.g., obtain at least one water pressure measurement after the fire pump 15 is active for a duration corresponding to the value 4). The processor 11 may compare the additional measurement to a threshold such as the first predetermined stop value 1, and so long as the threshold is met, may allow the fire pump 15 to deactivate (in some examples, the processor 11 may stop commanding the fire pump controller to assert the pump on signal 22, causing the signal 22 to be discontinued). The processor 11 may add a recharge event entry 6 to the log 5 to record that a system recharge was successfully performed. The entry 6 may indicate various characteristics of the recharge event (for instance, the count, the time of start and/or completion of the event, measurements obtained during and/or before the event, or the like, or combinations thereof).
In contrast, if the additional measurement does not reach the threshold (e.g., is less than the predetermined stop value 1), the processor 11 may transmit a new signal to the fire pump controller and/or may not stop commanding the fire pump controller to assert the pump on signal 22. The processor 11 may cause the fire pump controller to issue an alarm, such as a pump run alarm. The fire pump 15 may run for a selectable minimum duration and/or until manually stopped. The processor 11 may enter a different type of entry into the log (e.g., an entry for a fire pump run/alarm event entry).
In the example above, circuitry of an electronic device integrated or external to the fire pump controller is to signal the fire pump controller (e.g., circuitry of the fire pump controller) to assert a pump on signal to activate the fire pump. In other examples, it may be possible and practical to manufacture an intelligent fire pump controller natively including circuitry that is to directly perform operations similar to some of the operations of the example fire sprinkler system 100. Accordingly, in some embodiments, a component that determines whether to perform a system recharge may be a same component asserts a pump on signal to the fire pump. In other examples, one component may generate and transmit a signal that is passed through by another component to the fire pump. In yet other examples, one component may generate a first signal that is transmitted to another component to cause it to generate a second signal (e.g., a fire pump assert signal) and transmit the second signal to a fire pump. Any of these components may include circuitry such as a general purpose processor to execute stored instructions, a field programmable gate array, or the like, or combinations thereof.
If the rate of change is not greater than the threshold, then in block 208 the fire sprinkler system 100 may initiate a system recharge in which fire pump 15 (
If the rate of change is greater than the threshold from the determination of block 202, then in block 205 the fire sprinkler system 100 may bypass the system recharge. The fire sprinkler system 100 may trigger an alarm and may run the fire pump 15 for a minimum amount of time and/or until stopped (e.g., manually stopped). Also, if the fire sprinkler system 100 determines, in block 209, that the water pressure is not recharged, then the fire sprinkler system 100 may in block 206 trigger the alarm and may run the fire pump 15 for additional time (up to for instance the minimum amount of time) and/or until stopped (e.g., manually stopped). The minimum amount of time in block 206 may be different (e.g., greater than) a minimum amount of time for running the pump in block 209.
The fire pump controller may check water pressure measurements 321 similar to how the processor 11 (
It will be obvious to those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.
Most of the equipment discussed above comprises hardware and associated software. For example, the typical self-charging fire sprinkler system is likely to include one or more processors and software executable on those processors to carry out the operations described. We use the term software herein in its commonly understood sense to refer to programs or routines (subroutines, objects, plug-ins, etc.), as well as data, usable by a machine or processor. As is well known, computer programs generally comprise instructions that are stored in machine-readable or computer-readable storage media. Some embodiments of the present invention may include executable programs or instructions that are stored in machine-readable or computer-readable storage media, such as a digital memory. We do not imply that a “computer” in the conventional sense is required in any particular embodiment. For example, various processors, embedded or otherwise, may be used in equipment such as the components described herein.
Memory for storing software again is well known. In some embodiments, memory associated with a given processor may be stored in the same physical device as the processor (“on-board” memory); for example, RAM or FLASH memory disposed within an integrated circuit microprocessor or the like. In other examples, the memory comprises an independent device, such as an external disk drive, storage array, or portable FLASH key fob. In such cases, the memory becomes “associated” with the digital processor when the two are operatively coupled together, or in communication with each other, for example by an I/O port, network connection, etc. such that the processor can read a file stored on the memory. Associated memory may be “read only” by design (ROM) or by virtue of permission settings, or not. Other examples include but are not limited to WORM, EPROM, EEPROM, FLASH, etc. Those technologies often are implemented in solid state semiconductor devices. Other memories may comprise moving parts, such as a conventional rotating disk drive. All such memories are “machine readable” or “computer-readable” and may be used to store executable instructions for implementing the functions described herein.
A “software product” refers to a memory device in which a series of executable instructions are stored in a machine-readable form so that a suitable machine or processor, with appropriate access to the software product, can execute the instructions to carry out a process implemented by the instructions. Software products are sometimes used to distribute software. Any type of machine-readable memory, including without limitation those summarized above, may be used to make a software product. That said, it is also known that software can be distributed via electronic transmission (“download”), in which case there typically will be a corresponding software product at the transmitting end of the transmission, or the receiving end, or both.
Example 1 is a memory device having instructions stored thereon that, in response to execution by a processing device, cause the processing device to perform operations comprising: monitoring the rate of change of water pressure associated with a fire sprinkler system; determining whether the rate of change of water pressure is greater than a threshold; and in response to determining that the rate of change is not greater than the threshold, command a fire pump system to enter a first predetermined state.
Example 2 includes the subject matter of example 1, and the predetermined state corresponds to activation of the fire pump and omission of the pump run alarm signal.
Example 3 includes the subject matter of example 2, and the activation of the fire pump comprises activation for an amount of time (e.g., a minimum amount of time).
Example 4 includes the subject matter of example 3, and the operations further comprise: selecting the amount of time based on a measurement associated with the monitoring.
Example 5 includes the subject matter of example 1, and the operations further comprise: in response to determining that the rate of change is greater than the threshold, do not command the fire pump system to enter a first predetermined state.
Example 6 includes the subject matter of example 1, and the operations further comprise: in response to determining that the rate of change is not greater than the threshold, suppress a pump run alarm signal; and in response to determining that the rate of change is greater than the threshold, do not suppress the pump run alarm signal.
Example 7 includes the subject matter of example 1, and the first predetermined state includes active firm pump, and wherein the operations further comprise after commanding the fire pump system, commanding the fire pump system to enter a second predetermined state that is different than the first predetermined state.
Example 8 includes the subject matter of example 7, wherein the second predetermined state comprises inactive fire pump.
Example 9 includes the subject matter of example 8, and the operations further comprise perform the commanding the fire pump system to enter the second predetermined state X seconds after performing the commanding the fire pump system to enter the first predetermined state; and determining X based on a measurement of said rate of change.
Example 10 includes the subject matter of example 1, and the operations further comprise: detecting a pressure drop associated with the fire sprinkler system; and initiating the monitoring responsive to said detection.
Example 11 is a memory device having instructions stored thereon that, in response to execution by a processing device, cause the processing device to perform operations comprising: detecting a pressure drop associated with the fire sprinkler system; performing a measurement of water pressure associated with the fire sprinkler system responsive to said detection; ascertaining whether the measurement is greater than a threshold; determining an amount of time based on the measurement; and in response to determining that the rate of change is not greater than the threshold, command a fire pump controller to activate for the determined amount of time.
Example 12 includes the subject matter of example 11, and the operations further comprise suppressing a first pump controller alarm signal that is associated with activation of the first pump controller responsive to low pressure.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention may be modified in arrangement and detail without departing from such principles.
This application is a continuation of U.S. application Ser. No. 16/162,257, filed Oct. 16, 2018, now U.S. Pat. No. 10,843,018, issued Nov. 24, 2020, which is a continuation of U.S. application Ser. No. 15/410,663, filed Jan. 19, 2017, now U.S. Pat. No. 10,143,871, issued Dec. 4, 2018, which claims the benefit of U.S. Provisional Application No. 62/281,049, filed on Jan. 20, 2016, which are all herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
20110166714 | Stachnik | Jul 2011 | A1 |
20120230846 | Stephens | Sep 2012 | A1 |
20130228345 | Aho | Sep 2013 | A1 |
20130343910 | Stephens | Dec 2013 | A1 |
20140271253 | Scheffer | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
62281049 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16162257 | Oct 2018 | US |
Child | 16953886 | US | |
Parent | 15410663 | Jan 2017 | US |
Child | 16162257 | US |