Not applicable.
Conventional heater cables rely on resistive heating of a dissipative element (e.g., a resistive wire) to generate heat. In some cases, conventional heating cables can be configured as self-regulating heating cables, wherein the heater cable can maintain a desired temperature, irrespective of changes in temperature in surrounding environment. For example, known self-regulating heater cables generally include a pair of bus wires configured as metal conductors, which are surrounded by a resistive heating element (e.g., a conductive polymeric material) to form a solid, monolithic core. The core is enclosed by an outer sheath including an inner jacket, a metal shield, and an outer jacket to form the heater cable. When a current is applied to the heater cable, the current can flow between the bus wires through the resistive heating element, which generates heat through resistive heating. As the temperature of the core increases, the resistive heating element expands, increasing its electrical resistance and reducing the heat output of the heater cable, which prevents over-heating. Conversely, as the temperature of the core decreases, the resistive heating element contracts, reducing its electrical resistance and increasing the heat output of the heater cable to prevent under-heating.
In some conventional self-regulating heater cable designs, the generation of hot spots or zones within the core can reduce the life of the heater cable. In particular, due to the position of the bus wires within the core, the center of the core can become significantly hotter, as a disproportionate amount of current passes through the center of the core (i.e., the shortest path between the bus wires). This effect can be exacerbated by the fact that the resistive heating element is relatively thick at the center of the core, which reduces heat transfer to the outer sheath. Moreover, to account for the natural expansion and contraction of the resistive heating element, gaps must be provided between the core and the sheath, which can further reduce heat transfer.
In some embodiments, a self-regulating heater cable assembly includes a core and a sheath surrounding the core. The core includes first and second bus wires configured to carry electrical power and an electrically insulating material disposed between the first and second bus wires. The electrically insulating material is configured to define a path between the first and second bus wires. The core further includes a self-regulating resistive heating element extending along the path formed by the spacer to electrically couple the first and second bus wires, which is configured to convert electric current into thermal energy. The sheath includes an electrically insulating inner jacket in contact with the core, an outer jacket, and a conductive ground layer configured to couple the heater cable to electric ground. The conductive ground layer is disposed between the inner jacket and the outer jacket so as to be physically separated from the core.
In some embodiments, a self-regulating heater cable assembly includes first and second bus wires, a self-regulating resistive heating element, an electrically insulating inner jacket, a conductive ground layer, and an outer jacket. The resistive heating element connects the first and second bus wires, which are configured to carry electrical power and to convert electric current into thermal energy. The electrically insulating inner jacket forms an enclosed path along which the resistive element extends. The conductive ground layer couples the heater cable to electric ground and is physically separated from the resistive heating element and the first and second supply wires by the inner jacket. The outer jacket surrounds the ground layer.
The above features and advantages of the invention will be better understood from the following detailed description taken in conjunction with the accompanying drawings.
The drawings described herein constitute part of this specification and includes exemplary embodiments of the present invention which may be embodied in various forms. It is to be understood that in some instances, various aspects of the invention may be shown exaggerated or enlarged to facilitate an understanding of the invention. Therefore, drawings may not be to scale.
The described features, advantages, and characteristics may be combined in any suitable manner in one or more embodiments. One skilled in the relevant art will recognize that the circuit may be practiced without one or more of the specific features or advantages of a particular embodiment. In other instances, additional features and advantages may be recognized in certain embodiments that may not be present in all embodiments.
Reference throughout this specification to “one embodiment,” “an embodiment,” or similar language means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus appearances of the phrase “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment.
Embodiments disclosed herein provide heater cables with various configurations of non-monolithic cores. In particular, a heater cable may include various components that are configured to reduce an effective cross-sectional area and increase an effective length of a resistive heating element. For example, in some embodiments a core of a heater cable may be provided with an electrically insulating material (such as a spacer or other material) disposed between bus wires. The insulating material can be configured to define a path for a resistive heating element to extend along, which electrically connects the bus wires and converts electrical current into thermal energy. In some cases, the insulating material may work in conjunction with an inner jacket of an outer sheath to help define the electrical path. In other embodiments, the insulating material may not be present and the inner jacket may be shaped to help define the electrical path. Regardless of the presence of such insulating materials, the configurations described herein can provide a maximum or large contact area between the core and the inner jacket, as compared to previous designs.
Reducing an effective cross-sectional area and increasing an effective length of a resistive heating element can benefit performance, reliability, and longevity of a heater cable. For example, a resistive heating element can be made of a carbon-impregnated polymer having a resistivity that increases with temperature. By reducing the effective cross-sectional area of the resistive heating element, higher concentrations of carbon can be used in the polymer, which can allow for a more stable (e.g., flatter) resistance-temperature (RT) behavior. For example, improved RT performance can help mitigate in-rush current issues. In addition, the shape of the path can be tuned to move the location of a hot zone closer to an outer sheath, and more specifically an inner jacket of the sheath, as compared to conventional designs, which allows for more efficient heat transfer from the core, reduces the temperature of the conductive composite, and increases the operational life of the heater cable. In some cases, hot zones may be reduced.
The core 108 is a self-regulating heating element of the heater cable 100 and generally includes metal conductors or bus wires 124 and a resistive heating element 128. As illustrated, the heater cable 100 includes a pair of bus wires 124 configured as solid metal conductors. In other embodiments, more or fewer bus wires may be provided and any supply wires suitable for a resistive heating application (e.g., braided wire or braided wire bundles) may be used. The resistive heating element 128 is configured to at least partially surround and electrically connect with each of the bus wires 124 to provide an electrical path therebetween, and is preferably made of a flexible, conductive material that can maintain its structural integrity while allowing the heater cable 100 to be bent or flexed into a desired shape. In some embodiments, an electrically conductive ink or a similar electrically conductive material (e.g., silver paint, conductive epoxy) can applied to the bus wires 124 to facilitate electrical contact between the resistive heating element 128 and the bus wires 124.
Generally, a resistive element resists the flow of current between bus wires and generates heat as a byproduct. The amount of heat generated by the resistive element increases with the resistance of the resistive element. That is, during operation of the heater cable 100, a voltage is applied between the bus wires 124 (i.e., establishing a voltage differential between the bus wires 124), causing current to flow between the bus wires 124 via the resistive heating element 128, thereby generating heat by resistive dissipation. The heat generated by the resistive heating element 128 is then transferred by radiation and conduction from the resistive heating element 128 through the intervening layers of sheath (e.g., the inner jacket 120 and the metal shield 116) to the outer jacket 112. In some embodiments, the metal shield 116 may be connected to a ground fault protection device (not shown), which can protect against ground faults and may also help the heater cable 100 to deliver heat uniformly to the outer jacket 112 and ultimately to a surface to be heated.
The resistance (R) of a resistive element is governed by Ohms Law and is dependent on a number of factors, including the effective electrical path length of the resistive element (L), the effective cross-sectional area of the resistive element (A), and the resistivity of the resistive element (ρ):
Under Ohms Law, the resistance of the resistive element is proportional to the resistivity of the element and its length divided by its cross-sectional area. In the present embodiment, the length and the cross-sectional area of the resistive heating element 128 are effectively constant, as the effects of any thermal expansion are negligible. Thus, to provide for the self-regulating properties of the core 108, the resistive heating element 128 must be made of a material having a resistivity that increases with temperature. For example, in the present embodiment, the resistive heating element 128 is a carbon-impregnated polymer (e.g., carbon black), although other suitable materials may alternatively or additionally be used. In this way, as the temperature of the resistive heating element 128 (and of the heater cable 100) increases, so does its resistivity, thereby increasing the resistance of the core 108, reducing the amount of current flowing through the core 108, and ultimately reducing the amount of heat generated (i.e., reducing a rate of heat generation or power). Likewise, as the temperature of the resistive heating element 128 decreases, so does its resistivity, thereby allowing more current to flow and increasing the amount of heat generated.
Furthermore, in some embodiments, a core can include one or more electrically insulating materials (such as non-conductive spacers or other materials) configured to define a path for a resistive element. In this way, the length and the effective cross-sectional area of the resistive element can be tuned to provide a specific resistive characteristic (e.g. a minimum resistance and a maximum resistance) depending on the material of the resistive element, the desired heat generation, and the ambient conditions of a specific application. In some embodiments, insulating material may work in conjunction with an inner jacket to define the path. That is, any insulating material and the inner jacket may be correspondingly shaped to provide a desired path for a resistive element.
For example, in the illustrated embodiment of
Moreover, due to the decreased and more even thickness of the resistive heating element 128 (e.g., as a result of the insulating spacer 132), potential hot zones are moved to the edges of the core 108 so that heat dissipation through the sheath can be improved, which may help to prevent hot zones from forming in the first place and allow the core 108 to run cooler, thus potentially improving or increasing its operating life. Put another way, the resistive heating element 128 can maintain a more even temperature along its length. Conversely, the thickness (i.e., cross-sectional area) can be tuned to place a hot zone at a desired location. For example, with respect to the orientation of
In addition, the resistivity and other characteristics can also be modified because of the increased length and cross-sectional area of the resistive heating element. In particular, the amount of material used in the resistive heating element 128 can be reduced, allowing for higher carbon loading (i.e., higher concentrations of carbon black within the base polymer). Increasing carbon loading can improve the ease of manufacturing and increase the resistivity of the resistive heating element 128, which can allow the amount of material used to form the resistive heating element 128 to be reduced even further. Accordingly, the cost of manufacturing can be reduced while allowing the heater cable 100 to be tuned for low power output with reduced carbon loading or reduced cross-sectional area of the core 108, or high-power output and improved in-rush performance with increased carbon loading or increased cross-sectional area of the core 108.
Turning to
Turning now to
With reference to
Moving to
Turning to
With reference to
Turning to
Turning now to
While there has been illustrated and described what is at present considered to be suitable example embodiments of the present invention, it will be understood by those skilled in the art that various changes and modifications may be made and equivalents may be substituted for elements thereof without departing from the true scope of the invention. The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention. Therefore, it is intended that this invention not be limited to the particular embodiments disclosed, but that the invention includes all embodiments falling within the scope of the appended claims.