Barium titanate electrical heater arrays are widely used in aircraft applications. Barium titanate heaters provide a simple and reliable alternative to electrical resistance heaters controlled with external electronic circuits. The self-regulating nature of barium titanate under operating conditions eliminates the need for external control circuits. Electrical resistance of barium titanate heaters increases dramatically at temperatures above a given set point temperature. A typical set point temperature would be 73 degrees Celsius as will be used herein. Temperatures above the set point cause rapid increases in the heater resistance, which in turn cause the current to drop significantly, preventing the barium titanate heater from overheating the local region.
In one example, a heating system comprises a voltage source, a heating circuit, and a current sensor. The voltage source is configured to provide a current. The heater circuit is electrically coupled to the voltage source. The heater circuit comprises a heater array and a compensation circuit. The heater array is configured to provide heat to a region using the current. The compensation circuit is electrically coupled to the voltage source in parallel with the heater array. The compensation circuit is configured to maintain the current above a threshold current level when the heater array is operable. The current sensor is configured to measure a level of the current to the heater circuit and output an alert in response to the current falling below the threshold current level.
In one example, a method comprises providing a current to a heater circuit using a voltage source including providing a first portion of the current to a heater array of the heater circuit; and providing a second portion of the current to a compensation circuit of the heater circuit connected in parallel to the heater array; heating a region using the heater array; adjusting, using the compensation circuit, the second portion of the current based on a temperature of the region, such that a sum of the first portion of the current and the second portion of the current corresponding to the current provided to the heater circuit is maintained above a threshold current level when the heater array is operable; and measuring the current using a current sensor.
Apparatus, systems, and associated methods relate to self-regulating heater compensation using a compensation circuit electrically coupled to a heater circuit in parallel. In some applications, such as an aircraft sensor, self-regulating heater circuits are used on angle of attack sensors, side slip angle sensors, integral static port sensors, and/or other sensors of an aircraft. The self-regulating heater current is monitored to ensure proper operation and an alert is output when the current falls below a current threshold level. In hot environments, such as desert regions, self-regulating heaters may draw current that falls below the current threshold level, causing a false alarm. This can cause the aircraft to be grounded, wasting time and money. Using the apparatus, systems, and associated methods herein, allows for the compensation circuit to bring the current above the current threshold level when the self-regulating heater is in operable condition.
Voltage source 22 provides current to heater circuit 26. Current sensor 24 measures the current provided to heater circuit 26. In one example, current sensor 24 is a shunt resistor. In a further example, current sensor 24 is an integrated circuit configured to sense the current provided to heater circuit 26. Current sensor 24 is configured to provide an alert if the current provided by voltage source 22 falls below a threshold current level. The current provided by voltage source 22 is determined by the total resistance of heater circuit 26. Heater circuit 26 includes heater array 30 electrically coupled in parallel to compensation circuit 32. A first portion of the current is provided to heater array 30, and a second portion of the current is provided to compensation circuit 32. Heater array 30 provides heat to a region using the first portion of the current provided by voltage source 22. In one example, heater array 30 is a barium titanate heater array.
As the resistance of heater array 30 increases, the first portion of the current provided by voltage source 22 decreases. High temperatures cause the resistance of heater array 30 to become so high that the first portion of the current falls below the threshold current level of sensor 24. Without additional current, sensor 24 will provide an alert. During high temperatures compensation circuit 32 is configured to increase current draw causing the second portion of the current to increase. The increase of the second portion of the current is sufficient to maintain the current supplied to heating circuit 20 above the threshold when heater array 30 is operative. However, the increase in the second portion of the circuit is insufficient to maintain the current above the threshold when heater array 30 is inoperative. Heater array 30 can become inoperative when damaged which causes the resistance of heater array 30 to increase beyond a typical range or become an open circuit. In some examples, the compensation circuit includes a thermistor and a current limiting resistor electrically coupled in series. The current limiting resistor is configured to limit the second portion of the current to be less than the current threshold level. In one example, the current limiting resistor is configured to limit the second portion of the current to half the current threshold limit. In one example, a resistance of the current limiting resistor is configured to remain substantially constant. Limiting the second portion of the current in this manner allows sensor 24 to provide an alert if heater array 30 becomes inoperable, such as failing in an open circuit condition, but still provides enough current to compensate for high temperature conditions. In one example, the thermistor is a negative temperature coefficient resistor. Negative temperature coefficient thermistors decrease in resistance as the temperature increases.
At step 48, current is provided to heater circuit 26 using voltage source 22. A first portion of the current is provided to heater array 30 of heater circuit 26. A second portion of the current is provided to compensation circuit 32. At step, 50 a region is heated using the heater array. At step 52, the second portion of the current is adjusted based upon the temperature of the region. As temperature of the region increases the first portion of the current is decreased by heater array 30. The second portion of the current is increased using the compensation circuit in response to the temperature of the region increasing. In one example, thermistor 34 decreases in resistance in response to the temperature of the region increasing, thereby increasing the second portion of the current. The second portion of the current is limited using current limiting resistor 36. In one example, current limiting resistor limits the second portion of the current to half of a current threshold level. In a further example, current limiting resistor is configured to have a substantially constant resistance. At step 54, the current provided to heater circuit 26 is measured using current sensor 24. In one example, current sensor 24 is configured to provide an alert in response to the measured current falling below the threshold current level.
Accordingly, implementing techniques of this disclosure, self-regulating heater compensation using a compensation circuit allows current monitoring without false alarms due to high temperature conditions. Using the compensation circuit described herein, a self-regulating heater can be used in conjunction with a current monitor. This helps to prevent false alarms, thereby preventing lost time and money due to the false alarms.
The following are non-exclusive descriptions of possible embodiments of the present invention.
A heating system can comprise a voltage source configured to provide a current; a heater circuit electrically coupled to the voltage source, the heater circuit can comprise a heater array configured to provide heat to a region using the current; and a compensation circuit electrically coupled to the voltage source in parallel with the heater array, the compensation circuit configured to maintain the current above a threshold current level when the heater array is operable; and a current sensor configured to measure a level of the current to the heater circuit and output an alert in response to the current falling below the threshold current level.
The heating system of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
The compensation circuit can comprise a thermistor; and a current limiting resistor electrically coupled to the thermistor in series, the current limiting resistor configured to prevent the current from rising above the threshold current level when the heater array is inoperable.
The thermistor can be a negative temperature coefficient thermistor.
The current limiting resistor can be configured to limit current flowing therethrough to half the current threshold level.
A resistance of the current limiting resistor can be configured to remain substantially constant.
The heater array can be a barium titanate heater array.
The region can be at least a portion of an angle of attack sensor.
The current sensor can be a shunt resistor.
A method can comprise providing a current to a heater circuit using a voltage source, can include providing a first portion of the current to a heater array of the heater circuit; and providing a second portion of the current to a compensation circuit of the heater circuit connected in parallel to the heater array; heating a region using the heater array; adjusting, using the compensation circuit, the second portion of the current based on a temperature of the region, such that a sum of the first portion of the current and the second portion of the current corresponding to the current provided to the heater circuit is maintained above a threshold current level when the heater array is operable; and measuring the current using a current sensor.
The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
Adjusting the second portion of the current can include increasing the second portion of the current using a thermistor of the compensation circuit; and limiting the second portion of the current using a resistor of the compensation circuit, the resistor in series with the thermistor.
The thermistor can be a negative temperature coefficient thermistor.
The resistor can be configured to limit the second portion of the current to half the current threshold level.
A resistance of the resistor can be configured to remain substantially constant.
The heater array can be a barium titanate heater array.
The region can be at least a portion of an angle of attack sensor.
The current sensor can be a shunt resistor.
Providing an alert in response to the measured current falling below the threshold current level.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.