This invention relates to the field of paintball loaders. More specifically, it relates to a self regulating agitator that operates within a paintball loader.
Popularity and developments in the paintball industry have led to the demand for increased performance from paintball guns, which are compressed gas guns, also referred to as “markers.” Paintball gun users usually partake in paintball sport games. A paintball sport game is generally played between two teams of players that try to capture the opposing team's flag. Each flag is located at the team's home base. Such a game is played on a large field with opposing home bases at each end. The players are each armed with a paintball gun that shoots paintballs. Paintballs are generally gelatin-covered spherical projectiles, such as capsules filled with paint, such as a colored dye.
During the game, the players of each team advance toward the opposing team's base in an attempt to steal the opposing team's flag. The players must do so without first being eliminated from the game by being hit by a paintball shot by an opponent's marker. When a player is hit by a paintball, the gelatin capsule ruptures and the paint “marks” the player. As a result the player is out of the game.
These sport games have increased in popularity and sophistication resulting in more elaborate equipment. One such improvement is the use of semi-automatic and automatic paintball guns which allow for rapid firing of paintballs. As a result of the increased firing speed, a need has developed for increased storage capacity of paintballs in the paintball loaders that are mounted to the gun. Also, users demand faster feed rates as the guns continue to develop.
Paintball loaders (otherwise known as “hoppers” or “magazines”) sit atop the markers and feed projectiles into the marker. These loaders (the terms “hopper” and “loader” are used interchangeably herein) store projectiles, and have an outlet or exit tube (outfeed tube or neck). The outlet tube is connected to an inlet tube (or feed neck) of a paintball marker, which is in communication with the breech of the paintball marker.
Many loaders contain agitators or drive feed systems to mix, propel, or otherwise move projectiles in the loader. This mixing is performed by an impeller, projection, drive cone, agitator, paddle, arm, fin, carrier, or any other mechanism, such as those shown and described in U.S. Pat. Nos. 6,213,110; 6,502,567; 5,947,100; 5,791,325; 5,954,042; 6,109,252; 6,889,680; and 6,792,933, the entire contents of which are all incorporated by reference in their entireties herein. In a “gravity feed” or “agitating” loader, an agitator mixes projectiles so that no jams occur at the exit opening of the outlet tube. In a “force feed” or “active feed” paintball loader, the agitator (drive cone, carrier, paddle, arm or any other force feed drive system) forces projectiles through the exit tube. Because it is desirable to eliminate as many opposing players as possible, paintball markers are capable of semi-automatic rapid fire. The paintball loaders act to hold a quantity of projectiles, and ensure proper feeding of the projectiles to the marker for firing. All of the various forms of impellers described are referred to collectively herein as “agitators.”
During normal operation of an agitating paintball loader, paintballs dropped through a bottom outlet opening of the loader form a paintball stack within the outlet tube and gun inlet tube. When the paintball at the bottom of the stack is dropped into the firing chamber of the paintball gun, it is replaced, at the top of the stack, from the supply of paintballs remaining in the loader housing, thereby replenishing the stack. In replenishing the stack of paintballs, however, jams sometimes occur within the loader, above its bottom outlet opening. Paintball jams of this nature prevent normal gravity-fed delivery of paintballs downwardly through the bottom outlet opening, with the result that the paintball stack can be totally depleted after several shots of the paintball gun.
One solution for clearing paintball jams involves forcibly shaking the paintball gun and attached loader to dislodge the paintballs that are causing the jam within the loader. This solution is undesirable as it interrupts the proper aiming of the paintball gun and correspondingly interrupts the paintball gun user's ability to shoot the paintballs continuously and rapidly.
Many paintball loaders include an agitator housed within the loader. An agitator is typically a rotating member with paddles, fins or other types of impellers. The fins of the agitator continually agitate, jumble, or stir the paintballs within the loader, which reduces the likelihood of a loader jam as the paintballs fall under the force of gravity from the outlet tube of the loader to the inlet tube of the paintball gun for firing. When a jam does occur, however, a conventional agitator typically continues to rotate despite the jam, possibly breaking paintballs. Thus, the agitator continues to contact jammed paintballs and continues to try to move the paintballs. Such a condition typically stops the feeding of paintballs, can damage or break paintballs, and can render the agitator and/or loader inoperable.
Accordingly, there remains a need for an improved agitator that effectively operates within a paintball loader notwithstanding the potential for jammed paintballs within the loader.
The present invention provides a paintball agitator for use with a paintball loader. The agitator includes a rotatable shaft having a drive end and a second end opposite the drive end. A base portion adjacent the second end of the shaft is rotatable in combination with the shaft, and at least one fin is pivotally attached to the base portion, and rotatable in combination with the base portion and the shaft. At least one sensor is configured to detect movement of the at least one fin.
The present invention also provides a paintball agitator for use with a paintball loader, including a rotatable shaft having a drive end, a second end opposite the drive end, and a base portion adjacent the second end. At least one fin is pivotally attached to the base portion, and at least one sensor is adapted to detect movement of the fin.
The present invention further provides a paintball loader including a paintball loader body adapted to receive paintballs. An agitator is mounted within the paintball loader body, and includes a rotatable shaft having a drive end and a second end opposite the drive end. A base portion is positioned adjacent the second end and is rotatable in combination with the shaft. At least one fin is pivotally attached to the base portion, and at least one sensor is configured to detect movement of the at least one fin. A motor rotates the shaft.
The present invention also provides a method of operating a paintball loader filled with paintballs. The method includes providing an agitator including at least one moveable fin and a sensor that detects movement of the fin. A signal is transmitted in response to movement of the fin, and operation of the agitator is controlled in response to the signal.
The present invention further provides a paintball loader feed system. The system includes a feeder having at least one moveable arm, and at least one sensor configured to detect movement of the moveable arm for controlling operation of the feed system.
Certain terminology is used in the following description for convenience only and is not considered limiting. Words such as “front,” “back,” “top,” and “bottom” designate directions in the drawings to which reference is made. Similarly, the terms “right,” “left,” “top,” “bottom,” “forward,” and “rearward” are from the perspective of a user operating a compressed gas gun. Rear or rearward means toward the user and forward means away from the user. This terminology includes the words specifically noted above, derivatives thereof, and words of similar import. Additionally, the terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted. The phrase “at least one of” followed by a list of two or more items, such as A, B, or C, means any individual one of A, B, or C, as well as any combination thereof. The preferred embodiments of the present invention are described below with reference to the drawing figures where like numerals represent like elements throughout.
As used herein, the terms “agitator,” “feeder,” “feed mechanism,” “drive cone,” “carrier,” or “impeller” are used interchangeably and refer to any apparatus that impels, moves, pushes, agitates, or otherwise mixes projectiles held within a paintball loader or hopper, including, but not limited to, those shown and described in U.S. Pat. Nos. 6,213,110; 6,502,567; 5,947,100; 5,791,325; 5,954,042; 6,109,252; 6,889,680; and 6,792,933, the entire contents of which are incorporated herein by reference, and those used in commercially available paintball loaders such as the various HALO® brand paintball loaders, the EMPIRE RELOADER™ paintball loaders, and substitutes or equivalents thereof. An exemplary paintball loader 10 is shown in more detail in
Referring to
The agitator 20 includes a rotatable shaft 22 having a drive end 24 and a second end 26. A base portion 27 extends radially from the shaft adjacent the second end 26 of the shaft. At least one fin 28 (arm, paddle, etc.) is pivotally attached at pivot point 29 to the base portion 27 and extends radially from the shaft 22. Any number of fins, arms, paddles or the like may extend from the shaft 22. A motor 30 (shown in
The pivot point 29 may comprise a pivot pin, a hinge, a spring (causing the at least one fin 28 to be spring-loaded), or any other device that achieves the desired pivoting action of the at least one fin 28 relative to the base portion 27. Similarly, the at least one fin 28 may be a spring itself. The at least one fin 28 may be substantially rigid, substantially flexible, substantially elastic, or a combination thereof.
The rotation of the shaft 22 as it pertains to the description of
In a preferred embodiment, the at least one fin 28 is configured for rotational movement in combination with the base portion 27 and the shaft 22 upon unimpeded rotation of the shaft 22. The at least one fin 28 is further adapted for pivotal movement with respect to the base portion 27 upon contact with an obstruction within the loader 10 (typically a jammed paintball 18), thereby permitting continuous rotation of the shaft 22 and agitation of paintballs 18 contained within the loader 10.
As explained above in the Background of Invention section, conventional agitators continue to rotate the fins against jammed, immovable paintballs, which can damage the paintballs or the agitator. The pivotal feature of the at least one fin 28 of the present invention permits the fin(s) to rotate in response to the resistive force of the stationary (jammed) paintball 18 on the fin 28, as illustrated in phantom in
At least one sensor is mounted on or adjacent the base portion 27 or shaft 22 for detecting pivotal movement of the at least one fin 28 and providing self-regulation of the anti-jam features of the present paintball agitating system. As shown in
As represented in
The sensor 31 and/or combination of sensors 31, 32 detects when the fin(s) 28 is bent or pivoted toward a second position P2 (as represented in
As represented in
The controller 34 may include any type of controller, such as a digital or analog circuit that is capable of controlling the motor 30. The controller 34 may also include circuit boards, computer “chips” and/or microprocessors, and any electric and/or electronic circuitry necessary for controlling, processing, operating, monitoring, transmitting, storing, receiving, etc., the various signals received from the sensor(s) 31, 32 and described herein or the information transmitted by such signals, as will be familiar to those in the art.
When the controller 34 receives an indication from a sensor 31, 32 that a fin 28 is bent against its bias or moved toward a second P2 or third P3 position, the controller 34 will act to operate the motor 30 of the paintball loader 10, as described in greater detail below. In the case of a wireless system, antennas (not shown) are utilized to transmit signals between the sensor(s) 31, 32 and the controller 34.
The fin(s) 28 may be spring-loaded such that the fin 28 is biased to a first P1 or neutral N position from both sides. Thus, the fin 28 can be pivoted to either a second P2 or third P3 position, as represented in
The system 20 of the present invention can be utilized with any existing paintball loader, such as those offered under the brands HALO®, RELOADER™, or other paintball loaders having similar designs. It is appreciated that the controller 34 may be programmed for various operations designed to take advantage of the system of the present invention.
In operation, when the motor 30 is activated, the drive shaft 22 rotates, moving the paintball agitator 20 and fin(s) 28. If paintballs 18 are free to be moved about the housing 12, the fins 28 will agitate or otherwise move the paintballs 18. The paintballs 18 may, however, begin to stack up, become jammed, or otherwise cease moving. For example, in a gravity-feed system (represented in
In an active feed loader (represented in
The controller 34 of the present invention may be designed so that the sensors 31, 32 will only detect and send a signal in response to the fin 28 being moved a particular distance. In normal use, the fin 28 may pivot to a certain degree, even where there is no paintball jam. Thus, the sensor(s) 31, 32 and/or controller 34 may be designed so that a “jam signal” or “control signal” is generated only when the fin 28 pivots a certain distance relative to the base portion 27, or to a certain degree.
Substantially rigid fins 28 are preferably made from a rigid material such as a plastic, for example, polyurethane, nylon, or acrylonitrile butadiene styrene. The present invention, however, is not limited to such material, and the fins 28 may be made from various plastics, resin, composite, rubber, bamboo, metal, or any other material suitable for performing the above-stated functions. Rigid fins 28 of the agitator 20 of the present invention should be formed so that they will not bend when they encounter a jammed or immovable paintball 18. Rather, the force transmitted to the pivot point 29 through the rigid fin 28 will permit a rigid fin 28 to pivot in relation to the jammed or immovable paintball 18.
Substantially flexible fins 28 are preferably made from flexible and resilient polymeric material, for example, polyurethane, nylon, or acrylonitrile butadiene styrene. The present invention, however, is not limited to such material, and flexible fins 28 may be made from various plastics, resin, composite, rubber, silicone rubber, NEOPRENE®, metal, or any other material suitable for performing the above-stated functions. Alternately, as explained above, the fins 28 may comprise both rigid and flexible portions.
While the preferred embodiments of the invention have been described in detail above, the invention is not limited to the specific embodiments described which should be considered as merely exemplary. Further modifications and extensions of the present invention may be developed and all such modifications are deemed to be within the scope of the present invention as defined by the appended claims.
This application is a continuation of U.S. application Ser. No. 11/544,443, which claims the benefit of U.S. Provisional Application No. 60/724,081, filed Oct. 6, 2005, all of which are incorporated herein by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
60724081 | Oct 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11544443 | Oct 2006 | US |
Child | 12271268 | US |