This invention relates to self rescuers in general, and more particularly to a self rescuer comprising a self-contained breathing apparatus (SCBA) and a breathing air monitor (BAM).
The nature of underground mining operations makes them highly dangerous.
For example, in the case of a mine collapse, the supply of breathable air can be severely compromised, placing the miners in great danger.
Furthermore, mines are often highly susceptible to the infusion of noxious gases (e.g., methane, carbon monoxide, etc.). This situation can occur in many scenarios, even where there is no catastrophic mine collapse. Gas pockets can be exposed at any time and without notice, and can be life-threatening even where the mine is structurally intact. In any of these situations, once the gas enters the space occupied by the miners, their lives are in serious danger.
In all of these situations, the miners must (i) quickly recognize the danger, and then (ii) obtain a supply of breathable air. Various detectors (e.g., CO detectors) can be employed by miners in order to detect a situation in which breathing conditions may be compromised. In such a compromised breathing condition, the supply of breathable air may be provided by various means, e.g., a filtered system, a conventional “open-loop” self-contained breathing apparatus (SCBA), a conventional “closed-loop” self-contained breathing apparatus (SCBA), a solid state oxygen generator, etc. The equipment for providing the supply of breathable air is commonly referred to as a Self Rescuer and is generally carried by the miners on their belts. Once the miners have “switched over” to this supply of breathable air, they must then escape the danger zone. In the case of a “benign” gas pocket, escape may be as simple as walking or riding a mine car out of the affected area. In the case of a mine collapse, gas explosion, or other serious event, escape may involve crawling, tunneling, walking or just waiting for rescue. In any of these latter situations, there is a significant danger that the supply of breathable air may be depleted before the miner has reached a safe location.
At the same time, in many of these situations, it is not possible for the miners to use conventional negative pressure filtered respirators, powered air purifying respirator (PAPR), etc. due to the nature of the threat, e.g., the possible air contaminants (e.g., some gases), the physical state of the ambient air (e.g., super-heated air), etc. In these situations, a self-contained breathing apparatus (SCBA) is required.
Conventional “open-loop” SCBA units generally consist of a tank of compressed gas (usually ambient, but filtered, air) with the flow controlled by a regulator or demand valve. One of the major inefficiencies of these units is that the exhausted and/or exhaled air (still containing significant usable oxygen) is vented to the environment and thus lost to the user. Much greater efficiencies (translating into smaller, lighter units and longer supply times) can be attained by using “closed loop” SCBA units which recycle the exhaust air and recover the oxygen, and/or remove the undesirable products of respiration (mainly carbon dioxide). A device utilizing this approach is commonly referred as a “Rebreather”. See
Any respirator device, whether filtered, open-loop SCBA, closed-loop SCBA, etc. has a limited capacity to supply breathable air. If the miners exhaust the capacity of the respirator device while still in a dangerous environment, the miners must be able to access a replacement breathing component and make the “change-over” to the replacement breathing component without “breaking the seal” or otherwise exposing themselves to breathing in the potentially noxious gases.
As a result, a primary object of the present invention is to provide a self-contained breathing apparatus (SCBA) which is able to safely and quickly connect to a replacement breathing component without “breaking the seal” so that the replacement breathing component can supply additional breathing capacity to the user. Preferably, the replacement breathing component can take any number of forms, e.g., the working portion of another “closed-loop” SCBA, an air bottle, a carbon monoxide filter respirator, etc.
In addition to the foregoing, where the miner has an SCBA system which provides a choice of different breathing options (e.g., connection to breathable air, use of a CO absorber, etc.), it would be beneficial for the miner to be given an indication of the nature of the atmospheric threat, in order that the miner might apply their SCBA system in the most efficient manner possible. By way of example but not limitation, where the SCBA has a limited supply of breathable air and a CO absorber, and where the atmospheric threat comprises CO, the miner might be best advised to utilize the CO absorber and conserve the limited supply of breathable air. On the other hand, if the atmospheric threat comprises methane, the miner will be best advised to use the limited supply of breathable air.
To this end, it is another primary object of the present invention to provide a breathing air monitor (BAM) for monitoring atmospheric conditions and alerting the miner to the presence of atmospheric threats.
The present invention provides a self-contained breathing apparatus (SCBA) which is able to safely and quickly connect to a replacement breathing component without “breaking the seal” so that the replacement breathing component can supply additional breathing capacity to the user.
In one form of the present invention, there is provided a self-contained breathing apparatus (SCBA) comprising:
a mouthpiece;
a breathing component for providing breathable air, the breathing component comprising a component interface; and
a safety quick disconnect comprising:
In another form of the present invention, there is provided a self-contained breathing apparatus (SCBA) comprising:
a mouthpiece;
a counterlung; and
a breathing component interposed between the mouthpiece and the counterlung, the breathing component being adapted to provide breathable air; wherein the counterlung is sized so as to have a volume which is approximately equal to the tidal volume of a pair of adult lungs.
In another form of the present invention, there is provided a smart light comprising:
a battery;
a light bulb;
circuitry connecting the battery to the light bulb;
a detector for detecting the presence of a hazardous atmospheric condition; and
alert apparatus connected to the detector for alerting a user when a hazardous atmospheric condition is detected by the detector.
In another form of the present invention, there is provided a self-rescuer comprising:
a self-contained breathing apparatus (SCBA); and
a smart light;
wherein the smart light comprises:
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which are to be considered together with the accompanying drawings wherein like numbers refer to like elements and further wherein:
Looking next at
Looking now at
During use, the user places mouthpiece 10 in their mouth and inhales and exhales through their mouth (a noseclip may also be supplied to restrict breathing through the nose and permit breathing through only the mouth). As air is exhaled, it passes through demand regulator 25, through carbon dioxide scrubber 30 and fills counterlung 35. As this occurs, carbon dioxide scrubber 30 purges carbon dioxide from the exhaled air. Conversely, as air is inhaled, air is drawn from counterlung 35, through carbon dioxide scrubber 30, through demand regulator 25 and back into the lungs of the user. Again, as the air from counterlung 35 passes through carbon dioxide scrubber 30, the scrubber purges carbon dioxide from the air.
Demand regulator 25 monitors the air pressure in the system and, when the air pressure falls below a certain threshold, releases supplemental oxygen from oxygen supply 40. More particularly, as the user breathes, the body metabolizes oxygen and releases carbon dioxide. This carbon dioxide is then removed from the system by carbon dioxide scrubber 30. Therefore, in a “closed-loop” system, as the user breathes, oxygen is consumed by the user, carbon dioxide is consumed by the scrubber, and the quantity of air is reduced. To that end, demand regulator 25 monitors the air pressure in the system and, as the quantity of air is reduced during breathing and scrubbing (which also reflects a reduction in the quantity of oxygen available for breathing), demand regulator 25 releases supplemental oxygen to the system to compensate for the consumed gases.
As a result of this construction, breathing component 20 is designed to provide extended breathing capacity, due to the use of (i) carbon dioxide scrubber 30, which allows the re-breathing of exhaled air, and (ii) demand regulator 25 and oxygen supply 40, which supply supplemental oxygen to the system as oxygen is consumed through breathing.
Significantly, counterlung 35 is carefully configured so as to have a size approximately equal to tidal volume of a pair of human lungs. This is approximately three times smaller than traditional counterlungs. By configuring counterlung 35 with this unique size, breathing component 20 ensures that demand regulator 25 will release fresh oxygen to the system before the oxygen content of the air being re-breathed falls to a level which is too low to safely sustain the user. More particularly, with each breath of the user, approximately 20% of the oxygen inhaled is consumed by the body and is replaced with exhaled carbon dioxide. This exhaled carbon dioxide is in turn purged by carbon dioxide scrubber 30. Thus, in the absence of a supplemental oxygen source, as the user breathes, the total quantity of air will continuously decrease as the carbon dioxide is pulled from the air. If counterlung 35 is made too large, it will take too long for the quantity of air in the system to be depleted to the point where demand regulator 25 will trigger the release of supplemental oxygen from oxygen supply 40. On the other hand, if counterlung 35 is formed too small, a user will not be able to inhale and exhale a full breath, which is important in emergency breathing situations where the user may need to be moving about rapidly. Sizing counterlung 35 so as to be the approximately the size of the tidal volume of a pair of lungs is a new and significant advance in the art.
In another significant advance over the prior art, SCBA 5 utilizes a multi-port safety quick disconnect 15 to permit replacement breathing component 20A to be safely and quickly connected to mouthpiece 10 without “breaking the seal”, so that additional breathing capacity can be safely supplied to the user when necessary. More particularly, any breathing component (e.g., a “closed-loop” SCBA system, a carbon dioxide absorber, an oxygen tank, etc.) has a finite functional lifetime: at the end of that functional lifetime, the breathing component must ultimately be replaced with a fresh unit in order to sustain a user. The present invention provides novel multi-port safety quick disconnect 15 to permit replacement breathing component 20A to be safely and quickly connected to mouthpiece 10 without “breaking the seal”, so that additional breathing capacity can be safely supplied to the user when necessary
Safety disconnect 15 is shown in greater detail in
Significantly, means are provided for restricting the position of valve spool 80 within valve body 45, and for restricting the inadvertent removal of a component interface 75 from valve body 45, whereby to present a user from accidentally breathing ambient air.
More particularly, back plate 67 includes a locking clip 95 having a pair of projecting spring fingers 100. Valve spool 80 includes four recesses 105 formed therein for selectively receiving spring fingers 100 of locking clip 95. As a result of this construction, valve spool 80 may not be rotated within valve body 45 unless, and until, two component interfaces 75 are pressed sufficiently rearwardly within U-shaped rail 70 as to push the two corresponding projecting spring fingers 100 out of their corresponding spool recesses 105.
Furthermore, selection knob 90 is provided with a peripheral extension 110 along a portion of its perimeter which prevents accidental removal of the component interface 75 selected by and in use on that corresponding side of the valve body so as to prevent the user accidentally disconnecting the active breathing air supply and exposing the corresponding port 60, 65 to atmosphere.
In addition to the foregoing, valve spool 80 is formed so that when it is in a locked position (i.e., so that a spring finger 100 is received in a spool recess 105), L-shaped channel 85 is connecting either port 60 with opening 48 or port 65 with opening 48.
As a result of this construction, a component interface 75 may only be withdrawn when another component interface 75 has been connected to quick disconnect 15 and valve knob 90 has been rotated to select the side being retained as a breathing source. Furthermore, as shown in
In other words, the foregoing construction permits a first breathing component is to be safely and readily replaced with a replacement breathing component when necessary. More particularly, and looking now at
Looking next at
If desired, and as shown in
In another form of the present invention, and looking next at
As noted above, where the miner has an SCBA system which provides a choice of different breathing options (e.g., connection to breathable air, use of a CO absorber, etc.), it would be beneficial for the miner to be given an indication of the nature of the atmospheric threat, in order that the miner might apply their SCBA system in the most efficient manner possible. By way of example but not limitation, where the SCBA has a limited supply of breathable air and a CO absorber, and where the atmospheric threat comprises CO, the miner might be best advised to utilize the CO absorber and conserve the limited supply of breathable air. On the other hand, if the atmospheric threat comprises methane, the miner will be best advised to use the limited supply of breathable air.
To this end, the present invention provides a breathing air monitor (BAM) for monitoring atmospheric conditions and alerting the miner to the presence of atmospheric threats.
More particularly, and looking now at
By way of example but not limitation, breathing air monitor (BAM) 200 may be used to sense low levels of oxygen and/or high levels of carbon monoxide. In one preferred form of the present invention, breathing air monitor (BAM) is configured to alert the user of conditions where O2 levels fall below 19.5%, and/or when CO levels exceed 50 ppm. To this end, and still looking at
When a dangerous situation is detected, breathing air monitor (BAM) 200 is configured to inform the user through a variety of alerts. To this end, breathing air monitor (BAM) 200 is provided with an LED alert 225 to visually alert the user to the presence of atmospheric hazards. LED alert 225 may be configured so as to turn on a certain colored light when a specific environmental condition is detected, e.g., yellow for low levels of oxygen, red for high levels of carbon monoxide, etc. LED alert 225 may also be configured to blink or flash in a variety of sequences or colors to indicate other specific environmental conditions and/or dangers.
Breathing air monitor (BAM) 200 is preferably also provided with a vibrate and/or noise alert 230. Like LED alert 225, vibrate/noise alert 230 alerts the user to the presence of atmospheric hazards. Vibrate/noise alert 230 can be automatically or manually set to vibrate, sound an alarm, or both, when a hazardous condition is detected. Furthermore, vibrate/noise alert 230 can also be automatically or manually set to vary the intensity and/or volume of the alert depending on specific environmental conditions or depending on user preference.
In addition to the foregoing, and as noted above, breathing air monitor (BAM) 200 preferably uses the miner's light beam as an additional user alert, by flashing the light. More particularly, if a certain O2 or CO level is detected, breathing air monitor (BAM) 200 is configured to interrupt the power to the miner's light via a relay 235 disposed in the circuitry intermediate battery 210 and miner's light 205. Flashing the miner's light beam upon detection of the hazardous condition creates a readily recognizable alarm for both the miner and those thereby.
The aforementioned visual and/or audio alerts can be used individually or in conjunction with one another so as to alert the user when a hazardous breathing condition exists. Furthermore, the visual and/or audio alerts are configured to advise the user as to the particular type of danger that exists, which then allows the user to select an appropriate breathing component. By way of example but not limitation, when a toxic or oxygen-deficient condition is detected, the appropriate alert indicates that the user should begin using the SCBA, and preferably begin using the breathing component 20. Conversely, when a carbon monoxide condition is detected, a different alert will indicate that the user can instead safely use the CO absorber and, in turn, conserve their O2 supply.
In one preferred form of the invention, the system is configured to flash the miner's light and sound an audio alarm when any atmospheric hazard is detected, and to light up a selected LED based upon the specific hazard detected.
It should be appreciated that the aforementioned alerts may also be set to have “soft alarm” and “hard alarm” conditions. A soft alarm condition can provide a warning of impending hazardous levels and a hard alarm condition can indicate the actual occurrence of hazardous levels. By way of example but not limitation, different colors, patterns or intensities may indicate the severity of the detected condition. Alternatively, the LED and vibrate/noise alarms may be associated with a soft alarm condition and the interruption of the miner's light may be associated with a hard alarm condition.
Breathing air monitor (BAM) 200 may also be provided with safety mechanisms including a low battery indicator, a reset button and a general on/off switch, etc.
Thus it will be appreciated that when breathing air monitor (BAM) 200 is combined with a miner's light, there is effectively created a “smart” light, i.e., a light capable of detecting the presence of a hazardous atmospheric condition and alerting a user to the same.
It should also be appreciated that the novel breathing air monitor (BAM) of the present invention is provided in a form which is consistent with the construction of miner's light 205. Thus, in one form of the invention, the miner's light is manufactured with the novel breathing air monitor (BAM) 200 already combined to the miner's light, e.g., within or as an expansion to the main housing of the miner's light. In another form of the invention, breathing air monitor (BAM) 200 is constructed so that it may be retroactively added onto an existing miner's light. Thus, in one form of the invention, and looking now at
It should be appreciated that, by combining the breathing air monitor (BAM) of the present invention with the self-contained breathing apparatus (SCBA) of the present invention, a novel and highly advantageous self rescuer system can be provided. More particularly, since the SCBA system provides the miner with a choice of different breathing options (e.g., connection to breathable air, use of a CO absorber, etc.), and since the BAM system provides the miner with an indication of the nature of an atmospheric threat, the miner can apply their SCBA system in the most efficient manner possible. By way of example but not limitation, where the SCBA system has a limited supply of breathable air and a CO absorber, and where the BAM system advises the miner that the atmospheric threat comprises CO, the miner can choose to use the CO absorber and conserve the limited supply of breathable air. On the other hand, if the BAM system advises the miner that the atmospheric threat comprises methane, the miner can use the limited supply of breathable air provided by the SCBA system.
As used herein, the terms “CO absorber” and “carbon monoxide absorber” are intended to mean any apparatus which removes CO (carbon monoxide) from the air. Thus, the terms “CO absorber” and “carbon monoxide absorber” may refer to apparatus which literally absorbs CO (carbon monoxide) from the air, or it may refer to apparatus which includes a catalyst that oxidizes the CO (carbon monoxide) into CO2 (carbon dioxide) whereby to “absorb” the CO (carbon monoxide) from the air (i.e., to remove the carbon monoxide from the air), etc.
While the present invention has been described in terms of certain exemplary preferred embodiments, it will be readily understood and appreciated by those skilled in the art that it is not so limited, and that many additions, deletions and modifications may be made to the preferred embodiments discussed herein without departing from the scope of the invention.
This patent application is a division of pending prior U.S. patent application Ser. No. 12/148,595, filed Apr. 21, 2008 by Paul A. Chambers for SELF RESCUER INCLUDING SELF-CONTAINED BREATHING APPARATUS (SCBA) AND BREATHING AIR MONITOR (BAM), which in turn: (i) is a continuation-in-part of pending prior U.S. patent application Ser. No. 12/006,667, filed Jan. 3, 2008 now U.S. Pat. No. 8,118,022 by Paul A. Chambers for SELF-CONTAINED BREATHING APPARATUS (SCBA) WITH SAFETY QUICK DISCONNECT FOR PERMITTING SAFE AND READY ACCESS TO A REPLACEMENT BREATHING COMPONENT; (ii) claims benefit of prior U.S. Provisional Patent Application Ser. No. 60/925,314, filed Apr. 19, 2007 by Paul A. Chambers for SELF CONTAINED SELF RESCUER—PLUS; and (iii) claims benefit of prior U.S. Provisional Patent Application Ser. No. 60/965,464, filed Aug. 20, 2007 by Paul A. Chambers for UNIVERSAL MINER SELF RESCUER (UMSR). The above-identified patent applications are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2948553 | Gill et al. | Aug 1960 | A |
3077880 | Morton, Jr. | Feb 1963 | A |
3908649 | Eckstein | Sep 1975 | A |
4168706 | Fletcher et al. | Sep 1979 | A |
4300547 | Pasternack | Nov 1981 | A |
4342913 | Shepherd | Aug 1982 | A |
4409978 | Bartos | Oct 1983 | A |
4569223 | Hubner | Feb 1986 | A |
4794923 | Bartos | Jan 1989 | A |
4821711 | Eckstein et al. | Apr 1989 | A |
4959637 | Woods et al. | Sep 1990 | A |
5036841 | Hamilton | Aug 1991 | A |
5297544 | May et al. | Mar 1994 | A |
5562092 | George | Oct 1996 | A |
5619988 | Mattila et al. | Apr 1997 | A |
5746199 | Bayron et al. | May 1998 | A |
6761162 | Swann | Jul 2004 | B1 |
8118022 | Chambers | Feb 2012 | B2 |
20020135488 | Hibbs et al. | Sep 2002 | A1 |
20020155622 | Slater et al. | Oct 2002 | A1 |
20030188744 | Deas et al. | Oct 2003 | A1 |
20040220753 | Tabe | Nov 2004 | A1 |
20060076896 | Osborn et al. | Apr 2006 | A1 |
20060175565 | Nungesser et al. | Aug 2006 | A1 |
20060201509 | Forsyth et al. | Sep 2006 | A1 |
20070060874 | Nesbitt et al. | Mar 2007 | A1 |
Entry |
---|
Kutz, D.H., Workman wearing all service gas mask and holding mine lamp, MSHA Accident Archive, Bureau of Mines OT Collection, 1925. |
Ocenco, Inc. EBA 6.5 product brochure, Dec. 3, 2003, http://web.archive.org/web/20031203154508/http://ocenco.com/EBA6.5.pdf. |
Kyriazi et al., “Self-Contained Self-Rescuer Field Evaluation: Seventh Phase Results”, Mar. 2002. |
Number | Date | Country | |
---|---|---|---|
20120132200 A1 | May 2012 | US |
Number | Date | Country | |
---|---|---|---|
60925314 | Apr 2007 | US | |
60965464 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12148595 | Apr 2008 | US |
Child | 13373195 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12006667 | Jan 2008 | US |
Child | 12148595 | US |