Self-retaining sutures having effective holding strength and tensile strength

Information

  • Patent Grant
  • 8852232
  • Patent Number
    8,852,232
  • Date Filed
    Wednesday, August 4, 2010
    14 years ago
  • Date Issued
    Tuesday, October 7, 2014
    10 years ago
Abstract
A barbed suture with a first end and a second end and a body with a plurality of barbs extending from the body. Each barb causes the suture to resist movement in an opposite direction from which the barb faces. Projections extend from said suture. The projections can also engage tissue. The barbs cover the projections when the first end of the suture is moved in tissue and exposes the projections in order to engage tissue when the suture is moved in the direction of the second end through tissue.
Description
BACKGROUND OF THE INVENTION

This invention relates, in general, to a barbed suture useful for connecting bodily tissue in various surgical contexts, and more particularly, to the optimization of the disposition and/or configuration of the barbs on such barbed sutures.


TECHNICAL FIELD

Various surgical methods employing sutures have been used in the past for closing or binding together wounds in human or animal tissue, such as skin, muscles, tendons, internal organs, nerves, blood vessels, and the like. More specifically, the surgeon may use a surgical needle with an attached conventional suture (which can be a smooth monofilament or can be a multi-filament) to pierce the tissue alternately on opposing faces of the wound and thus sew the wound closed. Whether the wound is accidental or surgical, loop stitching is the method often used, especially for surface wounds. The surgical needle is then removed and the ends of the suture are tied, typically with at least three overhand throws to form a knot.


As is well known, conventional sutures can be of non-absorbable material such as silk, nylon, polyester, polypropylene, or cotton, or can be of bio-absorbable material such as glycolic acid polymers and copolymers or lactic acid polymers and copolymers.


Since the time of their conception, barbed sutures, which are generally of the same materials as conventional sutures, have offered numerous advantages over closing wounds with conventional sutures. A barbed suture includes an elongated body that has one or more spaced barbs, which project from the body surface along the body length. The barbs are arranged to allow passage of the barbed suture in one direction through tissue but resist movement of the barbed suture in the opposite direction. Thus, the main advantage of barbed sutures has been the provision of a non-slip attribute. Accordingly, barbed sutures do not have to be knotted, like conventional sutures. Like a conventional suture, a barbed suture may be inserted into tissue using a surgical needle.


For instance, U.S. Pat. No. 3,123,077 to Alcamo describes an elongated cord for sewing human flesh, where the cord has a body portion and sharp-edged, resilient barbs projecting from the body at acute angles relative to the body. The barbed suture can be passed through tissue in one direction, but resists movement in the opposite direction.


Sutures with barbs disposed in a bidirectional arrangement, also called double-armed sutures, are shown in U.S. Pat. No. 5,931,855 to Buncke and U.S. Pat. No. 6,241,747 to Ruff More particularly, the suture has barbs facing toward one end of the suture for about half the suture length and barbs facing in the opposite direction toward the other end of the suture for the other half of the suture length. This arrangement allows the barbs to move in the same direction as each respective suture end is inserted into the first and second sides of a wound. Such bi-directional barbed sutures not only are especially suitable for closing wounds with edges prone to separation, but also obviate the need to secure suture ends together with knotted loops.


Of interest is European Published Patent Application No. 1,075,843 A1 to Sulamanidze and Mikhailov, published Feb. 2, 2001, derived from PCT/RU99/00263 (published as WO 00/51658 on Sep. 8, 2000), priority to RU 991 03732 (Mar. 3, 1999), which shows conical barbs arranged sequentially along the length of a thread and oriented in a direction opposite to that of the thread tension, with the distance between barbs being not less than 1.5 times the thread diameter.


Also of interest is U.S. Pat. No. 5,342,376 to Ruff. This patent shows an insertion device that is useful for positioning a barbed suture in order to close a wound. The insertion device has a tubular body for receiving a barbed suture, and preferably also has a handle to facilitate manipulation of the device by the surgeon. The insertion device is recommended for use with a barbed suture where the suture portion being inserted includes barbs facing a direction opposed to the direction of insertion. Such sutures with barbs opposing the direction of insertion are also shown in '376 to Ruff


The disclosures of all patents and patent applications mentioned here are incorporated by reference.


Escarpment of barbs into a monofilament, depending on the barb cut depth, reduces the straight pull tensile strength since the effective suture diameter is decreased. However, the straight pull tensile strength of a barbed suture should be compared to the minimum knot pull strength of a conventional suture (a non-barbed suture) in accordance with the United States Pharmacopoeia since failure of conventional sutures (which have to be knotted and must meet a minimum knot pull tensile strength) occurs most frequently at the knot due to increased local stress.


To optimize the performance of a barbed suture, it is advantageous to consider varying the barb geometry (barb cut angle, barb cut depth, barb cut length, barb cut distance, etc.) and/or the spatial arrangement of the barbs. This should not only enhance the tensile strength of a barbed suture, but also should enhance the ability of a barbed suture in holding and maintaining wound edges together. Unlike conventional sutures, which place tensions directly at the knots, barbed sutures can spread out the tension along the escarped suture length, often evenly along the length. Optimizing the disposition and/or the configuration of the barbs should therefore further increase the effectiveness of the new barbed suture in maximizing the holding strength and minimizing the gap formation along the wound edges. The latter is particularly beneficial for promoting wound healing.


Also, such new barbed sutures should approximate tissue quickly with appropriate tension, alleviate distortion of tissue, and help to minimize scarring, due to the self-retaining benefits imparted by the barbs. The new barbed sutures would be especially useful in surgeries where minimization of scarring is imperative, such as cosmetic surgery, as well as in surgeries where space is limited, such as endoscopic surgery or microsurgery.


SUMMARY OF THE INVENTION

Accordingly, the present invention provides a barbed suture for connecting human or animal tissue. The barbed suture comprises an elongated body having a first end and a second end. The barbed suture further comprises a plurality of barbs projecting from the body. Each barb is adapted for enabling the barbed suture to resist movement, when in tissue, in the direction that is opposite from the direction in which that barb faces. The barbed suture further comprises the barbs being disposed on the body in a disposition selected from a staggered disposition, a twist cut multiple spiral disposition, an overlapping disposition, a random disposition, or combinations thereof.


For the staggered disposition, the twist cut multiple spiral disposition, and/or the overlapping disposition, the barbs may all be facing toward only one of the first and second ends. Alternatively, the barbed suture may have at least a first portion and a second portion, where the barbs of the first portion are facing toward the first end and the barbs of the second portion are facing toward the second end.


Also, in an alternative embodiment, the present invention provides a barbed suture for connecting human or animal tissue, where the suture comprises an elongated body having a first end and a second end. The suture further comprises a plurality of barbs projecting from the body. Each barb is adapted for enabling the suture to resist movement, when the suture is in tissue, in the direction that is opposite from the direction in which that barb faces. The suture further comprises the barbs having a configuration selected from a barb cut angle θ ranging from about 140 degrees to about 175 degrees, a barb cut depth with a ratio of cut depth to suture diameter ranging from about 0.05 to about 0.6, a barb cut length with a ratio of cut length to suture diameter ranging from about 0.2 to about 2, a barb cut distance with a ratio of cut distance to suture diameter ranging from about 0.1 to about 6, a corrugated underside, an arcuate base, varying sizes, or combinations thereof.


For the twist cut multiple spiral disposition, the barbed suture preferably has a spirality α angle ranging from about 5 degrees to about 25 degrees.


For the overlapping disposition, it is meant that at least two adjacent barbs are disposed where one overlaps the other. During escarpment of the barbs, the overlapping is created by a barb (i.e., the overlapping barb) being escarped into the topside of another adjacent barb (i.e., the overlapped barb), and so on. Hence, part of the topside of the overlapped barb becomes part of the underside of the overlapping barb, and so on. Thus, with the overlapping disposition, the barb cut distance between the overlapping barb and the overlapped barb may be shorter than the barb cut length of overlapped second barb, whereas, in general for barbed sutures, the barb cut distance between two barbs≧the barb cut length.


In still another embodiment, the present invention provides a barbed suture for connecting human or animal tissue in combination with a surgical needle, where the combination comprises a barbed suture attached to a surgical needle. The suture comprises a plurality of barbs projecting from an elongated body having a first end and a second end. Each barb is adapted for enabling the suture to resist movement, when the suture is in tissue, in the direction that is opposite from the direction in which that barb faces. The ratio of the surgical needle diameter to the suture diameter preferably is about 3:1 or less. Suitably, any of the inventive barbed sutures described here may be attached to a surgical needle.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A is a side view of one embodiment of the present invention, showing a barbed suture with barbs disposed in a 180 degree staggered spacing;



FIG. 1B is a sectional view along line 1B-1B of the barbed suture in FIG. 1A;



FIG. 2A is a side view of another embodiment of the present invention, showing a barbed suture that is bi-directional with barbs disposed in a 180 degree staggered spacing;



FIG. 2B is a sectional view along line 2B-2B of the barbed suture in FIG. 2A;



FIG. 3A is a side view of another embodiment of the present invention, showing a barbed suture with barbs disposed in a 120 degree staggered spacing;



FIG. 3B is a sectional view along line 3B-3B of the barbed suture in FIG. 3A;



FIG. 4A is a side view of another embodiment of the present invention, showing a barbed suture that is bidirectional with barbs disposed in a 120 degree staggered spacing;



FIG. 4B is a sectional view along line 4B-4B of the barbed suture in FIG. 4A;



FIG. 5A is a side view of another embodiment of the present invention, showing a barbed suture with barbs disposed in a twist cut multiple spiral disposition;



FIG. 5B is a sectional view along line 5B-5B of the barbed suture in FIG. 5A;



FIG. 6A is a side view of another embodiment of the present invention, showing a barbed suture that is bidirectional with barbs disposed in a twist cut multiple spiral disposition;



FIG. 6B is a sectional view along line 6B-6B of the barbed suture in FIG. 6A;



FIG. 7A is a sectional side view of a barbed suture, which is bidirectional with barbs disposed in a twist cut multiple spiral disposition like the barbed suture in FIG. 6A, but illustrated in an enlarged section;



FIG. 7B is the sectional side view as illustrated in FIG. 7A, but rotated and clamped to align the barbs for measurement of the cut distance between the barbs;



FIG. 8 is a side view of another embodiment of the present invention, showing a barbed suture with barbs in a random disposition;



FIG. 9 is a sectional side view of another embodiment of the present invention, showing a barbed suture having a barb with a corrugated or serrated underside;



FIG. 10A is a sectional perspective view another embodiment of the present invention, showing a barbed suture having a barb with an arcuate base;



FIG. 10B is a sectional top plan view of the barbed suture in FIG. 10A;



FIG. 10C is a cross-sectional view along line 10C-10C of FIG. 10B;



FIG. 10D is a cross-sectional view along line 10D-10D of FIG. 10B;



FIG. 11 is a sectional side view of another embodiment of the present invention, showing a barbed suture with barbs of various sizes;



FIG. 12A is a sectional perspective view of another embodiment of the present invention, showing a barbed suture with barbs in an overlapping disposition;



FIG. 12B is a perspective view of a portion of the overlapping barbs of the suture of FIG. 12A;



FIG. 12C is a plan view of the portion of barbs of FIG. 12B;



FIG. 12D is a side view along line 12D-12D of FIG. 12C; and



FIGS. 13A, 13B, 13C, and 13D show various surgical needles, where a barbed suture is attached to each surgical needle.





DETAILED DESCRIPTION

As used here, the term wound means a surgical incision, cut, laceration, severed tissue or accidental wound in human or animal skin or other human or animal bodily tissue, or other condition in a human or animal where suturing, stapling, or the use of another tissue connecting device may be required.


Also as used here, the term tissue includes, but is not limited to, tissues such as skin, fat, fascia, bone, muscle, organs, nerves, or blood vessels, or fibrous tissues such as tendons or ligaments.


Moreover, the term polymer as used here generally includes, but is not limited to, homopolymers, copolymers (such as block, graft, random and alternating copolymers), terpolymers, et cetera, and blends and modifications thereof Furthermore, the term polymer shall include all possible structures of the material. These structures include, but are not limited to, isotactic, syndiotactic, and random symmetries.


Although the sutures are described below in a preferred embodiment with a circular cross section, the sutures could also have a non-circular cross sectional shape that could increase the surface area and facilitate the formation of the barbs. Other cross sectional shapes may include, but are not limited to, oval, triangle, square, parallelepiped, trapezoid, rhomboid, pentagon, hexagon, cruciform, and the like. Typically, barbs are cut into a polymeric filament that has been formed by extrusion using a die with a circular cross section, and thus, the cross section of the filament will be circular, as that is what results during such extrusion. However, extrusion dies can be custom made with any desired cross-sectional shape.


Hence, the term diameter as used here is intended to mean the transverse length of the cross section, regardless of whether the cross section is circular or some other shape.


Suitable diameters for the inventive sutures described below may range from about 0.001 mm to about 1 mm, and of course, the diameter may be from about 0.01 mm to about 0.9 mm, or from about 0.01 5 mm to about 0.8 mm The typical diameter ranges from about 0.01 mm to about 0.5 mm The length of the suture can vary depending on several factors such as the length and/or depth of the wound to be closed, the type of tissue to be joined, the location of the wound, and the like. Typical suture lengths range from about 1 cm to about 30 cm, more particularly from about 2 cm to about 22 cm.


The terms staggered and staggering as used here in relation to the disposition of barbs on a suture are intended to mean that the suture has at least two sets of barbs that are offset with respect to each other, where the first set is aligned longitudinally on the suture and the second set is aligned longitudinally on the suture, but a plane perpendicular to the suture and cutting transversely through the suture and intersecting the base of a barb of the first set will not intersect the base of a barb of the second set.


The barbs project from the exterior surface of the suture body on which the barbs are disposed. Depending on the intended end use of the barbed suture, barbs of different sizes may be employed. In general, larger barbs are more suitable for joining certain types of tissue such as fat tissue or soft tissue. On the other hand, smaller barbs are more suitable for joining other types of tissue, such as collagen dense tissue.


As noted above, barbed sutures may be made from the same materials used for making conventional loop sutures. Any particular chosen material for the barbed suture depends on the strength and flexibility requirements.


More specifically, barbed sutures may be formed from a bio-absorbable material that allows the suture to degrade and thus to be absorbed over time into the tissue as the wound heals. Generally, bio-absorbable materials are polymeric, and depending on the particular polymer selected, the degradation time in the wound ranges from about 1 month to over 24 months. The use of bio-absorbable materials eliminates the necessity of removing the sutures from the patient.


Various bio-absorbable polymers include, but are not limited to, polydioxanone, polylactide, polyglycolide, polycaprolactone, and copolymers thereof Commercially available examples are polydioxanone (sold as PDS II, a trade name used by Ethicon for selling surgical sutures), copolymer of about 67% glycolide and about 33% trimethylene carbonate (sold as MAXON®, a trademark registered to American Cyanamid for surgical sutures), and copolymer of about 75% glycolide and about 25% caprolactone (sold as MONOCRYL®, a trademark registered to Johnson & Johnson for sutures and suture needles). Barbed sutures made from such bio-absorbable materials are useful in a wide range of applications.


Additionally, barbed sutures may be formed from a non-absorbable material, which may be a polymer. Such polymers include, but are not limited to, polypropylene, polyamide (also known as nylon), polyester (such as polyethylene terephthlate, abbreviated here as PET), polytetrafluoroethylene (such as expanded polytetrafluoroethylene, abbreviated here as ePTFE and sold by Gore as GORTEX®) polyether-ester (such as polybutester, which is the condensation polymerization of dimethyl terephthlate, polytetramethylene ether glycol, and 1,4-butanediol, and which is marketed by Davis & Geck and by U.S. Surgical, companies owned by Tyco, under the name NOVAFIL®, which is a trademark registered to American Cyanamid for surgical sutures), or polyurethane. Alternatively, the non-absorbable material may be metal (e.g., steel), metal alloys, natural fiber (e.g., silk, cotton, et cetera), and the like.


Most of the barbed sutures discussed below are described as having their ends being pointed and formed of a material sufficiently stiff to allow for piercing tissue. It is contemplated that the ends of the barbed sutures may comprise a surgical needle. In this embodiment, the barbed suture is adapted for attachment, such as by swaging, channel wrapping, heat shrinking, or eyelet threading to the surgical needle for insertion into tissue.


Attachment by swaging is well described and is typically accomplished by inserting the suture end into the surgical needle hole that is longitudinally disposed at one end of the surgical needle (usually the hole has been drilled longitudinally into one end of the needle), followed by crimping the resultant about the needle hole so that the suture is secured to the surgical needle for insertion into tissue. Also, some surgical needles with a longitudinal hole in one end are heat-shrinkable tubes that are heat shrunk after insertion of the suture in order to attach the suture to the surgical needle. Additionally, some surgical needles have a channel or trough at one end, and the suture is laid in the trough, followed by wrapping to secure the suture to the surgical needle. Surgical needles with a conventional eyelet type of hole transversely disposed in one end of the surgical needle could also be used, but are not preferred for barbed sutures. For the present invention, part of the discussion below regards surgical needles swaged with barbed sutures, but it is contemplated that any other suitable means of attaching needles can be employed.


Attachment of sutures and surgical needles is described in U.S. Pat. No. 3,981,307 Borysko, U.S. Pat. No. 5,084,063 to Korthoff, U.S. Pat. No. 5,102,418 to Granger et al., U.S. Pat. No. 5,123,911 to Granger et al., U.S. Pat. No. 5,500,991 to Demarest et al., U.S. Pat. No. 5,722,991 to Colligan, U.S. Pat. No. 6,012,216 to Esteves et al., and U.S. Pat. No. 6,163,948 to Esteves et al. A method for the manufacture of surgical needles is described in U.S. Pat. No. 5,533,982 to Rizk et al. Further, it is noted that the surgical needle may be coated, the coating allowing for the needle of the inventive combination surgical needle/barbed suture to be inserted into tissue with less force than if the surgical needle were not coated. The coating may be a polymer, for instance, a silicone resin coating. For example, an improved siliconized surgical needle that requires significantly less force to effect tissue penetration than a standard siliconized surgical needle is described in U.S. Pat. No. 5,258,013 to Granger et al.


The barbs are disposed in various arrangements on the body of the suture. The barbs may be formed using any suitable method, including injection molding, stamping, cutting, laser, and the like. With regard to cutting, in general, polymeric threads or filaments are purchased, and then the barbs are cut onto the filament body.


The cutting may be manual, but that is labor intensive and not cost effective.


A very suitable cutting machine is disclosed in U.S. patent application Ser. No. 09/943,733 to Genova et al., assignors to Quill Medical, filed Aug. 31, 2001, the disclosure of which is incorporated by reference. Such a cutting machine has a plurality of blades for escarpment of barbs onto a suture filament. A typical cutting machine for manufacturing barbed sutures utilizes a cutting bed, a vise, one or more blade assemblies, and sometimes a template or guide for the blades. The suture filament is placed in the bed and held by the vise, with the transverse direction of the blades generally disposed in the transverse direction of the suture filament, in order to cut a plurality of axially spaced barbs disposed on the exterior of a suture filament.


With reference now to the drawings, where like reference numerals designate corresponding or similar elements throughout the several views, shown in FIG. 1A is a side view of a barbed suture according to the present invention and generally designated at 1.


Suture 1 includes elongated body 2 that is generally circular in cross section and that terminates in end 4. End 4 is illustrated in one embodiment as being pointed for penetrating tissue, but it is contemplated that end 4 may comprise a surgical needle (not shown) for insertion into tissue. (The other end is not shown.) Also, suture 1 includes plurality of closely spaced barbs 7, 9 arranged in a staggered uni-directional disposition. More specifically, axially spaced barbs 7 are radially arranged about 180 degrees from and staggered with respect to axially spaced barbs 9, with barbs 7, 9 facing pointed end 4. First set of barbs 7 define a plane that is substantially coplanar with the plane defined by second set of barbs 9, and consequently, barbs 7, 9 define substantially the same one plane due to the radial 180 degree arrangement.



FIG. 1B, which is a cross sectional view along line 1B-1B of suture 1 in FIG. 1A, more clearly illustrates angle X, namely the radial 180 degree arrangement of barbs 7 with respect to barbs 9. As also can be seen from FIG. 1B, the stippling illustrates that first barb 7 of barbs 7 is closer to pointed end 4 (not shown in FIG. 1B), and thus, seems to be larger than farther away first barb 9 of barbs 9, due to the staggering. A transverse plane that is perpendicular to suture body 2 and that intersects the base of one barb 7 of barbs 7 does not intersect the base of any barb 9 of barbs 9.


Suture 1 may be made with a cutting machine that produces two sets of barbs 7, 9, usually one set at a time, in a staggered position along suture 1, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al.


First set of barbs 7 is created by placing and holding a suture filament in the vise, and then, the set of blades, with a predetermined length, splices into the suture filament at an angle selected to create barbs 7 pointing in one direction toward pointed end 4. Second set of barbs 9 is created similarly after offsetting the blades longitudinally (to create the staggering) approximately half of the longitudinal distance between two of barbs 7 and also rotating the suture filament about 180 degrees on the vise, which is equipped to accommodate first set of barbs 7 that are already cut.


Shown in FIG. 2A is suture 10, which is another embodiment of the present invention and is like suture 1, except that suture 10 is bidirectional. Suture 10 includes elongated body 12 that is generally circular in cross section. Elongated body 12 terminates in first and second pointed ends 14, 16 for penetrating tissue. Also, it is contemplated that one or both ends 14, 16 may comprise a surgical needle (not shown) for insertion into tissue. Also, suture 10 includes plurality of closely spaced barbs 17, 18, 19, 20 arranged in a staggered bidirectional disposition.


More specifically, plurality of axially spaced barbs 17 are radially arranged about 180 degrees from and staggered with respect to plurality of axially spaced barbs 19, with barbs 17, 19 facing pointed end 14 for a portion (about half of the length) of suture 10. Similarly, plurality of axially spaced barbs 18 are radially arranged about 180 degrees from and staggered with respect to plurality of axially spaced barbs 20, with barbs 18, 20 facing pointed end 16 for another portion (approximately the other half of the length) of suture 10. First set of barbs 17, 18 define a plane that is substantially coplanar with the plane defined by second set of barbs 19, 20. As a result, all of barbs 17, 18, 19, 20 define substantially the same one plane due to the radial 180 degree arrangement of first set of barbs 17, 18 with respect to second set of barbs 19, 20.



FIG. 2B is a cross sectional view along line 2B-2B of suture 10 in FIG. 2A, more clearly illustrating angle X, namely the radial 180 degree arrangement. Due to the staggering, first barb 17 of barbs 17 is closer to pointed end 14 (not shown in FIG. 2B), and thus, appears larger than farther away first barb 19 of barbs 19, as is illustrated by the stippling. A transverse plane that is perpendicular to suture body 12 and that intersects the base of one barb 17 of barbs 17 does not intersect the base of any barb 19 of barbs 19. Likewise, a transverse plane that is perpendicular to suture body 12 and that intersects the base of one barb 18 of barbs 18 does not intersect the base of any barb 20 of barbs 20.


Suture 10 may be made with the same cutting machine as suture 1, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al., except with the following change in blade direction.


For first set of bidirectional barbs 17, 18, after the suture filament is placed and held in the vise, the blades splice with a first cutting action into approximately half of the length of the suture filament to create barbs 17 facing in one direction toward pointed end 14. Next, the blades are rotated 180 degrees so that they are now disposed in the opposite direction and over the uncut half of the length. The blades are then allowed to splice into the other half of the length of the suture filament with a second cutting action to create barbs 18 facing in the opposite direction toward pointed end 16.


Next, the blades are offset longitudinally (to create the staggering) about half of the longitudinal distance between two of barbs 17, and also the suture filament is rotated about 180 degrees on the vice, which is equipped to accommodate first set of bidirectional barbs 17, 18 that are already cut. Then, for second set of bidirectional barbs 19, 20, the blades splice with a first cutting action into approximately half the length of the suture filament to create barbs 20 facing in one direction toward pointed end 16. The first cutting action is followed by rotating the blades longitudinally 180 degrees so that they are now disposed in the opposite direction and over the uncut half of the length. The blades are then allowed to splice into the other half of the length of the suture filament with a second cutting action to create barbs 19 facing in the opposite direction toward pointed end 14.


In an alternative embodiment (not shown) for bidirectional suture 10, the portion of suture 10 with barbs 17, 19 may have them facing toward pointed end 16 and the portion of suture 10 with barbs 18, 20 may have them facing toward pointed end 14. With this variation, the barbed suture would be inserted into tissue with an insertion device, such as that shown in the above-noted U.S. Pat. No. 5,342,376 to Ruff. Additionally, it is noted that, if desired, barbs may be escarped so that there may be two portions with barbs facing one end and one portion with barbs facing the other end, or two portions with barbs facing one end and two portions with barbs facing the other end, and so on (not shown), and thus, if a portion of barbs is not facing the suture end to which those barbs are adjacent, then, the barbed suture would be inserted into tissue with an insertion device.


An advantage of a barbed suture having a radial 180 degree arrangement with staggering is that the 180 degree spacing is readily fabricated on relatively small diameter filaments and the staggering improves anchoring performance. Thus, in thin and delicate tissue, where a smaller suture is desirable, the staggered 180 degree spacing generates effective anchoring performance.


Turning now to FIG. 3A, depicted is a side view of another embodiment of a suture according to the present invention, and generally designated at suture 30. Suture 30 is like suture 1 shown in FIG. 1A, except that the radial spacing for suture 30 is 120 degrees instead of 180 degrees as is shown for suture 1.


More particularly, suture 30 includes elongated body 32 that is generally circular in cross section and that terminates in pointed end 34 for penetrating tissue. It is contemplated that end 34 may comprise a surgical needle (not shown) so that the suture can be inserted into tissue. (The other end is not shown.) Additionally, suture 30 includes plurality of closely spaced barbs 35, 37, 39 arranged so that all face in the same direction toward pointed end 34. Hence, the disposition of barbs 35, 37, 39 is unidirectional.


Also, axial spaced barbs 35 are radially arranged about 120 degrees from and staggered with respect to axially spaced barbs 37, which are radially arranged about 120 degrees from and staggered with respect to axially spaced barbs 39. Hence, axially spaced barbs 39 are also arranged about 120 degrees from and staggered with respect to axially spaced barbs 35. As a result of the radial 120 degree arrangement, first set of barbs 35 define substantially the same one plane; second set of barbs 37 define substantially another same one plane; and third set of barbs 39 define substantially still another same one plane. Thus, suture 30 has barbs 35, 37, 39 arranged in a staggered uni-directional 120 degree disposition.



FIG. 3B is a cross sectional view along line 3B-3B of suture 30 in FIG. 3A and shows with more particularity angle Y, namely the radial 120 degree arrangement of barbs 35 with respect to barbs 37, barbs 37 with respect to barbs 39, and barbs 39 with respect to barbs 35.


As illustrated by the stippling, first barb 35 of barbs 35, because of the staggering, is closer to pointed end 34 (not shown in FIG. 3B), and thus, seems to be larger than farther away first barb 37 of barbs 37. Also, first barb 37 of barbs 37, due to the staggering, is closer to pointed end 34 (not shown in FIG. 3B), and thus, seems to be larger than even farther away first barb 39 of barbs 39. A transverse plane that is perpendicular to suture body 32 and that intersects the base of one barb 35 of barbs 35 does not intersect the base of any barb 37 of barbs 37. Likewise, a transverse plane that is perpendicular to suture body 32 and that intersects the base of one barb 37 of barbs 37 does not intersect the base of any barb 39 of barbs 39. Similarly, a transverse plane that is perpendicular to suture body 32 and that intersects the base of one barb 39 of barbs 39 does not intersect the base of any barb 35 of barbs 35.


Suture 30 may be made with the same cutting machine as suture 1, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. The cutting machine is now used to produce three sets of barbs 35, 37, 39, usually one set at a time, in a staggered position along suture 30.


First set of barbs 35 is created by placing and holding a suture filament in the vise, followed by the blades, after having been adjusted to a predetermined length, splicing into the suture filament at an angle that is chosen to create barbs 35 so that all are facing in the same direction toward pointed end 34.


Next, the blades are offset longitudinally (to create the staggering) approximately half of the longitudinal distance between two of barbs 35. Also, the filament is rotated about 120 degrees on the vise, which is equipped to accommodate first set of barbs 35 that have already been cut, and then second set of barbs 37 is created in a similar manner


Likewise, the blades are again offset longitudinally (to create the staggering) approximately half the longitudinal distance between two of barbs 35, and also the suture filament is rotated about 120 degrees on the vise, which is equipped to accommodate both already cut first set of barbs 35 and already cut second set of barbs 37. Following the longitudinal movement and rotation, third set of barbs 39 is created in a similar manner.


Preferably, each successive barb is escarped at a position about 120 degrees, around suture body 32 from the preceding barb and does not overlap with any other barb.


With reference now to FIG. 4A, illustrated is suture 40, another embodiment of the present invention. Suture 40 is similar to suture 30, except that suture 40 is bi-directional. Suture 40 includes elongated body 42 that is generally circular in cross section and that terminates in first and second pointed ends 44, 46 for penetrating tissue. Also, it is contemplated that one or both ends 44, 46 may comprise a surgical needle (not shown) in order to be inserted into tissue. Suture 40 further includes plurality of closely spaced barbs 47, 48, 49, 50, 51, 52 arranged in a staggered bi-directional disposition.


For about half of the length of suture 40, axially spaced barbs 47 are circumferentially arranged about 120 degrees from and staggered with respect to axially spaced barbs 49, which are radially arranged about 120 degrees from and staggered with respect to axially spaced barbs 51. Consequently, axially spaced barbs 51 are also arranged about 120 degrees from and staggered with respect to axially spaced barbs 47. Thus, a portion of suture 40 has all of barbs 47, 49, 51 facing in the same direction toward pointed end 44.


For the other half of the length of suture 40, axially spaced barbs 48 are radially arranged about 120 degrees from and staggered with respect to axially spaced barbs 50, which are radially arranged about 120 degrees from and staggered with respect to axially spaced barbs 52. Consequently, axially spaced barbs 52 are also arranged about 120 degrees from and staggered with respect to axially spaced barbs 48. Thus, another portion of suture 40 has all of barbs 48, 50, 52 facing in the same direction toward pointed end 46.


As a result of the radial 120 degree arrangement, first set of barbs 47, 48 define substantially the same one plane; second set of barbs 49, 50 define substantially another same one plane; and third set of barbs 51, 52 define substantially still another same one plane.



FIG. 4B, which is a cross sectional view along line 4B-4B of suture 40 in FIG. 4A, shows more clearly angle Y, namely the radial 120 arrangement with greater specificity. As illustrated by the stippling, first barb 47 of barbs 47, on account of the staggering, is closer to pointed end 44 (not shown in FIG. 4B), and thus, appears larger than farther away first barb 49 of barbs 49. Also because of the staggering, first barb 49 of barbs 49 is closer to pointed end 44 (not shown in FIG. 4B), and thus, appears larger than even farther away first barb 51 of barbs 51.


A transverse plane that is perpendicular to suture body 42 and that intersects the base of one barb 47 of barbs 47 does not intersect the base of any barb 49 of barbs 49. Likewise, a transverse plane that is perpendicular to suture body 32 and that intersects the base of one barb 49 of barbs 49 does not intersect the base of any barb 51 of barbs 51. Similarly, a transverse plane that is perpendicular to suture body 42 and that intersects the base of one barb 51 of barbs 51 does not intersect the base of any barb 47 of barbs 47. Also, a transverse plane that is perpendicular to suture body 42 and that intersects the base of one barb 48 of barbs 48 does not intersect the base of any barb 50 of barbs 50. Likewise, a transverse plane that is perpendicular to suture body 32 and that intersects the base of one barb 50 of barbs 50 does not intersect the base of any barb 52 of barbs 52. Similarly, a transverse plane that is perpendicular to suture body 42 and that intersects the base of one barb 52 of barbs 52 does not intersect the base of any barb 48 of barbs 48.


Suture 40 may be made with the same cutting machine as suture 1, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al., except with the following change in blade direction.


For first set of bi-directional barbs 47, 48, after the suture filament is placed and held in the vise, the blades splice with a first cutting action into approximately half of the length of the suture filament to create barbs 47 facing in one direction toward pointed end 44. Then, the blades are rotated 180 degrees so that they are now disposed in the opposite direction and over the uncut half of the length. The blades then are allowed to splice into the other half of the length of the suture filament with a second cutting action to create barbs 48 facing in the opposite direction toward pointed end 46.


Next, the blades are offset longitudinally (to create the staggering) for about half the longitudinal distance between two of barbs 47, and also the suture filament is rotated about 120 degrees on the vise, which is equipped to accommodate first set of bi-directional barbs 47, 48 that are already cut. Then, for second set of bi-directional barbs 49, 50, the blades splice with a first cutting action into approximately half of the length of the suture filament to create barbs 50 facing in one direction toward pointed end 46. The first cutting action is followed by rotating the blades 180 degrees so that they are now disposed in the opposite direction and over the uncut half of the suture filament. They then splice into the other half of the length of the suture filament with a second cutting action to create barbs 49 facing in the opposite direction toward pointed end 44.


Then, the blades are again offset longitudinally (to create the staggering) for about half the longitudinal distance between two of barbs 47. Additionally, the suture filament again is rotated about 120 degrees on the vise, which is equipped to accommodate already cut first set of bidirectional barbs 47, 48 and already cut second set of bidirectional barbs 49, 50. Following the longitudinal movement and rotation, the third set of bidirectional barbs 51, 52 are made by having the blades splice with a first cutting action into approximately half of the length of the suture filament to create barbs 51 facing in one direction toward pointed end 44. The first cutting action is followed by rotating the blades 180 degrees so that they are now disposed in the opposite direction and over the uncut half of the suture filament. They next splice into the other half of the length of the suture filament with a second cutting action to create barbs 52 facing in the opposite direction toward pointed end 46.


Preferably, each successive barb is escarped at a position about 120 degrees around suture body 42 from the preceding barb and does not overlap with any other barb.


In an alternative embodiment (not shown) for bidirectional suture 40, the portion of suture 40 having barbs 47, 49, 51 may have them facing toward pointed end 46 and the portion of suture 40 having barbs 48, 50, 52 may have them facing toward pointed end 44. With this variation, the barbed suture would be inserted into tissue with an insertion device, such as that shown in the above-noted U.S. Pat. No. 5,342,376 to Ruff. Additionally, it is noted that, if desired, barbs may be escarped so that there may be two portions with barbs facing one end and one portion with barbs facing the other end, or two portions with barbs facing one end and two portions with barbs facing the other end, and so on (not shown), and thus, if a portion of barbs is not facing the suture end that those barbs are adjacent, then, the barbed suture would be inserted into tissue with an insertion device.


An advantage of a barbed suture with a radial 120 degree arrangement is that the barbs exert force in three distinct planes that compliment each other, resulting in maximization of the retention force of the suture overall. As noted above, the staggering enhances anchoring performance.


Turning now to FIG. 5A, shown is another embodiment of the present invention, which is generally designated at suture 60, with radial spacing that is in a twist cut multiple spiral. Suture 60 includes elongated body 62 of generally circular cross section. Elongated body 62 terminates in pointed end 64 for penetrating tissue. Also, it is contemplated that end 64 may comprise a surgical needle (not shown) for insertion into tissue. Furthermore, suture 60 includes plurality of closely spaced barbs 67 arranged in a twist cut multiple spiral pattern around body 62 and facing in the same direction toward pointed end 64.



FIG. 5B is a cross sectional view along line 5B-5B of suture 60 in FIG. 5A. Due to the twist cut multiple spiral disposition, each respective barb 67 seems to be smaller and smaller as each is farther and farther away from pointed end 64 (not shown in FIG. 5B), the illusion of size difference being illustrated by the stippling.


Suture 60 may be constructed with a similar cutting machine as that used for making suture 1, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. With a twist cutting method, barbs 67 may be produced in multiple spirals that preferably are created at the same time as the suture filament is held stationary, instead of being rotated, when the cutting takes place.


More particularly, a suture filament that is about 7 inches (about 178 mm) in length, is longitudinally twisted for a portion of the suture length, such as 39 times for a portion that is about 4.5 inches (about 114 mm) of the suture length. Thus, an end is secured, and the other end is grasped and rotated 360 degrees, 39 times, so the portion of the suture filament is twisted when the suture is then placed and held in the vise.


Twisting preferably is performed 28 to 50 times, and may be performed more or less, such as 19 to 70 times. Suitably, twisting may be from about 2 to about 17 twists per inch, or about 3 to about 15 twists per inch, or about 5 to about 13 twists per inch (per inch being per 25.4 mm)


Next, the blades, after having been adjusted to a predetermined length, simultaneously splice into the suture filament. The cutting action makes cuts to create barbs 67 so that all are facing in the same direction toward pointed end 64. After twist cut multiple spiral barbed suture 60 is released from the vice and untwisted, barbs 67 are disposed in multiple spirals on suture 60.


Turning now to FIG. 6A, shown is another embodiment of the present invention, which is generally designated at suture 70. Suture 70 is of a twist cut multiple spiral disposition and thus is similar to suture 60, except that suture 70 is bidirectional. Suture 70 includes elongated body 72 that is generally circular in cross section and that terminates in first and second pointed ends 74, 76 for penetrating tissue. It is contemplated that one or both of ends 74, 76 may comprise a surgical needle (not shown) for insertion into tissue.


Suture 70 further includes plurality of closely spaced barbs 77, 78 arranged in two respective spiral patterns, each being a multiple spiral around body 72. Barbs 77, 78 are disposed on middle portion MP that is approximately 3 inches (approximately 76 mm) of suture 70, with each end portion EP of suture 70 being barb-free. More particularly, plurality of barbs 77 are arranged in a multiple spiral pattern with all barbs 77 facing toward pointed end 74 for a part (about half) of middle portion MP along the length of suture 70. Similarly, plurality of barbs 78 are arranged in a multiple spiral pattern with all barbs 78 facing toward pointed end 76 for another part (the other approximate half) of middle potion MP along the length of suture 70.



FIG. 6B is a cross sectional view along line 6B-6B of suture 60 in FIG. 6A. Due to the multiple spiral configuration, each respective barb 77 seems to be smaller and smaller as each is farther and farther away from pointed end 74 (not shown in FIG. 6B), as illustrated by the stippling.


Suture 70 may be made with the same cutting machine as suture 60, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al., but with the following change in blade direction. Using the twist cutting method, barbs 77 may be produced in multiple spirals that preferably are created at the same time, and then after the direction change for the blades, barbs 78 may be produced in multiple spirals that preferably are created at the same time. Thus during the cutting, the suture filament is held stationary instead of being rotated.


More specifically, a section of about 4.5 inches (about 114 mm) in length of a suture filament is twisted, such as 39 times for a suture about 7 inches (about 178 mm) in length. Thus, an end is secured, and the other end is grasped and rotated 360 degrees, 39 times, so the twisted section of the suture filament has about 8⅔ twists per inch (per 25.4 mm) when the suture filament is then is placed and held in the vise.


Twisting preferably is performed 28 to 50 times, and may be performed more or less, such as 19 to 70 times. Suitably, twisting may be from about 2 to about 17 twists per inch, or about 3 to about 15 twists per inch, or about 5 to about 13 twists per inch (per inch being per 25.4 mm)


Next, the blades, after having been adjusted to a predetermined length, splice into approximately half of the approximately 3 inch (approximately 76 mm) length of middle portion MP of the approximately 4.5 inch (approximately 114 mm) twisted section of the suture filament in a first cutting action with the blades making cuts to create barbs 77 so that all are facing in one direction toward pointed end 74. Depending on how many blades there are on the cutting machine and how many barbs 77 are desired, there may be one cutting motion to cut all barbs 77 simultaneously, or there may be repeated cutting motions until the desired number of barbs 77 are escarped into a portion of the suture filament.


Then, the blades are rotated 180 degrees so that they are now disposed in the opposite direction and over the other half of the approximately 3 inch (approximately 76 mm) length of middle portion MP of the approximately 4.5 inch (approximately 114 mm) twisted section of the suture filament. The blades are then allowed to splice into the other half in a second cutting action with the blades making cuts to create barbs 78 so that all are facing in the opposite direction toward pointed end 76. Depending on how many blades there are on the cutting machine and how many barbs 78 are desired, there may be one cutting motion to cut all barbs 78 simultaneously, or there may be repeated cutting motions until the desired number of barbs 78 are escarped into a portion of the suture filament.


When twist cut multiple spiral barbed suture 70 is released from the vise and untwisted, the first cuts and the second cuts result in barbs 77, 78 being in two respective multiple spiral patterns on two respective portions of suture 70, the two respective portions defining middle portion MP of about 3 inches (about 76 mm) in length.


More particularly, several twist cut multiple spiral, barbed sutures were manufactured from a monofilament having a diameter of about 0.018 inch (about 0.457 mm) and spun from polydioxanone (which is a synthetic absorbable suture material). A diameter of about 0.018 inch (about 0.457 mm) is slightly larger than the size 0 synthetic absorbable suture, which has a diameter range from about 0.35 mm to about 0.399 mm in accordance with the specifications of the United States Pharmacopoeia (USP).


Each suture contained a total of 78 barbs introduced in two respective multiple spiral patterns around the circumference of the suture. Since the barbed suture was bi-directional, the barbs were divided into a left group with 39 barbs disposed on a first portion of the suture and a right group with 39 barbs on a second portion of the suture, each group opposing the direction of the other group from the approximate middle of the suture. The specific cutting machine employed had 13 blades. Thus, for each group of 39 barbs, there were 3 cutting motions (3×13=39), with the blades being offset with a guide for each of the 3 cutting motions.


Each suture was about 7 inches (about 178 mm) long. The middle portion MP was about 3 inches (about 76 mm) long and contained the 78 barbs that were escarped into the suture filament. Extending beyond the 3 inch (76 mm) barbed middle portion MP were two unbarbed end portions EP of the suture that were each about 2 inches (about 51 mm) long. Depending on the suturing technique, one or both ends of the barbed suture may be sufficiently pointed and rigid for insertion into tissue, or may comprise a straight or curved surgical needle.


The strength of the twist cut, 7 inch (178 mm) barbed sutures was tested by two methods. One method was a straight pull tensile strength test with a Universal Tester and the other method was an in vivo performance test with dogs.


For the straight pull tensile strength measurement, testing was performed using a Test Resources Universal Tester, Model 200Q. The average reading of 10 repeated measurements made for each kind of suture was recorded for the barbed sutures and for the comparison unbarbed sutures.


Comparison unbarbed sutures were polydioxanone monofilaments (a synthetic absorbable suture material) of various suture diameters of about 0.018 inch (about 0.457 mm), about 0.015 inch (about 0.381 mm), and about 0.0115 inch (about 0.292 mm), which are respectively slightly larger than the United States Pharmacopoeia sizes 0, 2-0, and 3-0 for synthetic absorbable sutures. In accordance with United States Pharmacopoeia specifications for synthetic absorbable sutures, size 0 has a diameter range of about 0.35 mm to about 0.399 mm; size 2-0 has a diameter range of about 0.30 mm to about 0.339 mm; and size 3-0 has a diameter range of about 0.20 mm to about 0.249 mm.


Each barbed suture was gripped at each end by being held with cork gasket padding in two respective serrated jaws, whereas each unbarbed suture was gripped at each end by being wrapped around two respective capstan roller grips. Capstan rollers were used for holding the unbarbed sutures to avoid stress and distension.


The portion of each suture specimen between the two gripped places was about 5 inches (about 126 mm) in length, which, in the case of barbed sutures, contained the entire 3 inches (76 mm) of the barbed middle portion.


Each specimen was pulled longitudinally at a rate of about 10 inches (about 254 mm) per minute until breakage occurred. The peak load was recorded as the straight pull tensile strength.


The results are summarized in Table 6A below, and the far right column denotes the USP knot pull test minimum requirements for conventional (unbarbed) sutures made from a synthetic absorbable material.









TABLE 6A







(Tensile Strength)













USP Minimum




Straight Pull
Requirements for


Barbed or Unbarbed
Suture Size
(pounds)
Knot Pull (pounds)













Unbarbed
0
17.72
8.60


Unbarbed
2-0
11.86
5.91


Unbarbed
3-0
8.82
3.90


Barbed
0
7.03
not applicable









As can be seen, escarpment of barbs into the size 0 polydioxanone monofilament reduced the straight pull tensile strength by approximately 60% as compared to the conventional unbarbed size 0 polydioxanone monofilament (7.03 pounds=40% of 17.72 pounds).


However, the straight pull tensile strength of 7.03 pounds at breakage for the size 0 polydioxanone barbed suture (which, due to the escarpment of the barbs, has an effective diameter that is smaller than the diameter of the conventional unbarbed size 0 polydioxanone suture) compared favorably with the minimum USP knot pull requirement of 8.60 pounds for the size 0 polydioxanone conventional unbarbed suture.


6] Additional straight pull tensile strength tests were performed on additional size 0 polydioxanone barbed sutures, as discussed below in Tables 7K-7Z, in connection with FIGS. 7A and 7B.


For the in vivo performance, 3 mongrel dogs, each about 14 kg, were used. On each dog, 7 incisions were made at the thorax (twice), thigh (twice), flank, ventral midline, and paramedian, each of the 7 incisions having 1, 2, or 3 closure sites. The length of each incision ranged from about 0.5 inch (about 12.5 mm) to about 4 inches (about 101 mm) and the depth of each incision was from the superficial dermis to the peritoneum.


Using the barbed sutures (all made from size 0 polydioxanone monofilament), 24 of the sites were closed. For comparison, the remaining sites were closed with various diameter sizes of conventional unbarbed sutures (1 site with size 2-0 silk braided filament, 6 sites with size 2-0 nylon monofilament, and 7 sites with size 3-0 polydioxanone monofilament), which were knotted. All closing of sites was performed according to a randomized scheme.


The dogs were monitored daily, and then subjected to euthanasia at 14 days. At the time of death, the incisions were evaluated macroscopically. With regard to various tissues, incision sizes, and locations on the dogs, all sites apposed with the size 0 polydioxanone barbed sutures stayed closed and appeared to be healing normally throughout the 14 day observation period. No dehiscence occurred.


The site apposed with the conventional unbarbed silk sutures and the sites apposed with the conventional unbarbed polydioxanone sutures also healed will without complications. No dehiscence occurred.


For the 6 topical skin sites closed with the size 2-0 nylon monofilament conventional unbarbed sutures, 3 sites exhibited partial or complete suture loss, apparently due to self-mutilation by the dogs. Knots in the conventional sutures possibly caused discomfort by creating localized pressure, and animals cannot understand that they should not manipulate the sutures. Thus, barbed sutures should help obviate the problem of an animal manipulating and pulling out the sutures.


In summary, the in vivo performance of the size 0 polydioxanone barbed sutures was efficacious when compared to the size 2-0 silk braided filament unbarbed sutures, the size 2-0 nylon monofilament unbarbed sutures, and the size 3-0 polydioxanone monofilament unbarbed sutures.


In an alternative embodiment (not shown) for bidirectional twist cut, multiple spiral suture 70, the portion of suture 70 on which is disposed barbs 77 may have barbs 77 facing toward pointed end 76 and the portion of suture 70 on which is disposed barbs 78 may have barbs 78 facing toward pointed end 74. With this variation, the barbed suture would be inserted into tissue with an insertion device, such as that shown in the above-noted U.S. Pat. No. 5,342,376 to Ruff Also if desired, it is noted that barbs may be escarped so that there may be 2 portions with barbs facing an end and 1 portion with barbs facing the other end, or 2 portions with barbs facing an end and 2 portions with barbs facing the other end, and so on (not shown), and thus, if a portion of barbs is not facing the suture end to which those barbs are adjacent, then, the barbed suture would be inserted into tissue with an insertion device.


An advantage of a barbed suture having a twist cut, multiple spiral disposition is that such a barbed suture affords better wound holding capability as compared to the 120 degree spaced barbed suture. The reason is that the twist cut, multiple spiral pattern results in groups of barbs that complement successive and preceding groups of barbs, which tends to provide improved anchoring when the suture is in tissue. This feature is especially useful for tissue such as fat tissue, which has fewer connective fibers compared with other types of tissues, so that greater suture retention force is desirable.


With reference now to FIG. 7A, shown is a sectional side view of barbed suture 80. Barbed suture 80 has plurality of closely spaced barbs 81 on elongated suture body 82 of generally circular cross section. Each barb 81 has barb tip 85. Shown are suture longitudinal axis A, suture diameter SD, barb length L, barb cut depth D, barb cut angle θ, cut distance P, spirality angle α, cut-out depression CD, and tip T of cut-out depression CD.



FIG. 7B is the sectional side view as illustrated in FIG. 7A, but rotated and clamped to align the barbs for measurement of the cut distance P between barbs 81.


Barbed suture 80 is a twist cut, multiple spiral, bidirectional barbed suture, like suture 70 in FIG. 6A, but illustrated as an enlarged section in order to show more detail with respect to the configuration of barbs 81 vis-à-vis suture longitudinal axis A, suture diameter SD, barb length L, barb cut depth D, barb cut angle θ, cut distance P, spirality angle α, cut-out depression CD, and terminus T of cut-out depression CD.


More specifically, several twist cut, multiple spiral, barbed sutures were manufactured from monofilament spun from polydioxanone and having a diameter of about 0.018 inch (about 0.457 mm, which is slightly more than the USP requirement for a size 0 synthetic absorbable suture). Each suture contained 78 barbs introduced in 2 separate multiple spiral patterns around the circumference of the suture. Since the barbs were bi-directional, they were divided into a left group with 39 barbs and a right group with 39 barbs, each group opposing the direction of the other group from the approximate middle of the suture. Each suture was about 7 inches (about 178 mm) long. The middle portion was about 3 inches (about 76 mm) of the suture and contained the 78 barbs that were escarped into the suture filament. Extending beyond the 3 inch (76 mm) barbed middle portion toward each suture end were two unbarbed end portions of the suture filament that were each about 2 inches (about 51 mm) long. Depending on the stitching technique, one or both ends of the barbed suture may be sufficiently pointed and rigid for insertion into tissue, or may comprise a straight or curved needle.


In order to characterize the configuration of barbs 81, an Optem Zoom 100 custom microscope with both ring and back lighting was used together with a CCD brand video camera in order to measure selected barbs 81 at ×21.5 magnification from each of the left and right groups.


The average was calculated for 10 repeated measurements (5 from the left group of barbs and 5 from the right group of barbs on the same suture) that were made for each of cut angle θ and cut depth D. Barb cut angle θ was measured from the surface of the cut to the outer surface of barbed suture 80. Barb cut depth D was measured along a perpendicular from the outer surface of barbed suture 80 toward longitudinal axis A of barbed suture 80. The measurements enabled cut length L to be calculated using the following formula.

L=D/{Sin(180−θ)}


Also, angle α of spirality was measured microscopically on various barbed sutures 80 as follows. When the twisted suture filament is gripped by the vise during cutting of barbs 81, the vise leaves a very light mark designated as line M impressed on the suture filament. Thus, line M will be parallel to the longitudinal axis of the vise while the twisted suture filament is being held in the vise. If the vise does not leave a light mark on the suture filament, then line M can be determined in that it is parallel to a line connecting the two respective terminus T of the two successive cut-out depressions CD left in suture body 82 from the escarpment of two successive barbs 81. After cutting of barbs 81, when barbed suture 80 is released from the vise and untwisted so that suture 80 lies free, then line M spirals on suture body 82 around barbed suture 80, forming angle α of spirality.


Specifically for measuring spirality angle α, the Optem Zoom 100 custom microscope was set with ring lighting at 60 and back lighting at coarse 12 and fine 10. Also, imaging analysis system software was used. Spirality angle α was then measured between the outer surface of the barbed suture and line M. The average was calculated for 10 repeated measurements (5 from the left group of barbs and 5 from the right group of barbs on the same suture).


Then, barbed suture 80 was mounted in a twisting device with one end of suture 80 clamped in a fixed position. The other end of suture 80 was rotated to insert twist until barbs 81 were aligned. Next on barbed suture 80, longitudinal cut distance P between two adjacent barbs 81 was measured microscopically between the two respective terminus T of the two successive cut-out depressions CD left in suture body 82 from the escarpment of two successive barbs 81. The average was calculated for 10 repeated measurements (5 from the left group of barbs and 5 from the right group of barbs on the same suture).


The results are summarized in the following Tables 7A, 7B, 7C, and 7D.









TABLE 7A







(size 0 barbed suture)















Ratio of D,






L, or P over






Suture






Diameter


Measurement
Units
Left
Right
(0.457 mm)





cut angle θ
degrees
156 +/− 2  
157 +/− 1 
not






applicable


cut depth D
mm
0.15 +/− 0.02
0.16 +/− 0.04
0.35


cut length L
mm
0.36 +/− 0.03
0.40 +/− 0.10
0.87


cut distance P
mm
0.90 +/− 0.17
0.88 +/− 0.15
1.92
















TABLE 7B







(size 0 barbed suture)















Ratio of D, L, or P





Standard
over Suture Diameter


Measurement
Units
Average
Deviation
(0.457 mm)














cut angle θ
degrees
151
1.642
not applicable


cut depth D
mm
0.215
0.027
0.47


cut length L
mm
0.446
0.042
0.97


cut distance P
mm
0.962
0.073
2.1


spirality angle α
degrees
20.833
1.602
not applicable
















TABLE 7C







(size 0 barbed suture)















Ratio of D, L, or P





Standard
over Suture Diameter


Measurement
Units
Average
Deviation
(0.457 mm)














cut angle θ
degrees
154
2.870
not applicable


cut depth D
mm
0.205
0.033
0.45


cut length L
mm
0.469
0.044
1.03


cut distance P
mm
0.975
0.103
2.13


spirality angle α
degrees
19.333
1.506
not applicable
















TABLE 7D







(size 0 barbed suture)















Ratio of D, L, or P





Standard
over Suture Diameter


Measurement
Units
Average
Deviation
(0.457 mm)














cut angle θ
degrees
155
2.390
not applicable


cut depth D
mm
0.186
0.026
0.41


cut length L
mm
0.437
0.039
0.96


cut distance P
mm
0.966
0.071
2.11


spirality angle α
degrees
18.833
2.137
not applicable









Also, some additional measurements of angle α were performed on a few additional bidirectional twist cut, multiple spiral barbed sutures with a diameter of about 0.018 inch (about 0.457 mm, slightly more than the USP requirement for a size 0 synthetic absorbable suture). The mean average was 16.87 and the standard deviation was +0.85.


Additionally, measurements of barb cut angle θ, barb length L, barb cut depth D, and cut distance P were performed on 3 additional bi-directional twist cut, multiple spiral barbed sutures like sutures 80, but having a diameter of about 0.0115 inch (about 0.292 mm, which is slightly more than the USP requirement for a size 3-0 synthetic absorbable suture), and measurements of spirality angle α were performed on 2 of these 3 additional barbed sutures. Also, measurements of barb cut angle θ, barb length L, barb cut depth D, cut distance P, and spirality angle .alpha. were performed on 3 additional bi-directional twist cut, multiple spiral barbed sutures like sutures 80, but with a diameter of about 0.015 inch (about 0.381 mm, which is slightly more than the USP requirement for a size 2-0 synthetic absorbable suture). The results are summarized in the following Tables 7E, 7F, 7G, 7H, 7I, and 7J.









TABLE 7E







(size 3-0 barbed suture)















Ratio of D, L, or






P over





Standard
Suture Diameter


Measurement
Units
Average
Deviation
(0.292 mm)














cut angle θ
degrees
166
1.651
not applicable


cut depth D
mm
0.107
0.007
0.37


cut length L
mm
0.443
0.042
1.52


cut distance P
mm
0.956
0.079
3.27


spirality
degrees
not tested
not applicable
not applicable


angle α
















TABLE 7F







(size 3-0 barbed suture)















Ratio of D, L, or P over





Standard
Suture Diameter


Measurement
Units
Average
Deviation
(0.292 mm)














cut angle θ
degrees
164
2.055
not applicable


cut depth D
mm
0.106
0.006
0.36


cut length L
mm
0.395
0.042
1.35


cut distance P
mm
0.959
0.074
3.28


spirality
degrees
7.329
0.547
not applicable


angle α
















TABLE 7G







(size 3-0 barbed suture)















Ratio of D, L, or P





Standard
over Suture Diameter


Measurement
Units
Average
Deviation
(0.292 mm)














cut angle θ
degrees
165
1.031
not applicable


cut depth D
mm
0.104
0.009
0.36


cut length L
mm
0.390
0.035
1.34


cut distance P
mm
0.975
0.103
3.34


spirality angle α
degrees
7.258
0.636
not applicable
















TABLE 7H







(size 2-0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.381 mm)














cut angle θ
degrees
160.2
1.320
not applicable


cut depth D
mm
0.152
0.019
0.40


cut length L
mm
0.449
0.057
1.18


cut distance P
mm
0.944
0.098
2.48


spirality angle α
degrees
9.40
1.606
not applicable
















TABLE 7I







(size 2-0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.381 mm)














cut angle θ
degrees
161.0
1.707
not applicable


cut depth D
mm
0.158
0.014
0.41


cut length L
mm
0.489
0.054
1.28


cut distance P
mm
0.962
0.054
2.52


spirality angle α
degrees
7.96
1.075
not applicable
















TABLE 7J







(size 2-0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.381 mm)














cut angle θ
degrees
161.0
1.506
not applicable


cut depth D
mm
0.154
0.017
0.40


cut length L
mm
0.474
0.058
1.24


cut distance P
mm
0.973
0.068
2.55


spirality angle α
degrees
6.53
1.755
not applicable









Additional measurements were performed on several other twist cut, multiple spiral, barbed sutures manufactured from monofilament spun from polydioxanone and having a diameter of about 0.018 inch (about 0.457 mm, which is slightly more than the USP requirement for a size 0 synthetic absorbable suture) and thus similar to the above-described tested barbed sutures, except that these other barbed sutures were cut with a different cutting machine, namely a machine with one blade that moved longitudinally along the twisted filament between cutting strokes and that was controlled with a computer to make the various cuts for the escarpment of the barbs. These other barbed sutures were also tested for straight pull tensile strength and for chamois cloth closure strength. (A discussion of how chamois cloth closure strength is performed can be seen below in connection with FIGS. 13A and 13B.) The results for these other barbed sutures are summarized in the following Tables 7K-7Z.









TABLE 7K







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.6
0.718
not applicable


cut depth D
mm
0.221
0.011
0.48


cut length L
mm
0.479
0.022
1.05


cut distance P
mm
0.784
0.015
1.71


spirality angle α
degrees
12.9
0.453
not applicable
















TABLE 7L







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.4
0.947
not applicable


cut depth D
mm
0.216
0.014
0.47


cut length L
mm
0.465
0.024
1.02


cut distance P
mm
0.774
0.015
1.69


spirality angle α
degrees
13.2
0.349
not applicable
















TABLE 7M







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.3
0.576
not applicable


cut depth D
mm
0.227
0.015
0.50


cut length L
mm
0.489
0.034
1.07


cut distance P
mm
0.796
0.018
1.74


spirality angle α
degrees
13.1
0.193
not applicable
















TABLE 7N







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.8
0.612
not applicable


cut depth D
mm
0.207
0.007
0.45


cut length L
mm
0.453
0.016
0.99


cut distance P
mm
0.798
0.017
1.75


spirality angle α
degrees
13.6
0.560
not applicable
















TABLE 7O







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.9
0.549
not applicable


cut depth D
mm
0.188
0.016
0.41


cut length L
mm
0.413
0.030
0.90


cut distance P
mm
0.787
0.024
1.72


spirality angle α
degrees
13.8
0.270
not applicable
















TABLE 7P







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
153.1
0.655
not applicable


cut depth D
mm
0.204
0.007
0.45


cut length L
mm
0.451
0.019
0.99


cut distance P
mm
0.792
0.018
1.73


spirality angle α
degrees
13.6
0.410
not applicable
















TABLE 7Q







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
163.1
0.505
not applicable


cut depth D
mm
0.245
0.013
0.54


cut length L
mm
0.842
0.045
1.84


cut distance P
mm
0.774
0.009
1.69


spirality angle α
degrees
10.8
0.449
not applicable
















TABLE 7R







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
161.1
1.126
not applicable


cut depth D
mm
0.233
0.017
0.51


cut length L
mm
0.721
0.035
1.58


cut distance P
mm
0.773
0.010
1.69


spirality angle α
degrees
12.6
0.189
not applicable
















TABLE 7S







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
160.9
0.708
not applicable


cut depth D
mm
0.240
0.014
0.52


cut length L
mm
0.734
0.037
1.61


cut distance P
mm
0.774
0.009
1.69


spirality angle α
degrees
13.6
0.312
not applicable
















TABLE 7T







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
154.6
1.434
not applicable


cut depth D
mm
0.210
0.009
0.46


cut length L
mm
0.492
0.026
1.08


cut distance P
mm
0.538
0.011
1.18


spirality angle α
degrees
12.3
0.223
not applicable
















TABLE 7U







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
152.9
0.809
not applicable


cut depth D
mm
0.212
0.014
0.46


cut length L
mm
0.464
0.026
1.01


cut distance P
mm
0.530
0.015
1.16


spirality angle α
degrees
13.7
0.411
not applicable
















TABLE 7V







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
153.4
0.903
not applicable


cut depth D
mm
0.221
0.010
0.48


cut length L
mm
0.495
0.023
1.08


cut distance P
mm
0.537
0.012
1.17


spirality angle α
degrees
13.9
0.605
not applicable
















TABLE 7W







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
155.2
0.829
not applicable


cut depth D
mm
0.202
0.008
0.44


cut length L
mm
0.483
0.017
1.06


cut distance P
mm
0.789
0.031
1.73


spirality angle α
degrees
12.6
0.328
not applicable
















TABLE 7X







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
155.5
0.799
not applicable


cut depth D
mm
0.200
0.010
0.44


cut length L
mm
0.484
0.027
1.06


cut distance P
mm
0.798
0.017
1.75


spirality angle α
degrees
11.8
0.362
not applicable
















TABLE 7Y







(size 0 barbed suture)















Ratio of D, L, or





Standard
P over Suture


Measurement
Units
Average
Deviation
Diameter (0.457 mm)














cut angle θ
degrees
155.4
0.560
not applicable


cut depth D
mm
0.196
0.008
0.43


cut length L
mm
0.471
0.017
1.03


cut distance P
mm
0.799
0.019
1.75


spirality angle α
degrees
11.8
0.496
not applicable




















TABLE 7Z








Straight
Chamois Cloth




Pull Strength
Closure Strength



Barbed Suture
(pounds)
(pounds to rupture)




















Sample 1 (Tables 7K-7M)
7.29
11.23



Sample 2 (Tables 7N-7P)
8.73
12.14



Sample 3 (Tables 7Q-7S)
8.5
9.22



Sample 4 (Tables 7T-7V)
5.92
9.27



Sample 5 (Tables 7W-7Y)
7.69
9.97










Although all the above-noted measurements were performed on bi-directional, twist cut, multiple spiral barbed sutures, the below-noted desirable ranges for measurements for barb length L, barb cut depth D, barb cut angle θ, and/or cut distance P should be the same for the various other inventive barbed sutures described here.


A suitable ratio of cut length L to barbed suture diameter SD ranges from about 0.2 to about 2, more preferably from about 0.4 to about 1.7, even more preferably from about 0.8 to about 1.5. However, very suitable barbed sutures may have a ratio of cut length L to barbed suture diameter SD from about 1 down to about 0.2, whereby the ratio of the highest possible barb elevation (the elevation of barb tip 85 above suture body 82) to the suture diameter SD correspondingly ranges from about 1 down to about 0.2. (The highest possible barb elevation is the same as the barb length L.) Also, a suitable ratio of cut depth D to barbed suture diameter SD ranges from about 0.05 to about 0.6, more preferably from about 0.1 to about 0.55, even more preferably from about 0.2 to about 0.5.


Regardless, length L may be desirably varied depending on the intended end use, since larger barbs are more suitable for joining certain types of tissue such as fat tissue or soft tissue, whereas smaller barbs are more suitable for joining other types of tissues such as fibrous tissue. As discussed in more detail below vis-à-vis FIG. 11, there will also be instances where a barb configuration that is a combination of large, medium, and/or small barbs disposed on the same suture will be desirable, for instance, when the barbed suture is employed in tissue that has differing layer structures.


Cut angle θ formed between the barb and the elongated suture body desirably would range from about 140 degrees to about 175 degrees, more preferably would range from about 145 degrees to about 173 degrees. The most preferred cut angle θ for all barbs ranges from about 150° to about 170°.


For instance, for a polydioxanone barbed suture with a diameter of about 0.018 inch (about 0.457 mm), which is slightly larger that the USP requirement for a synthetic absorbable suture of size 0, the preferred barb length L would be 0.45 mm; the preferred barb depth D would be 0.2 mm; and the preferred barb cut angle would be 153 degrees.


Longitudinal spacing between any two barbs is generally effected with the goal of creating as many barbs as possible along the suture, and is a factor in the ability of the barbed suture to anchor tissues while maintaining firmness. As barbs are spaced farther apart, tissue-anchoring capacity decreases. Nevertheless, if barbs are spaced too close, the integrity of the filament may be jeopardized, which could lead to a tendency of the barbs to peel back and also to a decrease in suture tensile strength.


Generally, a suitable ratio of cut distance P to barbed suture diameter SD ranges from about 0.1 to about 6, more preferably from about 0.5 to about 4.5, even more preferably from about 1.0 to about 3.5. Very suitable barbed sutures may have a ratio of cut distance P to barbed suture diameter SD from about 1.5 down to about 0.2, whereby cut distance P may be as low as about 0.1, particularly for the overlapping barb embodiment, which is discussed in more detail below vis-à-vis FIGS. 12A, 12B, 12C, and 12D.


Additionally, spirality angle α formed between line M and the longitudinal direction of the elongated suture body for a twist cut, multiple spiral barbed suture typically would range from about 5 degrees to about 25 degrees, more preferably from about 7 degrees to about 21 degrees. The most preferred angle α for all barbs on a twist cut, multiple spiral barbed suture is about 10° to about 18°.


Turning now to FIG. 8, shown is suture 90, which is another embodiment of the present invention. Suture 90 includes elongated body 92 that is generally circular in cross section. Elongated body 92 terminates in first and second pointed ends 94, 96 for penetrating tissue. It is contemplated that one or both ends 94, 96 may comprise a surgical needle (not shown) for insertion into tissue. Additionally, suture 90 includes plurality of closely spaced barbs 97 arranged in a random disposition.


Suture 90 may be made with the same cutting machine as the above-discussed sutures, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. With combinations of the above-described methods for making the 180 degree disposition (sutures 1, 10), the 120 degree disposition (sutures 30, 40), and/or the twist cut multiple spiral disposition (sutures 60, 70, 80), barbed suture 90 with a very random barb disposition is obtained. The advantage of the random disposition is that the many barb angles provide superior anchoring in tissues and thus afford superior wound holding properties. With the random disposition, the barbed suture would be inserted into tissue with an insertion device, such as that shown in the above-noted U.S. Pat. No. 5,342,376 to Ruff.


With regard to FIG. 9, shown is a sectional side view of barbed suture 100, which is another embodiment of the present invention. Suture 100 includes elongated suture body 102 of generally circular cross section. Also, suture body 102 has disposed on it a plurality of closely spaced barbs 107. Each barb 107 has a barb configuration such that barb underside 108 is serrated or corrugated. One or both suture ends (not shown) are pointed for penetrating tissue and it is contemplated that one or both may comprise a surgical needle (not shown) for insertion into tissue.


Suture 100 may be made with the same cutting machine as the above-discussed sutures, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. Barb 107 having serrated underside 108 is achieved by vibrating or oscillating the cutting blades of the cutting device when barbs are being escarped into the body of a monofilament. It is intended that any of the barbed sutures of the present invention as described here may have barbs with a configuration that includes a serrated or corrugated underside.


With reference now to FIGS. 10A and 10B, depicted in FIG. 10A is a perspective view and depicted in FIG. 10B is a top view of barbed suture 110, which is another embodiment of the present invention. Suture 110 includes elongated suture body 112 of generally circular cross section. Also, suture body 112 has disposed on it a plurality of closely spaced barbs 115 having barb tips 117 (one barb 115 is shown for purposes of brevity). Barb 115 has a configuration with an arcuate base 119 where barb 115 is attached to suture body 112. One or both suture ends (not shown) are pointed for penetrating tissue and it is contemplated that one or both may comprise a surgical needle (not shown) for insertion into tissue.



FIGS. 10C and 10D are cross-sectional views respectively along line 10C-10C and line 10D-10D of FIG. 10B. FIGS. 10C and 10D further clarify that barb 115 becomes narrower going from base 119 toward tip 117.


Suture 110 may be made with the same cutting machine as the above-discussed sutures, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. To achieve barb 115 having arcuate base 119, the cutting device is provided with cutting blades with ends that are correspondingly arcuate with respect to arcuate base 119.


It is intended that any of the barbed sutures of the present invention as described here may have barbs with a configuration that includes an arcuate base. The arcuate base should enhance tissue anchoring as compared to a flat, linear base. Regardless, it is not desired for the base to be circular or oval, which would result from conical shaped barbs, as that could decrease tissue anchoring.


Shown in FIG. 11 is a sectional side view of a barbed suture that is another embodiment of the present invention, and that is generally designated at 120. Suture 120 includes elongated body 122 that is generally circular in cross section. Elongated body 122 terminates in end 124. End 124 is pointed for penetrating tissue and it is contemplated that end 124 may comprise a surgical needle (not shown) for insertion into tissue. (The other end is not shown, and also may be pointed for penetrating tissue and may comprise a surgical needle for penetrating tissue.) Also, suture 120 includes plurality of closely spaced barbs 125, plurality of closely spaced barbs 127, and plurality of closely spaced barbs 129. Barbs 125 are relatively small in size with a relatively short barb length as compared to barbs 127, which are relatively medium in size with a relatively medium barb length, as compared to barbs 129, which are relatively large in size with a relatively long barb length.


Suture 120 may be made with the same cutting machine as the above-described sutures were made, such as the cutting device described in the above-noted Ser. No. 09/943,733 to Genova et al. By altering the amount of blade movement during cutting into a suture filament, then the barb cut length is made longer or shorter, as desired, to result in each of the three sets of barbs 125, 127, and 129 being of a size different from the others, where the varying sizes are designed for various surgical applications. The barb size may also vary in the transverse direction, whereby the barb base may be short, medium, or long, and regardless, the barb base typically is less than about ¼ of the suture diameter.


For instance, relatively larger barbs are desirable for joining fat and soft tissues, whereas relatively smaller barbs are desirable for joining fibrous tissues. Use of a combination of large, medium, and/or small barbs on the same suture helps to ensure maximum anchoring properties when barb sizes are customized for each tissue layer. Only two different sized sets of barbs (not shown) may be escarped into suture body 122, or additional sets of barbs (not shown) with four, five, six, or more different sized sets than three sizes as illustrated for sets of barbs 125,127, and 129 may be escarped into suture body 122 as desired, in accordance with the intended end use. Also, although suture 120 is illustrated with the barbs being unidirectional, it is intended that barbed sutures with barbs having a configuration of varying sizes in accordance with the invention also may be bi-directional barbed sutures or random barbed sutures or any of the other inventive barbed sutures described here.



FIG. 12A is a perspective view of another embodiment of the present invention, showing barbed suture 130 having elongated body 132 of generally circular cross section. One or both suture ends (not shown) are pointed for penetrating tissue and it is contemplated that one or both ends may comprise a surgical needle (not shown) for insertion into tissue.


Suture 130 further includes plurality of barbs 135 projecting from body 132 such that at least two longitudinally adjacent first and second barbs 135 are disposed on body 132 where first barb 135 overlaps second barb 135 if first and second barbs 135, which is readily apparent if barbs 135 are laid flat on body 132.



FIG. 12B is a perspective view of a portion of overlapping barbs 135 of the overlapping disposition barbed suture 130 of FIG. 12A, and FIG. 12C is a top plan view of FIG. 12B. FIG. 12D is a cross-sectional view along ling 12D-12D of FIG. 12C. As can be more clearly seen from FIGS. 12B, 12C, and 12D, during escarpment of barbs 135, overlapping first barb 135 is escarped into part of topside TS of overlapped second barb 135, and so on. Part of topside TS of overlapped second barb 135 becomes part of underside US of overlapping first barb 135.


Thus, with the overlapping disposition, the barb cut distance between first barb 135 and second barb 135 may be shorter than the barb cut length of overlapped second barb 135, whereas, in general for barbed sutures, the barb cut distance between two barbs>the barb cut length. Particularly for the overlapping barb disposition, very suitable barbed sutures may have a ratio of the barb cut distance to the barbed suture diameter from about 1.5 down to about 0.2, since the barb cut distance P may be as low as about 0.1. (See discussion of FIG. 7 for comments vis-à-vis the barb cut length and the barb cut distance.) This overlapping disposition allows for closely packing many barbs 135 on body 132, and typically, barbs 135 are thin, as compared to when the barb cut distance between two barbs>the barb cut length.


Also, although suture 130 is illustrated with barbs 135 being unidirectional, it is intended to include that suture 130 in accordance with the invention also may be a bi-directional barbed suture as described here.



FIGS. 13A, 13B, 13C, and 13D show various surgical needles, where a barbed suture is attached to each surgical needle. In order to facilitate insertion into tissue, the surgical needles may be coated with a polymer, for instance, as described above vis-à-vis U.S. Pat. No. 5,258,013 to Granger et al.



FIG. 13A shows surgical needle N1 that is a straight elongated needle in the longitudinal direction and that is generally circular in cross section. Surgical needle N1 has pointed tip T1 for insertion into tissue and also has hole H1. Surgical needle N1 is illustrated as attached, such as by swaging, to barbed suture S1. Barbed suture S1 is a barbed suture including, but not limited to, any of the above-described barbed sutures. Additionally, surgical needle N1 has diameter D1 in the transverse direction, which is illustrated as a relatively thin diameter, such as about 0.02 inch (about 0.51 mm). As discussed above vis-à-vis swaging, surgical needle N1, after having suture S1 inserted into hole H1, may be crimped by standard procedures about hole H1 to hold suture S1 in place for suturing tissue.



FIG. 13B shows surgical needle N2 that is a straight elongated needle in the longitudinal direction and that is generally circular in cross section. Surgical needle N2 has pointed tip T2 for insertion into tissue and also has hole H2. Surgical needle N2 is illustrated as attached, such as by swaging, to barbed suture S2. Barbed suture S2 is a barbed suture including, but not limited to, any of the above-described barbed sutures. Additionally, surgical needle N2 has diameter D2 in the transverse direction, which is illustrated as a suitably thin diameter, such as about 0.032 inch (about 0.81 mm), but not as thin as diameter D1 of surgical needle N1. As discussed above vis-à-vis swaging, surgical needle N2, after having suture S2 inserted into hole H2, may be crimped by standard procedures about hole H2 to hold suture S2 in place for use in suturing tissue.



FIG. 13C shows surgical needle N3 that is a curved elongated needle in the longitudinal direction and that is generally circular in cross section. Surgical needle N3 has pointed tip T3 for insertion into tissue and also has hole H3. Surgical needle N3 is illustrated as attached, such as by swaging, to barbed suture S3. Barbed suture S3 is a barbed suture including, but not limited to, any of the above-described barbed sutures. Additionally, surgical needle N3 has diameter D3 in the transverse direction, which is illustrated as a relatively thin diameter, such as about 0.02 inch (about 0.51 mm) As discussed above vis-à-vis swaging, surgical needle N3, after having suture S3 inserted into hole H3, may be crimped by standard procedures about hole H3 to hold suture S3 in place for use in suturing tissue.



FIG. 13D shows surgical needle N4 that is a curved elongated needle in the longitudinal direction and that is generally circular in cross section. Surgical needle N4 has pointed tip T4 for insertion into tissue and also has hole H4. Surgical needle N4 is illustrated as attached, such as by swaging, to barbed suture S4. Barbed suture S4 is a barbed suture including, but not limited to, any of the above-described barbed sutures. Additionally, surgical needle N4 has diameter D4 in the transverse direction, which is illustrated as a suitably thin diameter, such as about 0.032 inch (about 0.81 mm), but not as thin as diameter D3 of surgical needle N3. As discussed above vis-à-vis swaging, surgical needle N4, after having suture S4 inserted into hole H4, may be crimped by standard procedures about hole H4 to hold suture S4 in place for use in suturing tissue.


Needle tips T1, T2, T3, and T4 are schematically illustrated as pointed, but, as is well known, surgical needles come with various kinds of pointed tips, such as taper point, taper cutting, ball point, cutting edge, diamond point, thin line, and lancet point, and it is intended to include, but not be limited to, all such needle tips. Taper point, taper cutting, and diamond point are preferred needle tips for surgical needles used with barbed sutures.


As is well known in the art, needle diameter for surgical needles used with conventional (i.e., unbarbed) sutures is considered unimportant, and often very thick surgical needles are used with thin conventional sutures such that the ratio of surgical needle diameter to conventional suture diameter is 4:1 or even higher, such as 4.43:1.


However, with the surgical needle/barbed suture combination of the present invention (for either a straight needle or a curved needle), the thinner that the surgical needle is, then the more preferable that the surgical needle/barbed suture is, with the desired needle diameter being thinner and thinner as it approaches the barbed suture diameter, and it is possible that the needle diameter may be even thinner than the barbed suture diameter.


In general for the present invention, a relatively thin surgical needle attached to a barbed suture is more preferable for approximating tissue when stitching a wound closed than a relatively thick surgical needle threaded with a barbed suture. The reason is that the relatively thin surgical needle attached to a barbed suture allows for greater engagement of barbs in tissue, and therefore provides better closure strength to the approximated tissue that has been sutured to prevent the opposing sides of the closed wound from pulling apart, as compared to the closure strength provided to approximated tissue that has been sutured with the relatively thick surgical needle.


The most important feature for the combination of the surgical needle attached to the barbed suture is that the surgical needle diameter should be of sufficient width in order to make a hole or a channel in the end, such by drilling, to allow for insertion of the barbed suture into the hole or the channel. Nevertheless, as the surgical needle diameter increases, the surgical needle is still suitable as long as the ratio of the surgical needle diameter to the barbed suture diameter is about 3:1 or less.


Accordingly, a desirable ratio of surgical needle diameter to barbed suture diameter, for either a straight needle or a curved needle, is about 3:1 or less, more preferably about 2:1 or less, most preferably about 1.8:1 or less. Furthermore, particularly if channel needles are employed, the ratio of surgical needle diameter to barbed suture diameter may be as low as about 1:1 or less, or even lower; for instance, about 0.9:1 or less, or about 08:1 or less, or as low as about 0.5:1. It will be appreciated by the person of ordinary skill in the art that care should be taken with extremely thin needles so as to ameliorate the possibility of localized weakness, which may compromise tissue insertion.


Closure strength of thin surgical needles, both having a ratio of surgical needle diameter to barbed suture diameter suitable for the present invention, was tested as follows.


Various pieces of chamois leather (manufactured by U.S. Chamois of Florida) having a thickness of about 0.6 in (about 15.2 mm) were cut with a wound having a length of about 1.25 inch (about 32 mm).


A first specimen was made from a piece of chamois leather by stitching together the respective edges of the wound with a drilled end surgical needle (item no. 382077A purchased from Sulzle Company) which was swaged with a barbed suture. In other words, after insertion of the barbed suture into the needle hole, the needle was crimped about the hole to secure the barbed suture during stitching. After stitching closed the wound, the piece of chamois leather was cut to a rectangular shape of about 3 inches (about 76 mm) in length by about 1.25 inches (about 32 mm) in width, where the stitched wound was in the middle of the length and transverse the width. The needle was a taper point, curved surgical needle (⅜ of a circle), with a length of about 22 mm and a relatively thin diameter of about 0.020 inch (about 0.51 mm)


Then, using the same stitching method, a second specimen was made from another piece of chamois leather by stitching together the respective edges of the wound, using a drilled end surgical needle (item no. 383271A purchased from Sulzle Company) swaged with the same kind of barbed suture, i.e., the surgical needle was crimped about the needle hole, after insertion of the barbed suture into the hole, to secure the barbed suture during stitching. For the second specimen, the needle was a taper point curved surgical needle (⅜ of a circle) with a length of about 22 mm and a suitable thin diameter of about 0.032 inch (about 0.81 mm), although not as thin as the diameter of the needle used for first specimen.


Each barbed suture for each specimen was a bi-directional, twist cut multiple spiral, polydioxanone barbed suture like suture 70 in FIG. 6A, except that each barbed suture had a diameter of about 0.0115 inch (about 0.291 mm, which is slightly larger than the USP requirement for a size 3-0 synthetic absorbable suture), instead of a suture diameter of about 0.018 inch (about 0.457 mm)


Both the first and the second specimens of stitched chamois cloth were tested for closure strength using a Test Resources Universal Tester, Model 200Q. Each specimen was gripped by two respective serrated jaws. Then, each specimen was pulled longitudinally at a rate of about 10 inches per minute (about 254 mm per minute) until complete rupture. The peak load in pounds reached before complete wound disruption was recorded as the closure strength. The results were that the first specimen (which was sutured with the needle that had a relatively thin diameter of about 0.020 inch, about 0.51 mm) took 5.88 pounds until wound disruption occurred and the specimen pulled apart back into 2 pieces, whereas the second specimen (which was stitched with the needle that had a suitably thin diameter of about 0.032 inch, about 0.81 mm, but not as thin as the needle for the first specimen) took only 2.88 pounds until the wound disruption and the specimen pulled apart back into 2 pieces.


The results are summarized in Table 13A below.









TABLE 13A







(Chamois Cloth Closure Strength)












Needle
Barbed Suture

Pounds to


Specimen
Diameter
Diameter
Ratio*
Rupture





First
0.020 inch
0.0115 inch
1.74
5.88


Second
0.032 inch
0.0115 inch
2.78
2.88





*Ratio of surgical needle diameter to barbed suture diameter.






Also, various pieces of rat skin were cut and stitched for testing of more surgical needles swaged with barbed sutures as follows.


Three freshly killed Sprague-Dawley rats, each about 600 to 700 g, were used. Two full-thickness skin incisions were made on the back of each rat to create wounds. Each wound was about 4 cm in length and parallel to the spine.


For each rat, one of the two wounds was closed with a drilled end, curved surgical needle that was a Sulzle item no. 382273A, which was ⅜ circle. The needle had a length of 18 mm and a diameter of about 0.022 inch (about 0.56 mm) Also, the needle had a taper point needle tip where the needle tip had been ground to a 3-facet cut to approximate a taper cutting needle tip to facilitate penetration of rat tissue. The needle was swaged to a barbed suture.


The other of the two wounds was closed using the same suturing technique, but with a drilled end, curved surgical needle that was a Sulzle item no. 832679A, which was ⅜ circle. The needle had a length of about 18 mm and a diameter of about 0.026 inch (about 0.66 mm) Also, the needle had a diamond point needle tip. The needle was swaged to a barbed suture.


Each barbed suture for each specimen was a bidirectional, twist cut multiple spiral, polydioxanone barbed suture like suture 70 in FIG. 6A, except that each barbed suture had a diameter of about 0.015 inch (about 0.381 mm, which is slightly larger than the USP requirement for a size 2-0 synthetic absorbable suture), instead of a suture diameter of about 0.018 inch (about 0.457 mm)


For each stitched wound, a tissue specimen that was approximately a square measuring about 4 cm×about 4 cm, with the stitched wound in the middle paralleling two opposing tissue edges, was retrieved for closure strength testing.


The force to open each wound was determined using a Test Resources Universal Tester, Model 200Q. For each tissue specimen, the two edges paralleling each stitched wound were mounted in the two respective serrated jaws of the tester.


Then, each specimen was pulled longitudinally at a rate of about 2 inches per minute (about 51 mm per minute) until complete rupture occurred. The maximum force encountered before complete wound disruption was recorded as the closure strength.


The results were averaged from the first set of three wounds closed with a needle having a diameter of about 0.022 inch (about 0.56 mm) and swaged to a barbed suture. Also, the results were averaged from the second set of three wounds closed with a needle having a diameter of about 0.026 inch (about 0.66 mm) and swaged to a barbed suture.


The results are summarized in Table 13B below.









TABLE 13B







(Rat Skin Closure Strength)















Average of 3




Barbed

Wounds



Needle
Suture

Pounds to


Specimens
Diameter
Diameter
Ratio*
Rupture














First Set of 3
0.022 inch
0.015 inch
1.47
11.9


Second Set of 3
0.026 inch
0.015 inch
1.73
8.1





*Ratio of surgical needle diameter to barbed suture diameter.






Thus, the lower the ratio of surgical needle diameter to barbed suture diameter, then the better the closure strength when suturing a wound closed with a surgical needle attached to a barbed suture. In general, the thinner the surgical needle, the better the closure strength, particularly for delicate tissues; however, for tough tissues, such as muscle and bowel, thicker needles are preferred. Thus, what is important, regardless of whether the needle is thick or thin or somewhere in the middle, is that the ratio of surgical needle diameter to barbed suture diameter should be about 3:1 or less, more preferably about 2:1 or less.


Although the present invention has been shown and described in detail with regard to only a few exemplary embodiments of the invention, it should be understood by those skilled in the art that it is not intended to limit the invention to the specific embodiments disclosed. Various modifications, omissions, and additions may be made to the disclosed embodiments without materially departing from the novel teachings and advantages of the invention, particularly in light of the foregoing teachings. For instance, the barbed suture of the present invention can be used alone or with other closure methods, such as staples and/or skin adhesives, to aid in holding the position of the tissue. Accordingly, it is intended to cover all such modifications, omissions, additions, and equivalents as may be included within the spirit and scope of the invention as defined by the following claims.

Claims
  • 1. A wound-closure device comprising: a strand of monofilament suture, having a first end, a second end, a longitudinal axis, a surface and a diameter (D), having a minimum knot pull strength requirement (S); a plurality of angled cuts present in the surface of the strand and spaced along the strand; each angled cut giving rise to a tissue-retaining element; the plurality of angled cuts defining a plurality of tissue-retaining elements spaced along the strand; the plurality of tissue-retaining elements being adapted to permit movement of the strand through tissue in a direction of the first end and resist movement of the strand through tissue in an opposite direction; each tissue-retaining element having a tip separated from the strand and a base connected to the strand, and further having an underside which attaches the tissue-retaining element to the strand along a concave arcuate line; each tissue-retaining element having a length no less than about 0.8 diameters (0.8*D), measured tip-to-base along the longitudinal axis; the tissue-retaining elements being spaced at a distance no larger than two diameters (2*D), measured tip-to-tip along the longitudinal axis; and the wound-closure device having a tensile strength no less than about 80% of the USP minimum knot pull strength requirement (S) for monofilament suture of the diameter (D).
  • 2. The wound-closure device of claim 1, wherein the plurality of tissue-retaining elements is effective to resist movement of the suture thread in the opposite direction by holding tissue with a straight pull strength no less than about 80% of the USP minimum knot pull strength requirement (S) for monofilament suture of the diameter (D).
  • 3. The wound-closure device of claim 1, wherein the diameter (D) is less than about 0.5 mm.
  • 4. The wound-closure device of claim 1, wherein the plurality of tissue-retaining elements includes at least thirty (30) tissue-retaining elements.
  • 5. The wound-closure device of claim 4, wherein the plurality of tissue-retaining elements includes a first set of at least ten tissue-retaining elements, a second set of at least ten tissue-retaining elements and a third set of at least ten tissue-retaining elements, the first set of at least ten tissue-retaining elements being radially displaced by 120 degrees from the second set of at least ten tissue-retaining elements, the third set of at least ten tissue-retaining elements being radially displaced by 120 degrees from the first set of at least ten tissue-retaining elements and from the second set of at least ten tissue-retaining elements.
  • 6. The wound-closure device of claim 1, wherein each tissue-retaining element has a length no less than about one diameter (1*D).
  • 7. The wound-closure device of claim 1, further comprising a second plurality of tissue-retaining elements longitudinally-displaced from the first plurality of tissue-retaining elements and adapted to permit movement of the strand through tissue in a direction of the second end and resist movement of the strand through tissue in an opposite direction.
  • 8. The wound-closure device of claim 1, wherein each tip is pointed.
  • 9. The wound-closure device of claim 1, wherein the monofilament suture comprises a copolymer of glycolide and caprolactone.
  • 10. The wound-closure device of claim 1, wherein the monofilament suture comprises a copolymer of glycolide and trimethylene carbonate.
  • 11. A self-retaining suture comprising: a strand of polymer, having a first end, a second end, a longitudinal axis, a surface and a diameter (D), having a minimum knot pull strength requirement (S); a plurality of angled cuts present in the surface of the strand and spaced along the strand; each angled cut giving rise to a tissue-retaining element; the plurality of angled cuts defining a plurality of tissue-retaining elements spaced along the strand, each tissue-retaining element having an apex separated from the strand and a base connected to the strand, and further having an underside which attaches the tissue-retaining element to the strand along a concave arcuate line; the plurality of tissue-retaining elements being adapted to permit movement of the strand through tissue in a direction of the first end and resist movement of the strand through tissue in an opposite direction; each tissue-retaining element having a length no less than about 0.8 diameters (0.8*D), measured apex-to-base along the longitudinal axis; the tissue-retaining elements being spaced at a distance no larger than two diameters (2*D), measured apex-to-apex along the longitudinal axis; and the wound-closure device having a tensile strength no less than about 80% of the USP minimum knot pull strength requirement (S) for suture of the diameter (D).
  • 12. The self-retaining suture of claim 11, wherein the plurality of tissue-retaining elements is effective to resist movement of the suture thread in the opposite direction by holding tissue with a straight pull strength no less than about 80% of the USP minimum knot pull strength requirement (S) for suture of the diameter (D).
  • 13. The self-retaining suture of claim 11, wherein the diameter (D) is less than about 0.5 mm.
  • 14. The self-retaining suture of claim 11, wherein the plurality of tissue-retaining elements includes more than thirty (30) tissue-retaining elements.
  • 15. The self-retaining suture of claim 11, wherein the plurality of tissue-retaining elements includes a first set of at least ten tissue-retaining elements, a second set of at least ten tissue-retaining elements and a third set of at least ten tissue-retaining elements, the first set of at least ten tissue-retaining elements being radially displaced by 120 degrees from the second set of at least ten tissue-retaining elements, the third set of at least ten tissue-retaining elements being radially displaced by 120 degrees from the first set of at least ten tissue-retaining elements and from the second set of at least ten tissue-retaining elements.
  • 16. The self-retaining suture of claim 11, wherein the polymer comprises a copolymer of glycolide and trimethylene carbonate.
  • 17. The self-retaining suture of claim 11, wherein the polymer comprises a copolymer of glycolide and caprolactone.
  • 18. The self-retaining suture of claim 11, wherein each apex is pointed.
  • 19. A wound-closure device comprising: a strand of bioabsorbable polymer suture, having a first end, a second end, a longitudinal axis, a surface and a diameter (D), having a minimum knot pull strength requirement (S); a plurality of angled cuts present in the surface of the strand and spaced along the strand; each angled cut giving rise to a tissue-retaining element; the plurality of angled cuts defining a plurality of tissue-retaining elements spaced along the strand, each tissue-retaining element having an apex separated from the strand and a base connected to the strand, and further having an underside which attaches the tissue-retaining element to the strand along a concave arcuate line; the plurality of tissue-retaining elements being adapted to permit movement of the strand through tissue in a direction of the first end and resist movement of the strand through tissue in an opposite direction; each tissue-retaining element having a length no less than about 0.8 diameters (0.8*D), measured apex-to-base along the longitudinal axis; the tissue-retaining elements being spaced at a distance a spacing no larger than two diameters (2*D), measured apex-to-apex along the longitudinal axis; wherein the diameter (D) is less than 1 mm; and the tensile strength is greater than 7 lbs.
  • 20. The wound-closure device of claim 19, wherein the plurality of tissue-retaining elements includes more than thirty (30) tissue-retaining elements.
CLAIM TO PRIORITY

This application is a continuation of U.S. application Ser. No. 10/065,280, filed Sep. 30, 2002, now pending, which is incorporated herein by reference in its entirety.

US Referenced Citations (774)
Number Name Date Kind
709392 Brown Sep 1902 A
733723 Lukens Jul 1903 A
789401 Acheson May 1905 A
816026 Meier Mar 1906 A
879758 Foster Feb 1908 A
1142510 Engle Jun 1915 A
1248825 Dederer Dec 1917 A
1728316 Von Wachenfeldt Sep 1929 A
1886721 O'Brien Nov 1932 A
2094578 Blumenthal et al. Oct 1937 A
2201610 Dawson, Jr. May 1940 A
2232142 Schumann Feb 1941 A
2254620 Miller Sep 1941 A
2347956 Lansing May 1944 A
2355907 Cox Aug 1944 A
2421193 Gardner May 1947 A
2452734 Costclow Nov 1948 A
2472009 Gardner May 1949 A
2480271 Sumner Aug 1949 A
2572936 Kulp et al. Oct 1951 A
2684070 Kelsey Jul 1954 A
2779083 Enton Jan 1957 A
2814296 Everett Nov 1957 A
2817339 Sullivan Dec 1957 A
2830366 Chisena Apr 1958 A
2866256 Matlin Dec 1958 A
2910067 White Oct 1959 A
2928395 Forbes et al. Mar 1960 A
2988028 Alcamo Jun 1961 A
3003155 Mielzynski et al. Oct 1961 A
3066452 Bott et al. Dec 1962 A
3066673 Bott et al. Dec 1962 A
3068869 Shelden et al. Dec 1962 A
3068870 Levin Dec 1962 A
3082523 Modes et al. Mar 1963 A
3123077 Alcamo Mar 1964 A
3166072 Sullivan, Jr. Jan 1965 A
3187752 Glick Jun 1965 A
3206018 Lewis et al. Sep 1965 A
3209652 Burgsmueller Oct 1965 A
3209754 Brown Oct 1965 A
3212187 Benedict Oct 1965 A
3214810 Mathison Nov 1965 A
3221746 Noble Dec 1965 A
3234636 Brown Feb 1966 A
3273562 Brown Sep 1966 A
3352191 Crawford Nov 1967 A
3378010 Codling Apr 1968 A
3385299 LeRoy May 1968 A
3394704 Dery Jul 1968 A
3494006 Brumlik Feb 1970 A
3522637 Brumlik Aug 1970 A
3525340 Gilbert Aug 1970 A
3545608 Berger et al. Dec 1970 A
3557795 Hirsch Jan 1971 A
3570497 Lemole Mar 1971 A
3586002 Wood Jun 1971 A
3608095 Barry Sep 1971 A
3608539 Miller Sep 1971 A
3618447 Goins Nov 1971 A
3646615 Ness Mar 1972 A
3683926 Suzuki Aug 1972 A
3716058 Tanner, Jr. Feb 1973 A
3720055 de Mestral et al. Mar 1973 A
3748701 De Mestral Jul 1973 A
3762418 Wasson Oct 1973 A
3825010 McDonald Jul 1974 A
3833972 Brumlik Sep 1974 A
3845641 Waller Nov 1974 A
3847156 Trumble Nov 1974 A
3889322 Brumlik Jun 1975 A
3918455 Coplan Nov 1975 A
3922455 Brumlik Nov 1975 A
3941164 Musgrave Mar 1976 A
3963031 Hunter Jun 1976 A
3977937 Candor Aug 1976 A
3980177 McGregor Sep 1976 A
3981051 Brumlik Sep 1976 A
3981307 Borysko Sep 1976 A
3985138 Jarvik Oct 1976 A
3990144 Schwartz Nov 1976 A
4006747 Kronenthal Feb 1977 A
4008303 Glick et al. Feb 1977 A
4027608 Arbuckle Jun 1977 A
4043344 Landi Aug 1977 A
4052988 Doddi et al. Oct 1977 A
D246911 Bess, Jr. et al. Jan 1978 S
4069825 Akiyama Jan 1978 A
4073298 Le Roy Feb 1978 A
4137921 Okuzumi et al. Feb 1979 A
4182340 Spencer Jan 1980 A
4186239 Mize et al. Jan 1980 A
4198734 Brumlik Apr 1980 A
4204541 Kapitanov May 1980 A
4204542 Bokros et al. May 1980 A
4259959 Walker Apr 1981 A
4278374 Wolosianski Jul 1981 A
4300424 Flinn Nov 1981 A
4311002 Hoffmann et al. Jan 1982 A
4313448 Stokes Feb 1982 A
4316469 Kapitanov Feb 1982 A
4317451 Cerwin et al. Mar 1982 A
4345362 de Givry Aug 1982 A
4372293 Vijil-Rosales Feb 1983 A
4428376 Mericle Jan 1984 A
4430998 Harvey Feb 1984 A
4434796 Karapetian Mar 1984 A
4454875 Pratt et al. Jun 1984 A
4467805 Fukuda Aug 1984 A
4490326 Beroff et al. Dec 1984 A
4492075 Faure Jan 1985 A
4493323 Albright et al. Jan 1985 A
4505274 Speelman Mar 1985 A
4510934 Batra Apr 1985 A
4531522 Bedi et al. Jul 1985 A
4532926 O'Holla Aug 1985 A
4535772 Sheehan Aug 1985 A
4548202 Duncan Oct 1985 A
4553544 Nomoto et al. Nov 1985 A
4610250 Green Sep 1986 A
4610251 Kumar Sep 1986 A
4635637 Schreiber Jan 1987 A
4637380 Orejola Jan 1987 A
4653486 Coker Mar 1987 A
4669473 Richards et al. Jun 1987 A
4676245 Fukuda Jun 1987 A
4689882 Lorenz Sep 1987 A
4702250 Ovil et al. Oct 1987 A
4712553 MacGregor Dec 1987 A
4719917 Barrows Jan 1988 A
4741330 Hayhurst May 1988 A
4750910 Takayanagi et al. Jun 1988 A
4751621 Jenkins Jun 1988 A
4776337 Palmaz Oct 1988 A
4832025 Coates May 1989 A
4841960 Garner Jun 1989 A
4865026 Barrett Sep 1989 A
4873976 Schreiber Oct 1989 A
4887601 Richards Dec 1989 A
4895148 Bays et al. Jan 1990 A
4898156 Gatturna et al. Feb 1990 A
4899743 Nicholson et al. Feb 1990 A
4900605 Thorgersen et al. Feb 1990 A
4905367 Pinchuk et al. Mar 1990 A
4930945 Arai et al. Jun 1990 A
4932962 Yoon et al. Jun 1990 A
4946468 Li Aug 1990 A
4948444 Schultz et al. Aug 1990 A
4950258 Kawai et al. Aug 1990 A
4950285 Wilk Aug 1990 A
4968315 Gatturna Nov 1990 A
4976715 Bays et al. Dec 1990 A
4979956 Silvestrini et al. Dec 1990 A
4981149 Yoon Jan 1991 A
4994073 Green Feb 1991 A
4994084 Brennan Feb 1991 A
4997439 Chen Mar 1991 A
5002550 Li Mar 1991 A
5002562 Oberlander Mar 1991 A
5007921 Brown Apr 1991 A
5007922 Chen et al. Apr 1991 A
5026390 Brown Jun 1991 A
5037422 Hayhurst et al. Aug 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5046513 Gatturna et al. Sep 1991 A
5047047 Yoon Sep 1991 A
5053047 Yoon Oct 1991 A
5084063 Korthoff Jan 1992 A
5089010 Korthoff Feb 1992 A
5102418 Granger et al. Apr 1992 A
5102421 Anpach, Jr. Apr 1992 A
5103073 Danilov et al. Apr 1992 A
5112344 Petros May 1992 A
5123911 Granger et al. Jun 1992 A
5123913 Wilk et al. Jun 1992 A
5123919 Sauter et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5133738 Korthoff et al. Jul 1992 A
5141520 Goble et al. Aug 1992 A
5147382 Gertzman et al. Sep 1992 A
5156615 Korthoff et al. Oct 1992 A
5156788 Chesterfield et al. Oct 1992 A
5176692 Wilk et al. Jan 1993 A
5179964 Cook Jan 1993 A
5192274 Bierman Mar 1993 A
5192302 Kensey et al. Mar 1993 A
5192303 Gatturna et al. Mar 1993 A
5197597 Leary et al. Mar 1993 A
5207679 Li May 1993 A
5207694 Broome May 1993 A
5217486 Rice et al. Jun 1993 A
5217494 Coggins et al. Jun 1993 A
5222508 Contarini Jun 1993 A
5222976 Yoon Jun 1993 A
5224946 Hayhurst et al. Jul 1993 A
5234006 Eaton et al. Aug 1993 A
5242457 Akopov et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5258013 Granger et al. Nov 1993 A
5259846 Granger et al. Nov 1993 A
5263973 Cook Nov 1993 A
5269783 Sander Dec 1993 A
5282832 Toso et al. Feb 1994 A
5292326 Green Mar 1994 A
5306288 Granger et al. Apr 1994 A
5306290 Martins et al. Apr 1994 A
5320629 Noda et al. Jun 1994 A
5330488 Goldrath Jul 1994 A
5330503 Yoon Jul 1994 A
5342376 Ruff Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5350385 Christy Sep 1994 A
5352515 Jarrett et al. Oct 1994 A
5354271 Voda Oct 1994 A
5354298 Lee et al. Oct 1994 A
5358511 Gatturna et al. Oct 1994 A
5363556 Banholzer et al. Nov 1994 A
5372146 Branch Dec 1994 A
5374268 Sander Dec 1994 A
5374278 Chesterfield et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5391173 Wilk Feb 1995 A
5395126 Tresslar Mar 1995 A
5403346 Loeser Apr 1995 A
5411523 Goble May 1995 A
5414988 DiPalma et al. May 1995 A
5417691 Hayhurst May 1995 A
5425746 Proto et al. Jun 1995 A
5425747 Brotz Jun 1995 A
5437680 Yoon et al. Aug 1995 A
5450860 O'Connor Sep 1995 A
5451461 Broyer Sep 1995 A
5462561 Voda Oct 1995 A
5464426 Bonutti Nov 1995 A
5464427 Curtis et al. Nov 1995 A
5472452 Trott Dec 1995 A
5478353 Yoon Dec 1995 A
5480403 Lee et al. Jan 1996 A
5480411 Liu et al. Jan 1996 A
5484451 Akopov et al. Jan 1996 A
5486197 Le et al. Jan 1996 A
5500000 Feagin et al. Mar 1996 A
5500991 Demarest et al. Mar 1996 A
5520084 Chesterfield et al. May 1996 A
5520691 Branch May 1996 A
5522845 Wenstrom, Jr. Jun 1996 A
5527342 Pietrzak et al. Jun 1996 A
5531760 Alwafaie Jul 1996 A
5531761 Yoon Jul 1996 A
5531790 Frechet et al. Jul 1996 A
5533982 Rizk et al. Jul 1996 A
5536582 Prasad et al. Jul 1996 A
5540705 Meade et al. Jul 1996 A
5540718 Bartlett Jul 1996 A
5545148 Wurster Aug 1996 A
5549631 Bonutti Aug 1996 A
5554171 Gatturna et al. Sep 1996 A
5569272 Reed et al. Oct 1996 A
5571139 Jenkins, Jr. Nov 1996 A
5571175 Vanney et al. Nov 1996 A
5571216 Anderson Nov 1996 A
5573543 Akopov et al. Nov 1996 A
5584859 Brotz Dec 1996 A
5593424 Northrup, III et al. Jan 1997 A
5601557 Hayhurst Feb 1997 A
5626590 Wilk May 1997 A
5626611 Liu et al. May 1997 A
5632753 Loeser May 1997 A
5643288 Thompson Jul 1997 A
5643295 Yoon Jul 1997 A
5643319 Green et al. Jul 1997 A
5645568 Chervitz et al. Jul 1997 A
5647874 Hayhurst Jul 1997 A
5649939 Reddick Jul 1997 A
5653716 Malo et al. Aug 1997 A
5662654 Thompson Sep 1997 A
5662714 Charvin et al. Sep 1997 A
5669935 Rosenman et al. Sep 1997 A
5676675 Grice Oct 1997 A
D386583 Ferragamo et al. Nov 1997 S
5683417 Cooper Nov 1997 A
D387161 Ferragamo et al. Dec 1997 S
5695879 Goldmann et al. Dec 1997 A
5697976 Chesterfield et al. Dec 1997 A
5702397 Goble et al. Dec 1997 A
5702462 Oberlander Dec 1997 A
5709692 Mollenauer et al. Jan 1998 A
5716358 Ochoa et al. Feb 1998 A
5716376 Roby et al. Feb 1998 A
5722991 Colligan Mar 1998 A
5723008 Gordon Mar 1998 A
5725557 Gatturna et al. Mar 1998 A
5728114 Evans et al. Mar 1998 A
5741277 Gordon et al. Apr 1998 A
5763411 Edwardson et al. Jun 1998 A
5765560 Verkerke et al. Jun 1998 A
5766246 Mulhauser et al. Jun 1998 A
5779719 Klein et al. Jul 1998 A
5782864 Lizardi Jul 1998 A
5807403 Beyar et al. Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5810853 Yoon Sep 1998 A
5814051 Wenstrom, Jr. Sep 1998 A
5843087 Jensen et al. Dec 1998 A
5843178 Vanney et al. Dec 1998 A
5855619 Caplan et al. Jan 1999 A
5863360 Wood et al. Jan 1999 A
5884859 Ma Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5891166 Schervinsky Apr 1999 A
5893856 Jacob et al. Apr 1999 A
5895395 Yeung Apr 1999 A
5895413 Nordstrom Apr 1999 A
5897572 Schulsinger et al. Apr 1999 A
5899911 Carter May 1999 A
5916224 Esplin Jun 1999 A
5919234 Lemperle et al. Jul 1999 A
5925078 Anderson Jul 1999 A
5931855 Buncke Aug 1999 A
5938668 Scirica et al. Aug 1999 A
5950505 Locher Sep 1999 A
5950633 Lynch et al. Sep 1999 A
5954747 Clark Sep 1999 A
5964765 Fenton, Jr. et al. Oct 1999 A
5964783 Grafton et al. Oct 1999 A
5968097 Frechet et al. Oct 1999 A
5972024 Northrup, III et al. Oct 1999 A
5984933 Yoon Nov 1999 A
5993459 Larsen et al. Nov 1999 A
5997554 Thompson Dec 1999 A
6001111 Sepetka et al. Dec 1999 A
6012216 Esteves et al. Jan 2000 A
6015410 Tormala et al. Jan 2000 A
6024757 Haase et al. Feb 2000 A
6027523 Schmieding Feb 2000 A
6039741 Meislin Mar 2000 A
6042583 Thompson et al. Mar 2000 A
6045571 Hill et al. Apr 2000 A
6056778 Grafton et al. May 2000 A
6063105 Totakura May 2000 A
6071292 Makower et al. Jun 2000 A
6074419 Healy et al. Jun 2000 A
6076255 Shikakubo et al. Jun 2000 A
6083244 Lubbers et al. Jul 2000 A
6102947 Gordon Aug 2000 A
6106544 Brazeau Aug 2000 A
6106545 Egan Aug 2000 A
6110484 Sierra Aug 2000 A
D433753 Weiss Nov 2000 S
6146406 Shluzas et al. Nov 2000 A
6146407 Krebs Nov 2000 A
6149660 Laufer et al. Nov 2000 A
6159234 Bonutti et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6163948 Esteves et al. Dec 2000 A
6165203 Krebs Dec 2000 A
6168633 Shoher et al. Jan 2001 B1
6174324 Egan et al. Jan 2001 B1
6183499 Fischer et al. Feb 2001 B1
6187095 Labrecque et al. Feb 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206908 Roby Mar 2001 B1
6231911 Steinback et al. May 2001 B1
6235869 Roby et al. May 2001 B1
6241747 Ruff Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6264675 Brotz Jul 2001 B1
6267772 Mulhauser et al. Jul 2001 B1
6270517 Brotz Aug 2001 B1
6315788 Roby Nov 2001 B1
6319231 Andrulitis Nov 2001 B1
6334865 Redmond et al. Jan 2002 B1
6383201 Dong May 2002 B1
6387363 Gruskin May 2002 B1
6388043 Langer et al. May 2002 B1
6395029 Levy May 2002 B1
D462766 Jacobs et al. Sep 2002 S
6443962 Gaber Sep 2002 B1
6471715 Weiss Oct 2002 B1
6478809 Brotz Nov 2002 B1
6485503 Jacobs et al. Nov 2002 B2
6491701 Tierney et al. Dec 2002 B2
6491714 Bennett Dec 2002 B1
6494898 Roby et al. Dec 2002 B1
6495127 Wallace et al. Dec 2002 B1
RE37963 Thal Jan 2003 E
6506190 Walshe Jan 2003 B1
6506197 Rollero et al. Jan 2003 B1
6511488 Marshall et al. Jan 2003 B1
6514265 Ho et al. Feb 2003 B2
6527795 Lizardi Mar 2003 B1
6548002 Gresser et al. Apr 2003 B2
6548569 Williams et al. Apr 2003 B1
6551343 Tormala et al. Apr 2003 B1
6554802 Pearson et al. Apr 2003 B1
6565597 Fearnot et al. May 2003 B1
6592609 Bonutti Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6599310 Leung et al. Jul 2003 B2
6607541 Gardiner et al. Aug 2003 B1
6610078 Bru-Magniez et al. Aug 2003 B1
6613059 Schaller et al. Sep 2003 B2
6613254 Shiffer Sep 2003 B1
6616982 Merrill et al. Sep 2003 B2
6623492 Berube et al. Sep 2003 B1
6626930 Allen et al. Sep 2003 B1
6632245 Kim Oct 2003 B2
6641592 Sauer et al. Nov 2003 B1
6641593 Schaller et al. Nov 2003 B1
6645226 Jacobs et al. Nov 2003 B1
6645227 Fallin et al. Nov 2003 B2
6645228 Renz Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6656182 Hayhurst Dec 2003 B1
6689153 Skiba Feb 2004 B1
6689166 Laurencin et al. Feb 2004 B2
6692761 Mahmood et al. Feb 2004 B2
6702844 Lazarus Mar 2004 B1
6712830 Esplin Mar 2004 B2
6712859 Rousseau et al. Mar 2004 B2
6716234 Grafton et al. Apr 2004 B2
6720402 Langer et al. Apr 2004 B2
6726705 Peterson et al. Apr 2004 B2
6746443 Morley et al. Jun 2004 B1
6746458 Cloud Jun 2004 B1
6749616 Nath Jun 2004 B1
6773450 Leung et al. Aug 2004 B2
6783554 Amara et al. Aug 2004 B2
6814748 Baker et al. Nov 2004 B1
6818010 Eichhorn et al. Nov 2004 B2
6838493 Williams et al. Jan 2005 B2
6848152 Genova et al. Feb 2005 B2
6852825 Lendlein et al. Feb 2005 B2
6858222 Nelson et al. Feb 2005 B2
6860891 Schulze Mar 2005 B2
6860901 Baker et al. Mar 2005 B1
6867248 Martin et al. Mar 2005 B1
6877934 Gainer Apr 2005 B2
6881766 Hain Apr 2005 B2
6893452 Jacobs May 2005 B2
6905484 Buckman et al. Jun 2005 B2
6911035 Blomme Jun 2005 B1
6911037 Gainor et al. Jun 2005 B2
6913607 Ainsworth et al. Jul 2005 B2
6921811 Zamora et al. Jul 2005 B2
6923819 Meade et al. Aug 2005 B2
6945021 Michel Sep 2005 B2
6945980 Nguyen et al. Sep 2005 B2
6960221 Ho et al. Nov 2005 B2
6960233 Berg et al. Nov 2005 B1
6974450 Weber et al. Dec 2005 B2
6981983 Rosenblatt et al. Jan 2006 B1
6984241 Lubbers et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6991643 Saadat Jan 2006 B2
6996880 Kurtz, Jr. Feb 2006 B2
7021316 Leiboff Apr 2006 B2
7033379 Peterson Apr 2006 B2
7033603 Nelson et al. Apr 2006 B2
7037984 Ledlein et al. May 2006 B2
7048748 Ustuner May 2006 B1
7056331 Kaplan et al. Jun 2006 B2
7056333 Walshe Jun 2006 B2
7057135 Li Jun 2006 B2
7070610 Im et al. Jul 2006 B2
7081135 Smith et al. Jul 2006 B2
7083637 Tannhauser Aug 2006 B1
7083648 Yu et al. Aug 2006 B2
7107090 Salisbury, Jr. et al. Sep 2006 B2
7112214 Peterson et al. Sep 2006 B2
7125403 Julian et al. Oct 2006 B2
7125413 Grigoryants et al. Oct 2006 B2
D532107 Peterson et al. Nov 2006 S
7138441 Zhang Nov 2006 B1
7141302 Mueller et al. Nov 2006 B2
7144401 Yamamoto et al. Dec 2006 B2
7144412 Wolf et al. Dec 2006 B2
7144415 DelRio et al. Dec 2006 B2
7150757 Fallin et al. Dec 2006 B2
7156858 Schuldt-Hempe et al. Jan 2007 B2
7156862 Jacobs et al. Jan 2007 B2
7160312 Saadat Jan 2007 B2
7166570 Hunter et al. Jan 2007 B2
7172595 Goble Feb 2007 B1
7172615 Morriss et al. Feb 2007 B2
7186262 Saadat Mar 2007 B2
7195634 Schmieding et al. Mar 2007 B2
7211088 Grafton et al. May 2007 B2
7214230 Brock et al. May 2007 B2
7217744 Lendlein et al. May 2007 B2
7225512 Genova et al. Jun 2007 B2
7226468 Ruff Jun 2007 B2
7232447 Gellman et al. Jun 2007 B2
7244270 Lesh et al. Jul 2007 B2
7279612 Heaton et al. Oct 2007 B1
7297142 Brock Nov 2007 B2
7322105 Lewis Jan 2008 B2
7371253 Leung et al. May 2008 B2
7381211 Zamierowski Jun 2008 B2
7513904 Sulamanidze et al. Apr 2009 B2
7514095 Nelson et al. Apr 2009 B2
7582105 Kolster Sep 2009 B2
7601164 Wu Oct 2009 B2
7624487 Trull et al. Dec 2009 B2
7806908 Ruff Oct 2010 B2
7845356 Paraschac et al. Dec 2010 B2
7857829 Kaplan et al. Dec 2010 B2
7879072 Bonutti et al. Feb 2011 B2
8100940 Leung et al. Jan 2012 B2
20010011187 Pavcnik et al. Aug 2001 A1
20010018592 Schaller et al. Aug 2001 A1
20010018599 D'Aversa et al. Aug 2001 A1
20010039450 Pavcnik et al. Nov 2001 A1
20010051807 Grafton Dec 2001 A1
20020007218 Cauthen Jan 2002 A1
20020022861 Jacobs et al. Feb 2002 A1
20020029011 Dyer Mar 2002 A1
20020029066 Foerster Mar 2002 A1
20020077448 Antal et al. Jun 2002 A1
20020095164 Andreas et al. Jul 2002 A1
20020099394 Houser et al. Jul 2002 A1
20020111641 Peterson et al. Aug 2002 A1
20020111688 Cauthen Aug 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020151932 Bryant et al. Oct 2002 A1
20020151980 Cauthen Oct 2002 A1
20020161168 Shalaby et al. Oct 2002 A1
20020165555 Stein et al. Nov 2002 A1
20020173822 Justin et al. Nov 2002 A1
20020179718 Murokh et al. Dec 2002 A1
20030014077 Leung et al. Jan 2003 A1
20030040795 Elson et al. Feb 2003 A1
20030041426 Genova et al. Mar 2003 A1
20030069602 Jacobs et al. Apr 2003 A1
20030088270 Lubbers et al. May 2003 A1
20030149447 Morency Aug 2003 A1
20030158604 Cauthen, III et al. Aug 2003 A1
20030167072 Oberlander Sep 2003 A1
20030199923 Khairkhahan et al. Oct 2003 A1
20030203003 Nelson et al. Oct 2003 A1
20030204193 Gabriel et al. Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030225424 Benderev Dec 2003 A1
20030229361 Jackson Dec 2003 A1
20030236551 Peterson Dec 2003 A1
20040006353 Bosley, Jr. et al. Jan 2004 A1
20040010275 Jacobs et al. Jan 2004 A1
20040010276 Jacobs et al. Jan 2004 A1
20040015187 Lendlein et al. Jan 2004 A1
20040024169 Shalaby et al. Feb 2004 A1
20040024420 Lubbers et al. Feb 2004 A1
20040030354 Leung et al. Feb 2004 A1
20040039415 Zamierowski Feb 2004 A1
20040049224 Buehlmann et al. Mar 2004 A1
20040059370 Greene, Jr. et al. Mar 2004 A1
20040059377 Peterson et al. Mar 2004 A1
20040060409 Leung et al. Apr 2004 A1
20040060410 Leung et al. Apr 2004 A1
20040068293 Scalzo et al. Apr 2004 A1
20040068294 Scalzo et al. Apr 2004 A1
20040088003 Leung et al. May 2004 A1
20040093023 Allen et al. May 2004 A1
20040098051 Fallin et al. May 2004 A1
20040106949 Cohn et al. Jun 2004 A1
20040116620 Shalaby et al. Jun 2004 A1
20040138683 Shelton et al. Jul 2004 A1
20040153153 Elson et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167575 Roby Aug 2004 A1
20040186487 Klein et al. Sep 2004 A1
20040193191 Starksen et al. Sep 2004 A1
20040193217 Lubbers et al. Sep 2004 A1
20040193257 Wu et al. Sep 2004 A1
20040230223 Bonutti et al. Nov 2004 A1
20040254609 Esplin Dec 2004 A1
20040260340 Jacobs et al. Dec 2004 A1
20040265282 Wright et al. Dec 2004 A1
20040267309 Garvin Dec 2004 A1
20050004601 Kong et al. Jan 2005 A1
20050004602 Hart et al. Jan 2005 A1
20050033324 Phan Feb 2005 A1
20050034431 Dey et al. Feb 2005 A1
20050038472 Furst Feb 2005 A1
20050049636 Leiboff Mar 2005 A1
20050055051 Grafton Mar 2005 A1
20050059984 Chanduszko et al. Mar 2005 A1
20050065533 Magen et al. Mar 2005 A1
20050070959 Cichocki, Jr. Mar 2005 A1
20050080455 Schmieding et al. Apr 2005 A1
20050085857 Peterson et al. Apr 2005 A1
20050096698 Lederman May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050119694 Jacobs et al. Jun 2005 A1
20050125020 Meade et al. Jun 2005 A1
20050125034 Cichocki, Jr. Jun 2005 A1
20050125035 Cichocki, Jr. Jun 2005 A1
20050149064 Peterson et al. Jul 2005 A1
20050149118 Koyfman et al. Jul 2005 A1
20050154255 Jacobs Jul 2005 A1
20050171561 Songer et al. Aug 2005 A1
20050177190 Zamierowski Aug 2005 A1
20050182444 Peterson et al. Aug 2005 A1
20050182445 Zamierowski Aug 2005 A1
20050186247 Hunter et al. Aug 2005 A1
20050197699 Jacobs et al. Sep 2005 A1
20050199249 Karram Sep 2005 A1
20050203576 Sulamandize et al. Sep 2005 A1
20050209542 Jacobs et al. Sep 2005 A1
20050209612 Nakao Sep 2005 A1
20050234510 Zamierowski Oct 2005 A1
20050240220 Zamierowski Oct 2005 A1
20050267531 Ruff et al. Dec 2005 A1
20050267532 Wu Dec 2005 A1
20050277984 Long Dec 2005 A1
20050283246 Cauthen, III et al. Dec 2005 A1
20060020272 Gildenberg Jan 2006 A1
20060030884 Young et al. Feb 2006 A1
20060036266 Sulamanidze et al. Feb 2006 A1
20060058574 Priewe et al. Mar 2006 A1
20060058799 Elson et al. Mar 2006 A1
20060058844 White et al. Mar 2006 A1
20060063476 Dore Mar 2006 A1
20060064115 Allen et al. Mar 2006 A1
20060064116 Allen et al. Mar 2006 A1
20060064127 Fallin et al. Mar 2006 A1
20060079935 Kolster Apr 2006 A1
20060085016 Eremia Apr 2006 A1
20060089525 Mamo et al. Apr 2006 A1
20060089672 Martinek Apr 2006 A1
20060111734 Kaplan et al. May 2006 A1
20060111742 Kaplan et al. May 2006 A1
20060116503 Lendlein et al. Jun 2006 A1
20060122608 Fallin et al. Jun 2006 A1
20060135994 Ruff Jun 2006 A1
20060135995 Ruff Jun 2006 A1
20060140999 Lendlein et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060193769 Nelson et al. Aug 2006 A1
20060194721 Allen Aug 2006 A1
20060200062 Saadat Sep 2006 A1
20060207612 Jackson et al. Sep 2006 A1
20060229671 Steiner et al. Oct 2006 A1
20060235445 Birk et al. Oct 2006 A1
20060235447 Walshe Oct 2006 A1
20060235516 Cavazzoni Oct 2006 A1
20060241658 Cerundolo Oct 2006 A1
20060249405 Cerwin et al. Nov 2006 A1
20060253126 Bjerken et al. Nov 2006 A1
20060257629 Ledlein et al. Nov 2006 A1
20060258938 Hoffman et al. Nov 2006 A1
20060272979 Lubbers et al. Dec 2006 A1
20060276808 Arnal et al. Dec 2006 A1
20060282099 Stokes et al. Dec 2006 A1
20060286289 Prajapati et al. Dec 2006 A1
20060287675 Prajapati et al. Dec 2006 A1
20060287676 Prajapati et al. Dec 2006 A1
20060293710 Foerster et al. Dec 2006 A1
20070005109 Popadiuk et al. Jan 2007 A1
20070005110 Collier et al. Jan 2007 A1
20070016251 Roby Jan 2007 A1
20070021779 Garvin et al. Jan 2007 A1
20070027475 Pagedas Feb 2007 A1
20070038249 Kolster Feb 2007 A1
20070065663 Trull et al. Mar 2007 A1
20070088135 Lendlein et al. Apr 2007 A1
20070088391 McAlexander et al. Apr 2007 A1
20070135840 Schmieding Jun 2007 A1
20070135843 Burkhart Jun 2007 A1
20070151961 Kleine et al. Jul 2007 A1
20070156175 Weadock et al. Jul 2007 A1
20070167958 Sulamanidze et al. Jul 2007 A1
20070187861 Geneva et al. Aug 2007 A1
20070208355 Ruff Sep 2007 A1
20070208377 Kaplan et al. Sep 2007 A1
20070213770 Drefyss Sep 2007 A1
20070219587 Accardo Sep 2007 A1
20070224237 Hwang et al. Sep 2007 A1
20070225642 Houser et al. Sep 2007 A1
20070225761 Shetty Sep 2007 A1
20070225764 Benavitz et al. Sep 2007 A1
20070233188 Hunt et al. Oct 2007 A1
20070239206 Shelton, IV et al. Oct 2007 A1
20070239207 Beramendi Oct 2007 A1
20070257395 Lindh et al. Nov 2007 A1
20070282247 Desai et al. Dec 2007 A1
20080004490 Bosley, Jr. et al. Jan 2008 A1
20080004603 Larkin et al. Jan 2008 A1
20080009838 Schena et al. Jan 2008 A1
20080009888 Ewers et al. Jan 2008 A1
20080009902 Hunter et al. Jan 2008 A1
20080027273 Gutterman Jan 2008 A1
20080027486 Jones et al. Jan 2008 A1
20080046094 Han et al. Feb 2008 A1
20080058869 Stopek et al. Mar 2008 A1
20080066764 Paraschac et al. Mar 2008 A1
20080066765 Paraschac et al. Mar 2008 A1
20080066766 Paraschac et al. Mar 2008 A1
20080066767 Paraschac et al. Mar 2008 A1
20080077181 Jones et al. Mar 2008 A1
20080082113 Bishop et al. Apr 2008 A1
20080082129 Jones et al. Apr 2008 A1
20080086169 Jones et al. Apr 2008 A1
20080086170 Jones et al. Apr 2008 A1
20080109036 Stopek et al. May 2008 A1
20080132943 Maiorino et al. Jun 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080208358 Bellamkonda et al. Aug 2008 A1
20080215072 Kelly Sep 2008 A1
20080221618 Chen et al. Sep 2008 A1
20080234731 Leung et al. Sep 2008 A1
20080248216 Yeung et al. Oct 2008 A1
20080255611 Hunter Oct 2008 A1
20080262542 Sulamanidze et al. Oct 2008 A1
20080281338 Wohlert et al. Nov 2008 A1
20080312688 Naworocki et al. Dec 2008 A1
20090012560 Hunter et al. Jan 2009 A1
20090018577 Leung et al. Jan 2009 A1
20090043336 Yuan et al. Feb 2009 A1
20090076543 Maiorino et al. Mar 2009 A1
20090099597 Isse Apr 2009 A1
20090107965 D'Agostino Apr 2009 A1
20090112236 Stopek Apr 2009 A1
20090112259 D'Agostino Apr 2009 A1
20090200487 Maiorino et al. Aug 2009 A1
20090210006 Cohen et al. Aug 2009 A1
20090216253 Bell et al. Aug 2009 A1
20090226500 Avelar et al. Sep 2009 A1
20090248066 Wilkie Oct 2009 A1
20090248067 Maiorino Oct 2009 A1
20090248070 Kosa et al. Oct 2009 A1
20090259233 Bogart et al. Oct 2009 A1
20090259251 Cohen Oct 2009 A1
20090287245 Ostrovsky et al. Nov 2009 A1
20090299407 Yuan et al. Dec 2009 A1
20090299408 Schuldt-Hempe et al. Dec 2009 A1
20090306710 Lindh et al. Dec 2009 A1
20090318958 Ochial Dec 2009 A1
20100023055 Rousseau Jan 2010 A1
20100057123 D'Agostino et al. Mar 2010 A1
20100063540 Maiorino Mar 2010 A1
20100071833 Maiorino Mar 2010 A1
20100087855 Leung et al. Apr 2010 A1
20100101707 Maiorino et al. Apr 2010 A1
20100292718 Sholev et al. Nov 2010 A1
20100294103 Genova et al. Nov 2010 A1
20100294104 Genova et al. Nov 2010 A1
20100294105 Genova et al. Nov 2010 A1
20100294106 Genova et al. Nov 2010 A1
20100294107 Genova et al. Nov 2010 A1
20100298637 Ruff Nov 2010 A1
20100298639 Leung et al. Nov 2010 A1
20100298848 Leung et al. Nov 2010 A1
20100298867 Ruff Nov 2010 A1
20100298868 Ruff Nov 2010 A1
20100298871 Ruff et al. Nov 2010 A1
20100298874 Leung et al. Nov 2010 A1
20100298875 Leung et al. Nov 2010 A1
20100298876 Leung et al. Nov 2010 A1
20100298878 Leung et al. Nov 2010 A1
20100298879 Leung et al. Nov 2010 A1
20100298880 Leung et al. Nov 2010 A1
20100313723 Genova et al. Dec 2010 A1
20100313729 Genova et al. Dec 2010 A1
20100313730 Genova et al. Dec 2010 A1
20100318122 Leung et al. Dec 2010 A1
20100318123 Leung et al. Dec 2010 A1
20100318124 Leung et al. Dec 2010 A1
20110009902 Leung et al. Jan 2011 A1
20110046668 Goraltchouk et al. Feb 2011 A1
20110046669 Goraltchouk et al. Feb 2011 A1
20110130774 Criscuolo et al. Jun 2011 A1
20110166597 Herrmann et al. Jul 2011 A1
20130165971 Leung et al. Jun 2013 A1
Foreign Referenced Citations (136)
Number Date Country
1014364 Sep 2003 BE
2309844 Dec 1996 CA
2640420 Sep 2004 CN
01810800 Jun 1970 DE
03227984 Feb 1984 DE
04302895 Aug 1994 DE
19618891 Apr 1997 DE
19833703 Feb 2000 DE
102005004317 Jun 2006 DE
0121362 Sep 1987 EP
0329787 Aug 1989 EP
0428253 Jul 1994 EP
0632999 Jan 1995 EP
0513736 Feb 1995 EP
0464479 Mar 1995 EP
0464480 Mar 1995 EP
0576337 Mar 1997 EP
0574707 Aug 1997 EP
0612504 Nov 1997 EP
0558993 Apr 1998 EP
0913123 May 1999 EP
0916310 May 1999 EP
0664198 Jun 1999 EP
0960600 Dec 1999 EP
0705567 Mar 2002 EP
0673624 Aug 2002 EP
0839499 Sep 2003 EP
0755656 Dec 2003 EP
1075843 Feb 2005 EP
1525851 Apr 2005 EP
1532942 May 2005 EP
0826337 Dec 2005 EP
0991359 Nov 2007 EP
2036502 Mar 2009 EP
1948261 Nov 2010 EP
1726317 Jul 2012 EP
2619129 Feb 1989 FR
2693108 Jan 1994 FR
0267007 Mar 1927 GB
1091282 Nov 1967 GB
1091282 Nov 1967 GB
1428560 Jul 1973 GB
1506362 Apr 1978 GB
1508627 Apr 1978 GB
1506362 Apr 1978 JP
54-116419 Sep 1979 JP
63-288146 Nov 1988 JP
001113091 May 1989 JP
3-165751 Jul 1991 JP
4-096758 Mar 1992 JP
4-266749 Sep 1992 JP
9-103477 Apr 1997 JP
410085225 Apr 1998 JP
11-313826 Nov 1999 JP
011332828 Dec 1999 JP
2002-059235 Feb 2002 JP
2003-275217 Sep 2003 JP
2006-517112 Jul 2006 JP
2009-118967 Jun 2009 JP
10-2005-0072908 Jul 2005 KR
6013299 Feb 2006 KR
2006-59142 Jun 2006 KR
501224 Mar 2002 NZ
531262 Dec 2005 NZ
1823791 Jun 1993 RU
2139690 Oct 1999 RU
2175855 Nov 2001 RU
2241389 Dec 2004 RU
2268752 Jan 2006 RU
1745214 Jul 1992 SU
1752358 Aug 1992 SU
WO 9606565 Mar 1966 WO
WO 8600020 Jan 1986 WO
WO 8701270 Mar 1987 WO
WO 8809157 Dec 1988 WO
WO 8905618 Jun 1989 WO
WO 9009149 Aug 1990 WO
WO 9014795 Dec 1990 WO
WO 9222336 Dec 1992 WO
WO 9516399 Jun 1995 WO
WO 9529637 Nov 1995 WO
WO 9852473 Nov 1998 WO
WO 9855031 Dec 1998 WO
WO 9921488 May 1999 WO
WO 9933401 Jul 1999 WO
WO 9952478 Oct 1999 WO
WO 9959477 Nov 1999 WO
WO 9962431 Dec 1999 WO
WO 0051658 Sep 2000 WO
WO 0051685 Sep 2000 WO
WO 0106952 Feb 2001 WO
WO 0156626 Aug 2001 WO
WO 03001979 Jan 2003 WO
WO 03003925 Jan 2003 WO
WO 03017850 Mar 2003 WO
WO 03045255 Jun 2003 WO
WO 03077772 Sep 2003 WO
WO 03092758 Nov 2003 WO
WO 03103733 Dec 2003 WO
WO 03103972 Dec 2003 WO
WO 03105703 Dec 2003 WO
WO 2004014236 Feb 2004 WO
WO 2004030517 Apr 2004 WO
WO 2004030520 Apr 2004 WO
WO 2004030704 Apr 2004 WO
WO 2004030705 Apr 2004 WO
WO 2004062459 Jul 2004 WO
WO 2004100801 Nov 2004 WO
WO 2004112853 Dec 2004 WO
WO 2005074913 Aug 2005 WO
WO 2005096955 Oct 2005 WO
WO 2005096956 Oct 2005 WO
WO 2005112787 Dec 2005 WO
WO 2006005144 Jan 2006 WO
WO 2006012128 Feb 2006 WO
WO 2006061868 Jun 2006 WO
WO 2006079469 Aug 2006 WO
WO 2006082060 Aug 2006 WO
WO 2006099703 Sep 2006 WO
WO 2007005291 Jan 2007 WO
WO 2007005296 Jan 2007 WO
WO 2007053812 May 2007 WO
WO 2007089864 Aug 2007 WO
WO 2007112024 Oct 2007 WO
WO 2007133103 Nov 2007 WO
WO 2007145614 Dec 2007 WO
WO 2008128113 Oct 2008 WO
WO 2008150773 Dec 2008 WO
WO 2009042841 Apr 2009 WO
WO 2009068252 Jun 2009 WO
WO 2009087105 Jul 2009 WO
WO 2009097556 Aug 2009 WO
WO 2009151876 Dec 2009 WO
WO 2010052007 May 2010 WO
WO 2011139916 Nov 2011 WO
WO 2011140283 Nov 2011 WO
Non-Patent Literature Citations (148)
Entry
US 6,447,535, (withdrawn).
US 6,503,260, (withdrawn).
Bacci, Pier Antonio, “Chirurgia Estetica Mini Invasiva Con Fili Di Sostegno”, Collana di Arti, Pensiero e Scienza; Minelli Editore—2006; 54 pgs.
Behl, Marc et al., “Shape-Memory Polymers”, Materials Today Apr. 2007; 10(4); 20-28.
Belkas, J. S. et al., “Peripheral nerve regeneration through a synthetic hydrogel nerve tube”, Restorative Neurology and Neuroscience 23 (2005) 19-29.
Benin, I. et al., “Polymeric triple-shape materials”, Proceedings of the National Academy of Sciences of the United States of America Nov. 28, 2006; 2103(48):18043-18047.
Boenisch, U.W. et al ‘Pull-Out strength and stiffness of meniscal repair using absorbable arrows or Ti-Cron vertical and horizontal loop sutures’ American Journal of Sports Medicine, Sep.-Oct. (1999) vol. 27, Issue 5, pp. 626-631.
Buckley, P.R. ‘Actuation of Shape Memory Polymer using Magnetic Fields for Applications in Medical Devices’ Master of Science in Mechanical Engineering in Massachusetts Institute of Technology Jun. 2003, 144 pages.
Buncke, Jr., H.J. et al ‘The Suture Repair of One-Millimeter Vessels, microvascular surgery’ (1966) Report of First Conference; Oct. 6-7 pp. 24-35.
Bunnell, S. ‘Gig pull-out suture for tendons’ J Bone Joint Surg. Am (1954) vol. 36A, No. 4 pp. 850-851.
CCPR Centro De Cirurgia Plastica e Reabilitacao 'Up Lifting (Aptos Threads) http://ccpr.com.br/upl-l.htm, Aug. 19, 2002 pp. 1-2.
Dahlin, Lars, “Techniques of Peripheral Nerve Repair”, Scandinavian Journal of Surgery 97: 310-316, 2008.
Datillo, Jr., P.P. 'Knotless Bi-directional Barbed Absorbable Surgical Suture' Dissertation submitted to the Graduate Faculty of North Carolina State University Textile Management and Technology Nov. 2002, 75 pages.
Datillo, Jr. P.P. et al ‘Medical Textiles: Application of an Absorbable Barbed Bi-Directional Surgical Suture’ (2002) The Journal of Textile and Apparel Technology and Management vol. 2, Issue 2, pp. 1-5.
Datillo, Jr., P. et al ‘Tissue holding performance of knotless absorbable sutures’ Society for Biomaterials 29th Annual Meeting Transactions (2003) p. 101.
Declaration of Dr. Gregory L. Ruff, dated Aug. 19, 2005, 8 pages, with Exhibits A-E.
De Persia, Raúl et al., “Mechanics of Biomaterials: Sutures After the Surgery”, Applications of Engineering Mechanics in Medicine, GED-University of Puerto Rico, Mayaguez May 2005, p. F1-F27.
Delorenzi, C.L., “Barbed Sutures: Rationale and Technique”, Aesthetic Surg. J. Mar. 26, 2006(2): 223-229.
Demyttenaere, Sebastian V. et al., “Barbed Suture for Gastrointestinal Closure: A Randomized Control Trial”, Surgical Innovation; vol. 16, No. 3; Sep. 2009; pp. 237-242.
Einarsson, Jon I. et al., “Barbed Suture, now in the toolbox of minimally invasive gyn surgery”, OBG Management; vol. 21, No. 9; Sep. 2009; pp. 39-41.
Gross, Alex, “Physician perspective on thread lifts”, Dermatology Times Feb. 27, 2006(2): 2 pages.
Han, H. et al ‘Mating and Piercing Micromechanical Suture for Surface Bonding Applications’ (1991) Proceedings of the 1991 Micro Electro Mechanical Systems (MEMS>91), An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots pp. 253-258.
Ingle, N.P. et al ‘Barbed Suture Anchoring Strength: Applicability to Dissimilar Polymeric Materials’ College of Textiles, North Carolina State University, 7th World Biomaterials Congress 2004, 1 page.
Ingle, N.P. et al ‘Mechanical Performance and Finite Element Analysis of Bi-directional Barbed Sutures’ Master of Science in Textile Technology & Management at North Carolina State University Aug. 2003, 126 pages.
Ingle, N.P. et al., “Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues”, Journal of Biomechanics 43 (2010); pp. 302-309.
Ingle, Nilesh P et al., “Testing the Tissue-holding Capacity of Barbed Sutures”, College of Textiles, North Carolina State University, Fiber Science, The Next Generation Oct. 17-19, 2005, New Jersey Institute of Technology, Newark, NJ, 4 pages.
Jennings et al ‘A New Technique in primary tendon repair’ Surg. Gynecol. Obstet. (1952) vol. 95, No. 5 pp. 597-600.
Kaminer, M. et al., “ContourLift™: A New Method of Minimally Invasive Facial Rejuvenation”, Cosmetic Dermatology Jan. 2007; 20(1): 29-35.
Kelch et al., “Shape-memory Polymer Networks from Olio[(∈-hydroxycaproate)-co-glycolate]dimethaciylates and Butyl Acrylate with Adjustable Hydrolytic Degradation Rate”, Biomacromolecules 2007;8(3):1018-1027.
Khademhosseini, Ali et al., “Nanobiotechnology Drug Delivery and Tissue Engineering”, Chemical Engineering Progress 102:38-42 (2006).
Kuniholm J.F. et al ‘Automated Knot Tying for Fixation in Minimally Invasive, Robot Assisted Cardiac Surgery’ Master of Science in Mechanical & Aerospace Engineering at North Carolina State University May 2003, 71 pages.
Lendlein, A. et al ‘Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications’ (2002) Science vol. 296 pp. 1673-1676.
Lendlein, A. et al ‘Shape-Memory Polymers’ Agnew Chem. Int. Ed. (2002) vol. 41 pp. 2034-2057.
Leung, J. et al ‘Barbed, Bi-directional Medical Sutures: Biomechanical Properties and Wound Closure Efficacy Study’ 2002 Society for Biomaterials 28th Annual Meeting Transactions 1 page.
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures’ International Conference & Exhibition on Healthcare & Medical Textiles, Jul. 8-9, 2003 pp. 1-8.
Leung, J. et al ‘Barbed, Bi-directional Surgical Sutures: In Vivo Strength and Histopathology Evaluations’ 2003 Society for Biomaterials 29th Annual Meeting Transactions pp. 100.
Leung, J. et al., “Barbed Suture Technology: Recent Advances”, Medical Textiles 2004, Advances in Biomedical Textiles and Healthcare Products, Conference Proceedings, IFAI Expo 2004, Oct. 26-27, 2004, Pittsburgh, PA., pp. 62-80.
Leung, J. et al ‘Performance Enhancement of a Knotless Suture via Barb Geometry Modifications’ 7th World Biomaterials Congress 2004, 1 page.
Li, Y.Y. et al ‘Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications’ (2003) Science vol. 299 pp. 2045-2047.
Liu, Changdeng et al., “Shape Memory Polymer with Improved Shape Recovery”, Mater. Res. Soc. Symp. Proc. vol. 855E, 2005 Materials Research Society, pp. W4.7.1-W4.7.6.
Madduri, Srinivas, et al., “Neurotrophic factors release from nerve conduits for peripheral axonal regeneration”, European Cells and Materials vol. 16; Suppl. 1 (2008), p. 14.
Malina, M. et al ‘Endovascular AAA Exclusion: Will Stents with Hooks and Barbs Prevent Stent-Graft Migration’ Journal Endovascular Surgery (1998) vol. 5 pp. 310-317.
Mansberger et al ‘A New Type Pull-Out Wire for Tendon Surgery: A Preliminary Report’ Department of Surgery, University Hospital and University of Maryland School of Medicine, Baltimore, Maryland, Received for Publication May 10, 1951 pp. 119-121.
Mason, M.L. ‘Primary and Secondary Tendon Suture. A discussion of the significance of technique in tendon surgery’ (1940) Surg Gynecol Obstet 70.
McKee, GK ‘Metal anastomosis tubes in tendon suture’ The Lancet (1945) pp. 659-660.
McKenzie ‘An Experimental Multiple Barbed Suture for the Long Flexor Tendons of the Palm and Fingers’ The Journal of Bone and Joint Surgery (1967) vol. 49B, No. 3 pp. 440-447.
Moran et al., “Bidirectional-Barbed Sutured Knotless Running Anastomosis v Classic van Velthovan in a Model System”, Journal of Endourology Oct. 2007; 21(10); 1175-1177.
Mullner, “Metal Foam Has a Good Memory”, Dec. 18, 2007 Original story at <http://www.physorg.com/news117214996.html>.
Murtha et al., “Evaluation of a Novel Technique for Wound Closure Using a Barbed Suture”, Journal of the American Society of Plastic Surgeons 2006; 117(6); 1769-1780.
Nie, Zhihong and Kumacheva, Eugenia, “Patterning surfaces with functional polymers”, Nature Materials vol. 7(2008): 277-290.
Paul, Malcolm D., “Bidirectional Barbed Sutures for Wound Closure: Evolution and Applications”, Journal of the American College of Certified Wound Specialists (2009) 1, 51-57.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Third Edition 2009, 8 2007-2009: 27 pages.
Paul, Malcolm D. and Rui Avelar, “Quill™ SRS Techniques & Procedures a Novel Approach to Soft Tissue Approximation”, Canada, Angiotech Pharmaceuticals, Inc., Fourth Edition 2010, 8 2007-2010: 27 pages.
Paul, Malcolm D., “Using Barbed Sutures in Open/Subperiosteal Midface Lifting”, Aesthetic Surgery Journal 2006(26): 725-732.
Potenza, A. ‘Tendon Healing Within the Flexor Digital Sheath in the Dog: An Experimental Study’ Journal of Bone & Joint Surgery (1962) vol. 44A No. 1 pp. 49-64.
Pulvertaft ‘Suture Materials and Tendon Junctures’ American Journal of Surgery (1965) vol. 109 pp. 346-352.
Quill Medical, Inc. ‘Barbed Sutures, wrinkle filters give patients more innovative, non-surgical options’ Press Release of Program presented at American Society of Plastic Surgeons annual scientific meeting; Philadelphia, Oct. 9, 2004 3 pages.
Quill Medical, Inc. ‘Quill Medical's Novel-Self-Anchoring Surgical Suture Approved for Sale in Europe’ Press Release; Research Triangle Park, N.C. May 10, 2004, 1 page.
Quill Medical, Inc., “Quill Medical, Inc. Receives FDA Clearance for First-in-Class Knot-Less Self-Anchoring Surgical Suture”, Press Release; Research Triangle Park, N.C., Nov. 4, 2004, 1 page.
Richert, Ludovic, et al., “Surface Nanopatterning to Control Cell Growth”, Advanced Materials 2008(15): 1-5.
Rodeheaver, G.T. et al., “Barbed Sutures for Wound Closure: In Vivo Wound Security, Tissue Compatibility and Cosmesis Measurements”, Society for Biomaterials 30th Annual Meeting Transactions, 2005, 2 pages.
Rofin-Baasel ‘Laser Marking on Plastic Materials’ (2001) RB50.0, Rofin-Baasel Inc. 2 pages.
Ruff, Gregory, “Technique and Uses for Absorbable Barbed Sutures”, Aesthetic Surgery Journal Sep./Oct. 2006; 26:620-628.
Scherman, Peter et al., “Sutures as longitudinal guides for the repair of nerve defects—Influence of suture numbers and reconstruction of nerve bifurcations”, Restorative Neurology and Neuroscience 23 (2005) 79-85.
Schmid A. et al ‘The outspreading anchor cord. A material for arthroscopic suturing of a fresh anterior cruciate ligament rupture’ Surgical Clinic of the University of Gottingen (1987) pp. 417-426.
Semenov, G.M. et al ‘Surgical Suture’ (2001) Piter, Saint Petersburg, pp. 12-13 and 92-98.
Sulamanidze, M. et al., “APTOS Suture Lifting Methods: 10 Years of Experience”, Clin Plastic Surg 36 (2009); pp. 281-306.
Sulamanidze, M.A. et al ‘Clinical aspects of bloodless facelift using APTOS filaments’ A.V. Vishnevsky Institute of Surgery, Bol'shaya Serpukhovskaya ul, 7, 113811, Moscow, Russia (2002) pp. 24-34.
Sulamanidze, M.A. et al ‘Facial lifting with APTOS threads’ International Journal of Cosmetic Surgery and Aesthetic Dermatology' (2001) No. 4 pp. 1-8.
Sulamanidze, M.A. et al ‘Management of Facial Rhytids by Subcutaneous Soft Tissue Dissection’ (2000) International Journal of Cosmetic Surgery and Aesthetic Dermatology vol. 2 No. 4 pp. 255-259.
Sulamanidze, M.A. et al ‘Morphological foundations of facelift using APTOS filaments’ Bolshaya Serpukhovskaya ul 27, 113811 Moscow, Russia (2002) pp. 19-26.
Sulamanidze, M.A. et al ‘Removal of Facial Soft Tissue Ptosis with Special Threads’ Dermatol Surg (2002) vol. 28 pp. 367-371.
Sulamanidze, MD, M.A., et al., “Soft tissue lifting in the mid-face: old philosophy, new approach-internal stitching technique (APTOS Needle)”, Plastic and Aesthetic Surgery Clinic Total Sharm, Moscow, Russia, (2005):15-29.
Sulzle, Inc. B.G. et al Drilled End Surgical Needles Jul. 2002 Syracuse, New York.
Surgical Specialties Corporation, “Wound Closure Catalog”; Summer 2005, 5 pages.
Szarmach, R. et al ‘An Expanded Surgical Suture and Needle Evaluation and Selection Program by a Healthcare Resource Management Group Purchasing Organization’ Journal of Long-Term Effects of Medical Implants (2003) vol. 13 No. 3 pp. 155-170.
Tan E.L. et al., “A wireless, passive strain sensor based on the harmonic response of magnetically soft materials”, Smart Materials and Structures 17 (2008): pp. 1-6.
Verdan, C. ‘Primary Repair of Flexor Tendons’ Journal of Bone and Joint Surgery (1960) vol. 42, No. 4 pp. 647-657.
Villa, Mark T. et al., “Barbed Sutures: A Review of Literature”, Plastic and Reconstructive Surgery; Mar. 2008; vol. 121, No. 3; pp. 102e-108e.
Wu. W. ‘Barbed Sutures in Facial Rejuvenation’ Aesthetic Surgery Journal (2004) vol. 24 pp. 582-587.
Zoltan, J. ‘Cicatrix Optimia: Techniques for Ideal Wound Healing’ English language edition University Park Press Baltimore (1977) Chapter 3 pp. 54-55.
Communication from EPO re: 10000486 dated Apr. 4, 2011.
Europcan Search Rcport re: EP05025816 datcd Jun. 23, 2006.
European Search Report for EP07006258.3 dated May 4, 2007, 4 pages.
European Search Report for EP07015906 dated Oct. 2, 2007.
European Search Report for EP07015905.8 dated Oct. 2, 2007, 2 pages.
European Search Report for EP07016222 dated Jan. 7, 2008.
European Search Report for EP09014651 dated Jan. 12, 2010.
European Search Report for EP10000629.5 dated Mar. 10, 2010, 4 pages.
European Search Report re: EP10000486 dated Apr. 23, 2010.
European Search Report re: 10004453 dated Jun. 15, 2010.
European Search Report for EP10011871.0 dated Dec. 3, 2010, 2 pages.
European Search Report for EP10011868.6 dated Dec. 6, 2010, 2 pages.
European Search Report for EP10011869 dated Jan. 20, 2011.
European Search Report for EP10011872 dated Apr. 20, 2011.
Europcan Search Rcport for EP10012437 datcd Apr. 28, 2011.
European Search Report for EP10186592.1 dated Jan. 19, 2011, 2 pages.
European Search Report for EP10184766 dated Apr. 20, 2011.
Extended European Search Report re: 07015905.8 dated Oct. 23, 2007.
Extended European Search Report re: 07016222.7 dated Jan. 30, 2008.
International Preliminary Examination Report re: PCT/US1998/10478 dated Dec. 11, 1999.
International Preliminary Report re: PCT/US2008/060127 dated Oct. 13, 2009.
International Preliminary Report re: PCT/US2008/087788 dated Jun. 22, 2010.
International Preliminary Report re: PCT/US2009/040545 dated Oct. 19, 2010.
International Search Report for PCT/US1994/09631 dated Dec. 9, 1994.
International Search Report for PCT/US1998/10478 dated Sep. 23, 1998.
International Search Report for PCT/US2002/20449 dated May 20, 2003.
International Search Report for PCT/US2002/027525 dated Dec. 9, 2002, 3 pages.
International Search Report for PCT/US2003/030424 dated Nov. 1, 2004.
International Search Report for PCT/US2003/030664 dated May 25, 2004.
International Search Report for PCT/2003/030666 dated Dec. 15, 2004.
International Search Report for PCT/US2003/25088 dated Dec. 29, 2003.
International Search Report re: PCT/US2003/030674 dated Sep. 2, 2004.
International Search Report re: PCT/US2004/014962 dated Feb. 24, 2005.
International Search Report for PCT/US2005/017028 dated Mar. 26, 2008.
International Search Report for PCT/US2007/002688 dated Oct. 22, 2007.
International Search Report for PCT/US2007/074658 dated Jun. 12, 2007, 3 pages.
International Search Report for PCT/US2008/060127 dated Sep. 23, 2008, 5 pages.
International Search Report for PCT/US2008/0064921 dated Nov. 19, 2008, 3 pages.
International Search Report for PCT/US2008/075849 dated Mar. 18, 2009, 4 pages.
International Search Report for PCT/US2008/077813 dated Mar. 31, 2009.
International Search Report for PCT/US2008/082009 dated Feb. 16, 2010.
International Search Report for PCT/US2009/032693 dated Aug. 26, 2009.
International Search Report for PCT/US2009/034703 dated Sep. 28, 2009.
International Search Report for PCT/US2009/040545 dated Oct. 29, 2009.
International Search Report for PCT/US2009/063081 dated Aug. 2, 2010.
International Search Report for PCT/US2009/041685 dated Dec. 22, 2009.
International Search Report for PCT/US2009/044274 dated Jan. 15, 2010.
International Search Report for PCT/US2010/056898 dated Aug. 2, 2011.
International Search Report for PCT/US2010/060889 dated Oct. 11, 2011.
International Search Report for PCT/US2011/034660 dated Feb. 8, 2012.
International Search Report for PCT/US2011/035270 dated Jan. 12, 2012.
International Search Report for PCT/US2011/035271 dated Jan. 12, 2012.
International Search Report re: PCT/US2011 /035431 dated Jan. 12, 2012.
International Search Report re: PCT/US2011 /040014 dated Feb. 9, 2012.
International Search Report for PCT/US2011/059238 dated May 21, 2012.
International Search Report for PCT/US2011/060069 dated May 18, 2012.
International Search Report for PCT/US2012/030441 dated Sep. 27, 2012.
Partial European Search Report re: EP05025816 dated Mar. 20, 2006.
Singapore Search Report for Singapore Patent Application No. 200702625-5 dated Nov. 26, 2008, 7 pages.
Singapore Search Report for Singapore Patent Application No. 200702350-0 dated Nov. 26, 2008, 6 pages.
Singapore Search Report for Singapore Patent Application No. 200703688-2 dated Nov. 26, 2008, 7 pages.
Supplementary European Search Report re: EP98923664 dated Jun. 12, 2001.
Supplementary European Search Report re: EP03752630 dated Nov. 17, 2005.
Supplementary European Search Report re: 03770556 dated Nov. 17, 2005.
Supplementary European Search Report re: 03754965 dated Nov. 18, 2005.
Supplementary European Search Report re: EP03785177 dated May 19, 2009.
Supplementary European Search Report re: 05750101 dated Apr. 7, 2010.
Related Publications (1)
Number Date Country
20100298875 A1 Nov 2010 US
Continuations (1)
Number Date Country
Parent 10065280 Sep 2002 US
Child 12850035 US