The present application relates to a self-retracting reel, in particular, a self-retracting reel with a gear assembly that provides a gear reduction ratio between the reel and an output shaft of the gear assembly, wherein a paddle wheel connected to the output shaft rotates to compress a spring to store an energy when the reel is rotated to unwind a length of material from the reel, and wherein the stored energy is used to rotate the reel to wind the length of material back around the reel.
Current self-retractable reel designs use a spiral spring. Spiral springs are a type of spring made from rectangular metal strips that have been wound into a flat spiral. Spiral springs are engineered to store and release rotational energy in the form of torque. The metal strip slides over itself and expands while it rotates. This creates the torque that rotates the reel back into place. However, the material and the machines used to make these kinds of springs are not easy to acquire. Another limitation of spiral springs is that the metal material used to manufacture the spiral springs is very thin and is known to harden over time. As a consequence, spiral springs lose their elasticity and ability to store and release rotational energy.
Another type of self-retractable reel design is commonly used in seat belts. This design uses a spring that is wrapped in a spiral much like the arms of a galaxy. They are similar to the spiral spring design discussed above, but these springs are much thicker and don't slide over themselves. As the seat belt is extended, the spring expands outward and this provides the rotational energy to spin the reel back and retract the seat belt.
Another applications for retractable reel designs exist for electrical cords and pneumatic air hoses. Since the electrical cords and pneumatic air hoses are heavy and bulky, current reel designs utilize electrical motors for retraction of the extension cords or pneumatic air hoses.
For these and other reasons, there is a need for the present invention.
According to an embodiment of a retractable reel system, the system includes a reel, a gear assembly, a paddle wheel and a spring. The reel includes a concentric wheel shaft where the reel and wheel shaft rotate to wind and unwind a length of material from the reel. The gear assembly engages with an end of the wheel shaft to provide a gear reduction ratio between the wheel shaft and an output shaft of the gear assembly. The paddle wheel is connected to and concentric with the output shaft, and the paddle wheel includes a paddle that extends beyond an outer edge of the paddle wheel that rotates with the paddle wheel. The spring is arranged outside the outer edge of the paddle wheel. The spring is compressed by the paddle to store an energy when the reel is rotated to unwind the length of material from the reel. The stored energy is used to rotate the reel to wind the length of material around the reel.
According to an embodiment of a retractable electrical cord system, the system includes a reel, a gear assembly, a cartridge and a spring assembly and a slip ring and blade assembly. The reel includes a concentric wheel shaft where the reel and wheel shaft rotate to wind and unwind a length of the electrical cord that is wound around the reel. The gear assembly provides a gear reduction ratio between the wheel shaft and an output shaft of the gear assembly. The cartridge and a spring assembly includes a paddle wheel connected to and concentric with the output shaft, where the paddle wheel including a paddle that extends beyond an outer edge of the paddle wheel and rotates with the paddle wheel. A spring is arranged outside the outer edge of the paddle wheel and is compressed by the paddle to store an energy when the reel is rotated to unwind the length of extension cord from the reel. The spring is decompressed to use the stored energy to rotate the reel to wind the length of extension cord around the reel. The slip ring and blade assembly includes slip rings that each are concentric with and rotate with the wheel shaft and are electrically connected to the electrical cord. The slip ring and blade assembly includes blades that each include a contact bar that electrically contacts a corresponding slip ring and the blades are electrically connected to an extension cord that is separate from the electrical cord.
According to an embodiment of a retractable electrical cord system, the system includes an outer case, a reel, a gear assembly, a cartridge and spring assembly and a slip ring and blade assembly. The reel is mounted inside the outer case and includes a concentric wheel shaft. The reel and wheel shaft rotate to wind and unwind a length of the electrical cord that is wound around the reel and includes a female plug. The gear assembly is mounted inside the outer case and provides a gear reduction ratio between the wheel shaft and an output shaft of the gear assembly. The cartridge and spring assembly is mounted inside the outer case and includes a paddle wheel connected to and concentric with the output shaft. The paddle wheel includes a paddle that extends beyond an outer edge of the paddle wheel that rotates with the paddle wheel. A spring is arranged outside the outer edge of the paddle wheel and is compressed by the paddle to store an energy when the reel is rotated to unwind the length of electrical cord from the reel. The spring is decompressed to use the stored energy to rotate the reel to wind the length of electrical cord around the reel. The slip ring and blade assembly includes slip rings mounted to the wheel shaft that each are concentric with and rotate with the wheel shaft. The slip rings are electrically connected to electrical cord wires within the electrical cord. The blade assembly is mounted inside the outer case and includes blades that each include a contact bar that electrically contacts a corresponding slip ring. The blades are electrically connected to a corresponding extension cord wire within an extension cord. The extension cord extends through an opening in the outer case and including a male plug that is exterior to the outer case.
Those skilled in the art will recognize additional features and advantages upon reading the following detailed description, and upon viewing the accompanying drawings.
The elements of the drawings are not necessarily to scale relative to each other. Like reference numerals designate corresponding similar parts. The features of the various illustrated embodiments can be combined unless they exclude each other. Embodiments are depicted in the drawings and are detailed in the description which follows.
In the illustrated embodiment, upper portion 104 of outer case 102 includes a slot 108 from which a length of material 202 can extend through for winding and unwinding from a reel 302 (see also,
In the illustrated embodiment, retractable reel system 100 includes an accessory light 110 that is mounted to an exterior of the outer case 102. The accessory light 110 is electrically connected to the slip ring and blade assembly 502 (see also,
In the illustrated embodiment, a reel brake 314 includes a handle lever 316 attached to a base 318 of a u-shaped apparatus 320. Reel brake 314 is held in place and supported by support element 332 which is attached to a lower portion 106 of outer case 102. U-shaped apparatus 320 includes downward facing protrusions 322 at both ends of u-shaped apparatus 320. Reel brake 314 pivots along an axis provided by a shoulder screw 324 in a direction that is transverse to a direction of rotation of reel 302 (e.g., as shown by arrows 308 or 310). Shoulder screw 324 is located between handle lever 316 and base 318 of the u-shaped apparatus 320. Reel brake 314 engages or disengages the downward facing protrusions 322 from upward facing notches 326 on opposing exterior sides 328 and 330 of the reel 302. In the illustrated embodiment, the opposing exterior sides 328 and 330 include circumferential upward facing surfaces, where 10 notches 326 are built into each of the upward facing surfaces on opposing exterior sides 328 and 330. While 10 notches are utilized in the illustrated embodiment on each opposing exterior side 328 and 330, in other embodiments, any suitable number of notches can be used. In the illustrated embodiment, the upward facing notches 326 face away from wheel shaft 306 in a direction that is radial to wheel shaft 306 and the direction of rotation of reel 302 in directions 308 or 310.
In the illustrated embodiment, reel brake 314 includes a spring holder 321 on the u-shaped apparatus 320 side of shoulder screw 324, a top 323 that is over the u-shaped apparatus 320, and a spring 325 between top 323 and spring holder 321. Spring 325 acts to bias protrusions 322 to engage the upward facing notches 326 on the opposing exterior sides 328 and 330 of the reel 302 to act as a brake and stop the rotation of reel 302 in directions 308 and 310. Once handle lever 316 is depressed to rotate u-shaped apparatus 320 upward to compress spring 325 and disengage the downward facing protrusions 322 from upward facing notches 326 on the opposing exterior sides 328 and 330 of the reel 302, the reel 302 can be rotated in directions 308 or 310 to wind or unwind the length of material or electrical cord 202. In some embodiments, the force or bias provided by spring 325 is small enough that reel 302 may be rotated in direction 310 to unwind the length of material or electrical cord 202 if a sufficient amount of force is used to pull the electrical cord 202 away from the reel 302 to unwind electrical cord 202.
The slip ring and blade assembly 502 illustrated in
The slip ring and blade assembly 502 is mounted inside the outer case 102, and includes blades 516, 518 and 520 that each include a corresponding contact bar 522, 524 and 526 that electrically contacts a corresponding rotor ring 528, 530 and 532 that are electrically connected to a corresponding extension cord wire 534, 536 and 538 within extension cord 206. In various embodiments, blades 516, 518 and 520 can be formed from any suitable material such as copper.
In the embodiment illustrated in
In the illustrated embodiment, extension cord wire 534 is a positive electrical cord wire 534, extension cord wire 536 is a negative extension cord wire 536 and extension cord wire 538 is a ground extension cord wire 538 within extension cord 206. In this embodiment, slip rings 504, 506 and 508, and corresponding blades 516, 518 and 520, correspond to and conduct between the positive electrical cord wire 510 and positive extension cord wire 534, the negative electrical cord wire 512 and the negative extension cord wire 536, and the ground electrical cord wire 514 and the ground extension cord wire 538, respectively. In other embodiments, the order of rings 504, 506 and 508 and corresponding blades 516, 518 and 520 with respect to positive, negative and ground electrical cord wires 510, 512 and 514 and extension cord wires 534, 536 and 538 can have any suitable order or arrangement.
In the illustrated embodiment, for each of the slip rings 504, 506 and 508, a rotor 802 holds the conductive rotor ring 528, 530 and 532 in place. Each retaining screw 702, 704 and 706 holds a ring terminal in place underneath (not shown). When the retaining screws 702, 704 and 706 are secured or tightened, they provide a good electrical contact from each conductive rotor ring 528, 530 and 532 to the corresponding ring terminal and the corresponding one of the positive electrical cord wire 510, the negative electrical cord wire 512 or the ground electrical cord wire 514 within the electrical cord 202. Each of the positive electrical cord wire 510, the negative electrical cord wire 512 and the ground electrical cord wire 514 connects to the ring terminal for one of the conductive rotor rings 528, 530 and 532 and is routed through a center opening 804 of the rotor 802, into slot 540 within wheel shaft 306, and up through channel 542 and through opening 1102 within reel 302 and is routed and wound around reel 302 as electrical cord 202 in the direction illustrated in
In the illustrated embodiment, reel brake 314 includes a spring holder 321 on the u-shaped apparatus 320 side of shoulder screw 324. A spring 325 acts to bias protrusions 322 to engage the upward facing notches 326 on the opposing exterior sides 328 and 330 of the reel 302 to act as a brake and stop the rotation of reel 302 in directions 308 and 310 (see also,
For each of the slip rings 504, 506 and 508, rotor 802 holds the conductive rotor ring 528, 530 and 532 in place. Each retaining screw 702, 704 and 706 holds a ring terminal in place underneath (not shown). When the retaining screws 702, 704 and 706 are secured or tightened, they provide a good electrical contact from each conductive rotor ring 528, 530 and 532 to the corresponding ring terminal and the corresponding one of the positive electrical cord wire 510, the negative electrical cord wire 512 or the ground electrical cord wire 514 within the electrical cord 202.
In the illustrated embodiment, blade 516 includes a contact bar 522 that electrically contacts a corresponding slip ring 528 (see also,
In the illustrated embodiment, gear assembly 402 includes a compound idler gear 1403 that includes a large idler gear 1404 and a small idler gear 1406. Gear assembly 402 includes a driven gear 1408 connected to and concentric with the output shaft 1420 of the gear assembly 402 that engages and meshes with the small idler gear 1406. Gear assembly 402 also includes an exterior driving gear 1402 on the wheel shaft 306 that engages and meshes with the large idler gear 1404.
In the illustrated embodiment, wheel shaft 306 includes a tip 1410 that is inserted into and is rotatable within port 1414 that is shown aligned with axis 1412 of cartridge base 1418 so exterior driving gear 1402 can mesh and engage with large idler gear 1404. Wheel shaft 306 is secured within cartridge base 1418 via a retaining nut 1416. An end of compound idler gear 1403 is inserted into and is rotatable within a port 1419 as shown along axis 1417 of cartridge base 1418 so exterior driving gear 1402 can mesh and engage with large idler gear 1404 and small idler gear 1406 can mesh and engage with driven gear 1408.
In the illustrated embodiment, a first gear reduction ration is defined between the driving gear 1402 and large idler gear 1404 and a second gear reduction ratio is defined between the small idler gear 1406 and the driven gear 1408. In this embodiment, the gear reduction ratio between the wheel shaft 306 and an output shaft 1420 of the gear assembly 402 is defined as a product of the first gear reduction ratio and the second gear reduction ratio.
In the illustrated embodiment, spring 1704 is an open-coil helical spring 1704 that opposes compression, and spring 1704 is within channel 1728 that is circumferential. Spring 1704 is compressed between the paddle 1708 and the spring stop 1714 in a direction that is radial to a center of rotation of the paddle wheel 1702 and spring holder 1710. Cartridge base 1418 does not rotate. Center 1730 illustrates a circumferential center of spring 1704 within channel 1728 and also represents a circumferential center of channel 1728. In the illustrated embodiment, center 1730 represents a midpoint or center of a thickness of spring 1704 between outer edge 1712 of the paddle wheel 1702 and sidewall 1718 of cartridge base 1716.
In the illustrated embodiment, paddle wheel 1702 is connected to and concentric with the output shaft 1420 of the driven gear 1408. Paddle wheel 1702 includes a paddle 1708 that extends beyond an outer edge 1712 of paddle wheel 1702 and rotates with the paddle wheel 1702. Spring 1704 is arranged outside the outer edge 1712 of the paddle wheel 1702 and the first end 1724 of spring 1704 is engaged by paddle 1708 and the second end 1726 of spring 1704 abuts against and is held from movement by spring stop 1714. Spring 1704 is compressed in the first direction 1720 by paddle 1708 when paddle wheel 1702 rotates in the first direction 1720 to store an energy when the reel 302 is rotated in direction 310 to unwind the length of electrical cord 202 from the reel 302. Paddle wheel 1702 can compress spring 1704 in the first direction 1720 by paddle 1708 up until the point where spring 1704 is fully compressed. Spring 1704 is decompressed in the second direction 1722 when paddle wheel 1702 rotates in the second direction 1722 to use the energy stored within compressed spring 1704 between spring stop 1714 and paddle 1708 to rotate paddle wheel 1702 in the second direction 1722 to wind the length of electrical cord 202 on the reel when the reel is rotated in direction 308. Gear assembly 402 provides a gear reduction ratio between the wheel shaft 306 and an output shaft 1420 of the gear assembly 402 when spring 1704 is compressed in the first direction 1720 by paddle 1708, and provides the opposite of the gear reduction ratio when output shaft 1420 is rotated by paddle wheel 1702 in the second direction 1722. In the illustrated embodiment, reel brake 314 may engage or disengage the downward facing protrusions 322 from upward facing notches 326 on opposing exterior sides 328, 330 of the reel 302 respectively, to stop or enable rotation of reel 302 to stop or enable paddle wheel 1702 to rotate in either the first direction 1720 or the second direction 1722.
In one embodiment, paddle wheel 1702 connected to and concentric with the output shaft 1420, and paddle wheel 1702 includes a paddle 1708 that extends beyond an outer edge 1712 of the paddle wheel 1702 and rotates with the paddle wheel 1702. Spring 1704 is arranged outside the outer edge 1712 of the paddle wheel 1702 and is compressed by the paddle 1708 to store an energy when the reel 302 is rotated to unwind the length of electrical cord from the reel 302, and spring 1704 is decompressed to use the stored energy to rotate the reel 302 to wind the length of electrical cord around the reel 302.
Table 1 illustrates two exemplary embodiments for gear ratios and spring compression rates for a retractable reel system 100.
Table 1 illustrates a first embodiment where exterior driving gear 1402 includes 8 gear teeth and large idler gear 1404 includes 40 gear teeth, which provides a gear reduction ratio between exterior driving gear 1402 and large idler gear 1404 of 8 teeth/40 teeth which is equal to a first gear reduction ratio of 0.2. Small idler gear 1406 includes 12 gear teeth and driven gear 1408 includes 48 gear teeth, which provides a gear reduction ratio between small idler gear 1406 and driven gear 1408 of 12 teeth/48 teeth which is equal to a second gear reduction ration of 0.25. For the first embodiment, the overall gear reduction ratio is defined as a product of the first gear reduction ratio of 0.2 and the second gear reduction ratio of 0.25 which is equal to 0.05 or an overall gear reduction ratio of 20:1.
Table 1 illustrates a second embodiment where exterior driving gear 1402 includes 8 gear teeth and large idler gear 1404 includes 46 gear teeth, which provides a gear reduction ratio between exterior driving gear 1402 and large idler gear 1404 of 8 teeth/46 teeth which is equal to a first gear reduction ratio of 0.17. Small idler gear 1406 includes 9 gear teeth and driven gear 1408 includes 41 gear teeth, which provides a gear reduction ratio between small idler gear 1406 and driven gear 1408 of 9 teeth/41 teeth which is equal to a second gear reduction ration of 0.22. For the second embodiment, the overall gear reduction ratio is defined as a product of the first gear reduction ratio of 0.17 and the second gear reduction ratio of 0.22 which is equal to 0.038 or an overall gear reduction ratio of 26.2:1.
The detailed description is merely exemplary in nature and is not intended to limit the described embodiments or the application and uses of the described embodiments. As used herein, the word “exemplary” or “illustrative” means “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” or “illustrative” is not necessarily to be construed as preferred or advantageous over other implementations. All of the implementations described below are exemplary implementations provided to enable persons skilled in the art to make or use the embodiments of the disclosure and are not intended to limit the scope of the disclosure, which is defined by the claims. For purposes of description herein, the terms “upper”, “lower”, “left”, “rear”, “right”, “front”, “vertical”, “horizontal”, and derivatives thereof shall relate to the invention as oriented in
With the above range of variations and applications in mind, it should be understood that the present invention is not limited by the foregoing description, nor is it limited by the accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents.
This application is a divisional application of U.S. Ser. No. 16/601,679, filed Oct. 15, 2019, which claims the benefit of U.S. Ser. No. 62/745,608, filed Oct. 15, 2018, both of which are herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
11299368 | Pearson | Apr 2022 | B2 |
20100084500 | Inman | Apr 2010 | A1 |
20110095120 | Inman | Apr 2011 | A1 |
20140263801 | Skowronski | Sep 2014 | A1 |
20160012941 | Ledwith | Jan 2016 | A1 |
20170260021 | Hale | Sep 2017 | A1 |
20180222715 | Hall | Aug 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20220185621 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
62745608 | Oct 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16601679 | Oct 2019 | US |
Child | 17687841 | US |