The subject matter disclosed herein generally relates to environmental control systems. More particularly, the subject matter disclosed herein relates to drainage of excess fluid from environmental control systems.
When an environmental control system (ECS) shuts down, water pools at various locations in the ECS, for example, in the headers and the core of the condenser. When the ECS is then restarted, the excess water can be ejected from the system through, for example, cooling vents, onto components of, for example, a helicopter cockpit. To reduce the amount of excess water in the ECS, open weep holes are installed at low points of the ECS to allow the water to drain as it accumulates. Because the weep holes are always open, however, there is air leakage from the ECS through the weep holes during operation which causes a significant performance drop when compared to an ECS without weep holes. The part would well receive a drainage solution which reduces the amount of excess moisture while reducing the performance impact of the weep hole configuration.
According to one aspect of the invention, a drain assembly includes a buoyant spherical ball and a drain fitting including at least one drain channel. The drain fitting is securable at a drain location wherein pressurization at the drain location seals the buoyant spherical ball against the drain channel.
According to another aspect of the invention, an environmental control system includes a collection area of fluid in the environmental control system and a drain assembly located at the collection area. The drain assembly includes a buoyant spherical ball and a drain fitting including at least one drain channel. The drain fitting is securable at a drain location wherein pressurization of the environmental control system at the drain location seals the buoyant spherical ball against the drain channel.
According to yet another aspect of the invention, a method of operating a drain assembly for an environmental control system includes locating the drain assembly at a fluid collection area of the environmental control system. The drain assembly includes a buoyant spherical ball and a drain fitting including at least one drain channel. The drain fitting is securable at a drain location. An interior of the environmental control system is pressurized and the buoyant spherical ball is sealed to the drain fitting via the pressurization of the interior of the environmental control system.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Shown in
Referring again to
A spherical ball 32, having a ball diameter 34 greater than an opening diameter 36 of the drain opening 28 is located in the drain fitting 10 upstream of the drain opening 28. The spherical ball 32 is configured to be buoyant, and in some embodiments is formed from a plastic material, such as VespelĀ®. The spherical ball 32 is of a size and shape to seat to the drain opening 28 when the ECS 14 is operated due to operating pressure of the ECS 14. The pressure forces the spherical ball 32 into a chamfer 38 in the drain opening 28 with a profile which, in some embodiments, matches the profile of the spherical ball 32. The matching profiles result in a seal between the spherical ball 32 and the chamfer 38 which reduces leakage from the ECS 14 during operation. Referring now to
In some embodiments, the drain fitting 10 includes a retention cage 42. The retention cage 42 extends into the interior 22 around the spherical ball 32 to prevent escape of the spherical ball 32 into the interior 22 of the ECS 14. The retention cage 42 is configured with a plurality of cage openings 44 which effectively prevent escape of the spherical ball 32, but allow liquid 40 from the interior 22 to enter the drain fitting 10. In other embodiments, as shown in
Liquid 40 drained from the drain fitting 10 may, as shown in
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
The U.S. Government may have certain rights in this invention pursuant to contract number N00019-06-C-0081 awarded by the Naval Air Systems Command (NAVAIR).