The present invention generally relates to firearm projectiles. More specifically, the present invention relates to interaction between a firearm projectile and a rifle bore.
Some shooters of firearms prefer bullets machined from a solid material as opposed to jacketed bullets, especially for rifles. Gyroscopic stability problems are associated with jacketed bullets due to the core of the bullet not being located at the true axis of rotation of the bullet, as compared to precision machined solid bullets. Some firearms include rifling within the barrel of the firearm. Rifling is a series of grooves cut into inside diameter of the barrel. The remaining material between the grooves is knows as the lands. The lands are what remain between the grooves after the grooves are cut in the inside diameter of a blank barrel. Typically lead core, or jacketed bullets, are slightly undersize but when enough pressure is put behind them, they upset or swell somewhat to seal into the groove diameter of a barrel of a firearm. Groove diameter is the largest diameter inside the barrel of the firearm. That is why worn out barrels do not shoot well. The barrels get worn beyond what a jacketed bullet is capable of upsetting within to seal against the barrel. This may only be a few tenths of a thousandths but it is enough to have pressure escape around the bullet.
Machining monolithic bullets instead of forging bullets allows for maintaining a constant center of gravity. Unlike jacketed bullets, current solid bullets do not seal tightly in worn or even slightly worn rifle barrels due to the fact that the solid bullets do not upset or expand to seal the bullet into the rifle barrel grooves when fired. If the solid bullets are not “sealed” in the rifle grooves during firing, gasses escape around the bullet causing inaccuracies to be experience when using solid bullets in some guns. When there is no sealing between the solid bullet and the barrel there can also be loss of potential speed of the bullet as it leaves the barrel. Solid copper bullets do not upset to fill the groove diameter. If there is any wear in the barrel or if the barrel is made slightly oversize due to the manufacturing process, blow by is experienced using solid copper bullets. Blow by is where pressure escapes around the bullet. That is why people that have shot solid copper bullets in the past have not been able to shoot them consistently. Typically in shooting five solid copper bullets, you may get three or four with in a group and one or two that are not in the group of the other shots.
It is an object of the present invention to provide a solid bullet that can seal within a rifled barrel during firing.
A self sealing projectile having an adjustable sealing band about the projectile. The adjustable sealing band having the ability to deform and provide a seal between inside surfaces of the firearm and the projectile. The projectile includes a front receiving groove between the adjustable sealing band and the front end of the projectile, where the front receiving groove is in proximity to the adjustable sealing band to receive a portion of the adjustable sealing band during deformation of the adjustable sealing band. The projectile includes a rear receiving groove between the adjustable sealing band and the rear end of the projectile, where the rear receiving groove is in proximity to the adjustable sealing band to receive a portion of the adjustable sealing band during deformation of the adjustable sealing band.
The present invention is a self sealing projectile 10 for a firearm, commonly referred to as a bullet. The self sealing projectile 10 is of a monolithic construction, which is the precise machining of a bullet from a solid material such as copper.
The self sealing projectile 10 is loaded into a cartridge casing 22 as shown in
The self sealing projectile 10 is projected from the cartridge when fired. The self sealing projectile 10 first enters a throat area 28 and then proceeds to the rifled barrel 30 after firing. The throat area 28 shown in
There are two situations where the adjustable sealing band 16 contacts the inside surfaces of the firearm. The first situation involves two different types. The first type is where throat erosion occurs in firearms that are fired for thousands of rounds and therefore a tight seal does not occur at the throat area 28 between the adjustable sealing band 16 and the throat area 28. The second type is where production firearms typically have a throat area diameter of 0.002″-0.004″ over the specified nominal throat diameter and therefore sealing does not occur at the throat area 28 between the adjustable sealing band 16 and the throat area 28. In these cases, the self sealing projectile 10 travels forward past the throat area 28 before the adjustable sealing band 16 engages the inside of the rifled barrel 30 and is deformed, as shown in
As the self sealing projectile 10 moves forward into the rifled barrel 30, the self sealing projectile 10 starts spinning, whereby the adjustable sealing band 16 engages the lands 32 and the grooves 34. The adjustable sealing band 16 is larger in diameter than the groove diameter of the rifled barrel 28 and deforms to fit into the grooves 34 to provide a seal between the self sealing projectile 10 and the grooves 34. The groove diameter is combination of all of the bottoms of the grooves 34 around the circular diameter of the rifled barrel 28. The material of the adjustable sealing band 16 that does not fit into the grooves 34, as the adjustable sealing band 16 deforms to fit into the grooves 34, is then displaced into the rear receiving groove 18 and the front receiving groove 20. At the same time the adjustable sealing band 16 engages the grooves 34, the adjustable sealing band 16 also engages the lands 32. The adjustable sealing band 16 will deform to seal against the lands 32 and the excess material of the adjustable sealing band 16 will also be displaced into the rear receiving groove 18 and the front receiving groove 20. The self sealing projectile 10 then continues the entire length of the rifled barrel 28 with a seal between the self sealing projectile 10 and the inside of the rifled barrel 28, thereby preventing any gasses from escaping from around the self sealing projectile 10 that may cause inaccuracies and loss of potential speed of the self sealing projectile 10.
The second situation is where manufacturing tolerances are tighter and the adjustable sealing band 16 contacts the throat area 28 inside the firearm. Upon firing the firearm, the self sealing projectile 10 moves forward and the adjustable sealing band 16 enters the throat area 28 of the firearm chamber. The adjustable sealing band 16 is usually between 0.0002-0.006 inches larger than the caliber diameter of the self sealing projectile 10, so very little material gets displaced into the rear receiving groove 18 and the front receiving groove 20. Assuming the diameter of the throat area 28 is small in the range of less than 0.002 inches larger than the caliber diameter band, an immediate seal takes place in the throat area 28 as the adjustable sealing band 16 enters the throat area 28, with any excess material on the adjustable sealing band 16 being displaced into the rear receiving groove 18 and the front receiving groove 20.
Due to the ductility and formable nature of the copper and copper alloys, these materials allow deformation of the adjustable sealing band 16, without causing excessive pressures or wear on the firearm. It is envision that more than one adjustable sealing band 16 can be on the self sealing projectile 10, each adjustable sealing band 16 including a rear receiving groove 18 and the front receiving groove 20. While different embodiments of the invention have been described in detail herein, it will be appreciated by those skilled in the art that various modifications and alternatives to the embodiments could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements are illustrative only and are not limiting as to the scope of the invention that is to be given the full breadth of any and all equivalents thereof.
This application claims the benefit of and incorporates by reference U.S. Provisional Application No. 61/293,022 filed Jan. 7, 2010.
Number | Name | Date | Kind |
---|---|---|---|
143419 | Rein et al. | Oct 1873 | A |
711209 | Hill | Oct 1902 | A |
847149 | Barlow | Mar 1907 | A |
996820 | Wray | Jul 1911 | A |
1582673 | Fahrenwald | Apr 1926 | A |
2386054 | McGee | Oct 1945 | A |
4958570 | Harris | Sep 1990 | A |
5686693 | Jakobsson | Nov 1997 | A |
D456480 | Quinsa et al. | Apr 2002 | S |
7210411 | Booth et al. | May 2007 | B2 |
Number | Date | Country | |
---|---|---|---|
61293022 | Jan 2010 | US |