This invention relates to apparatus and components for coupling fluid or gas conducting elements, such as apparatus and components for connecting a nebulizer (also known as an aerosol generator) with a gas flow system. In particular, the present invention relates to apparatus and components for connecting a nebulizer to a pressure-assisted breathing system, such as a mechanical ventilator or a continuous positive airway pressure (“CPAP”) system. As used herein, the term “pressure-assisted breathing system” means any artificial ventilation system that applies continuous or intermittent pressure, usually positive, (i.e. above a certain baseline such as atmospheric pressure), to gas(es) in or about a patient's airway during-inhalation as a means of augmenting movement of gas(es) into the lungs. The present invention is contemplated as being useful in any pressure-assisted breathing system and “pressure-assisted breathing system” is intended to include, for example, standard CPAP, nCPAP and Bi-level CPAP systems as well as mechanical ventilators that perform the breathing function for the patient and/or provide CPAP to assist in spontaneous breathing by the patient. The term “pressure-assisted breathing system” is also intended to include both invasive and non-invasive systems. Systems that utilize an endotracheal or tracheostomy tube are examples of invasive pressure-assisted breathing systems. Systems that utilize nasal prongs or a mask are examples of non-invasive pressure-assisted breathing systems.
Pressure-assisted breathing systems utilize positive pressure during inhalation to increase and/or maintain lung volumes and to decrease the work of breathing by a patient. The positive pressure effectively dilates the airway and prevents its collapse. The delivery of positive airway pressure may be accomplished through the use of a positive air flow source (“flow generator”) that provides oxygen or a gas containing oxygen through a flexible tube connected to a patient interface device such as nasal prongs (cannula), nasopharyngeal tubes or prongs, an endotracheal tube, mask, etc. The tubes associated with commercially available pressure-assisted breathing systems create a “circuit” for gas flow by maintaining fluid communication between the elements of the circuit. Tubes may be made of a variety of materials, including but not limited to various plastics, metals and composites and can be rigid or flexible.
A nebulizer may be connected to a circuit of a pressure-assisted breathing system to deliver an aerosol of medication (sometimes herein referred to as “aerosolized medicament”) into the respiratory system of a patient. The nebulizer is adapted to emit aerosolized medicament into the gas flow in the circuit, which delivers the aerosol to the patient through a patient interface device. Nebulizers suitable for the practice of the present invention preferably comprise a reservoir for holding a liquid medicament to be delivered to a patient's respiratory system and a vibrating aperture-type aerosol generator for aerosolizing the liquid medicament. The nebulizer is typically connected to the circuit using a generally “T”-shaped connector (sometimes referred to herein as a “T”-piece). For example, U.S. Pat. No. 6,615,824, issued Sep. 9, 2003, co-pending U.S. patent application Ser. No. 09/876,542, filed Jun. 7, 2001; Ser. No. 09/876,402, filed Jun. 7, 2001; Ser. No. 09/812,987, filed Mar. 20, 2001; Ser. No. 09/849,194, filed May 4, 2001; Ser. No. 09/812,755, filed Mar. 20, 2001; Ser. No. 10/284,068, filed Oct. 30, 2002; Ser. No. 10/345,875, filed Jan. 15, 2003; Ser. No. 10/465,023, filed Jun. 18, 2003; Ser. No. 10/284,068, filed Oct. 30, 2002; Ser. No. 10/828,765, filed Apr. 20, 2004; Ser. No. 10/883,115, filed Jun. 30, 2004; Ser. No. 10/957,321, filed Sep. 30, 2004; Ser. No. 11/080,279, filed Mar. 14, 2005, and Ser. No. 11/090,328, filed Mar. 25, 2005 describe apparatuses and methods for ventilators and connecting nebulizers to pressure-assisted breathing systems, and are all incorporated by reference herein.
Pressure-assisted breathing systems such as those described in the patents and pending applications cited above must have leak-free, or gas-tight, circuits to maintain adequate pressure. As a result, ventilation and positive airway pressure may have to be interrupted in those systems to insert and withdraw the nebulizer from the circuit, for example, when the nebulizer needs to be refilled with liquid medicine, or needs cleaning, replacement, adjustment or repair. Furthermore, it is often desirable to prevent or mitigate escape of gases and/or aerosolized materials, for example, medicaments, from within the circuit. Additionally it is desirable that replacement of a nebulizer in a gas circuit be accomplished quickly, and with a minimum of effort.
One or more embodiments of the present invention satisfies one or more of these needs. The various embodiments of the invention provide various novel apparatus, components and methods for the delivery of an aerosol to a pressurized gas flow system, such as delivery of a medicament to a pressure-assisted breathing system. In particular, the invention relates to apparatus comprising a nebulizer that is adapted to aerosolize a liquid medicament and a connector that operably connects the nebulizer to a circuit of the pressure-assisted breathing system.
In one or more embodiments a connector of the present invention comprises a gas conduit, an aerosol supply conduit and a sealing device configured to seal the aerosol supply conduit from the gas conduit when a nebulizer is not connected and provide an unimpeded path for aerosol when the nebulizer is connected. The gas conduit has an inlet opening and an outlet opening adapted to be attached to a circuit of the pressure-assisted breathing system so that the flow of gas in the circuit is conducted therethrough. The aerosol supply conduit has an inlet opening adapted to receive the nebulizer and an outlet opening that communicates with the gas conduit so that aerosolized medicament produced by the nebulizer passes through the aerosol conduit and into the gas flow in the gas conduit. The sealing device is configured to allow unimpeded flow of aerosolized medicament through the aerosol supply conduit into the gas conduit when the nebulizer is positioned in the aerosol supply conduit, and to seal off the aerosol supply conduit from the gas conduit when the nebulizer is removed therefrom.
In one or more embodiments, the sealing device comprises a hinged lid covering the inlet opening of the aerosol supply conduit. The lid is attached by a spring-loaded hinge and is configured to be lifted so as to allow the nebulizer to be received into the aerosol supply conduit. When the nebulizer is removed from the aerosol supply conduit opening, the lid is forced by the spring of the hinge to flip down over the inlet opening and seal off the aerosol supply conduit from the gas conduit. In some embodiments, the sealing device further comprises a flap-type valve disposed in the aerosol supply conduit proximal to the inlet opening. The valve comprises resilient flaps that are displaced by the nebulizer when the nebulizer is inserted in the aerosol supply conduit and return to a closed position when the nebulizer is removed from the aerosol supply conduit. This valve quickly seals off the aerosol supply conduit from the gas conduit before the lid is closed, and helps maintain the seal after the lid is closed.
In other embodiments, the inlet opening of the aerosol supply conduit comprises a planar surface having an opening that is off-set from the center axis of the aerosol supply conduit. The sealing device comprises a rotatable disc positioned between the nebulizer and the inlet opening of the aerosol supply conduit. The disc comprises a planar surface having an off-set opening therein that is adapted to receive the nebulizer. The disc is configured to be rotated between a first position in which the off-set inlet opening of the aerosol supply conduit and the off-set opening in the disc are aligned, thereby allowing unimpeded flow of aerosol from the nebulizer into the aerosol supply conduit, and a second position in which the off-set inlet opening of the aerosol supply conduit is sealed off by the planar surface of the disc, thereby allowing the nebulizer to be removed without losing gas pressure in the system.
In other embodiments, the sealing device comprises a hinged door with a spring-loaded or biased hinge positioned on the interior wall of the gas conduit adjacent to the outlet opening of the aerosol supply conduit. When inserted into the inlet opening of the aerosol supply conduit, the nebulizer forces the hinged door into a notch or recess in the internal surface of the gas conduit, thereby providing a first position in which unimpeded flow of aerosol from the nebulizer into the gas conduit is provided. When the nebulizer is removed, the spring on the hinge forces the door to a close over the outlet opening of the aerosol supply conduit to seal off the aerosol supply conduit from the gas conduit.
In other embodiments, the gas conduit further comprises an intermediate opening located between the inlet opening and the outlet opening, and the aerosol supply conduit is positioned on a rotatable sleeve configured to receive the gas conduit longitudinally therein. The sleeve is configured to be rotated around the longitudinal axis of the gas conduit between a first position in which the outlet opening of the aerosol supply conduit is aligned with the intermediate opening of the gas conduit and a second position in which the outlet opening of the aerosol supply conduit is sealed off by the external surface of the gas conduit. The first position provides and unimpeded path for aerosol to travel from the nebulizer to the gas conduit when a nebulizer is positioned in the inlet opening of the aerosol supply conduit. The second position effectively seals off the aerosol supply conduit from the gas conduit so that the nebulizer can be removed without interrupting the gas flow in the gas conduit.
In one or more embodiments, the coupling device or assembly provides a gas-tight seal between components.
In one or more embodiments, the coupling device or assembly provides a quick-release connection between components.
In one or more embodiments, the coupling device or assembly provides both a gas-tight seal, and a quick-release connection between components.
Unless otherwise stated, a reference to a compound or component includes the compound or component by itself, as well as in combination with other compounds or components, such as mixtures of compounds.
As used herein, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise.
All publications, patents and patent applications cited herein, whether supra or infra,
are hereby incorporated by reference in their entirety to the same extent as if each individual
publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
Medicament, “active agent” or pharmaceutical may be used interchangeably, and individually or collectively comprise any drug, solution, compound or composition which induces a desired pharmacologic and/or physiologic effect, when administered appropriately to the target organism (human or animal).
Reference herein to “one embodiment”, “one version” or “one aspect” shall include one or more such embodiments, versions or aspects, unless otherwise clear from the context.
As an overview, the present invention comprises apparatus, systems, assemblies, components and ventilator circuits. In some embodiments, one or more components may be used independently of the other combinations and/or assemblies described herein. Moreover, the various embodiments of the coupling apparatus are not limited to use with the ventilator circuits of the invention. Thus the various embodiments of the coupling apparatus of the present invention may be used in a variety of fluid and/or gas flow applications where a device to atomize a fluid is to be incorporated into a fluid or gas supply system. This includes, without limitation, systems for distributing or supplying an aerosolized material within a gas or fluid manifold or distribution circuit, such as fuel supply systems, coating systems, biological test systems and the like. Such systems can have aesthetic purposes, as for example, distributing a fragrance or other aesthetic component, or may be for functional purposes.
One or more embodiments of the apparatus, systems, assemblies and components are configurable to administer aerosolized medicament to a patient on-ventilator or off-ventilator. On-ventilator treatment methods comprise administering the nebulized aerosol through a ventilator circuit to the patient. Aerosol doses, containing an effective dose, such as about 1 to about 500 mg of a medicament, may be delivered through the ventilator circuit in a phasic or non-phasic manner. Off-ventilator treatment methods comprise taking the patient off the ventilator before administering the nebulized aerosol. Once the treatment session is
completed the patient may be put back on the ventilator, or may breathe on his or her own without assistance. Off-Vent devices often are self-contained, for freely-breathing patients, and may comprise an aerosol generator (e.g. a nebulizer) and a mask, cannula, lipseal or mouthpiece to administer an aerosolized liquid or powder formulation, such as a medicament. Administration may be continuous, phasic (such as during inspiration), and/or intermittent (such as timed). Devices, especially off-vent devices, used to administer the aerosol formulations, such as medicaments, may comprise a reservoir or holding chamber to permit or allow continuous flow of aerosol. While one benefit of the apparatus, systems, assemblies, components of the present invention is in conjunction with positive pressure-type apparatus, the apparatus, systems assemblies and components of the present invention may also be useful in non-pressurized systems, neutral pressure systems, or negative pressure (e.g. vacuum) systems, as being rapidly and easily replaceable, exchangeable or interchangeable.
Referring to the drawings and initially to
Connector 102 comprises an aerosol supply conduit 103 having inlet opening 105 into which barrel 104 of nebulizer 101 may be inserted, a gas conduit 106 having an inlet opening
109, which may be attached to one tube of the pressure-assisted breathing system circuit, and outlet opening 107, which may be attached to another tube of the circuit, thereby completing the circuit through gas conduit 106. Gas flow 108 flowing under positive pressure in the circuit enters inlet opening 109 and is conducted to the junction of aerosol supply conduit 103 and gas conduit 106. An aerosol of medication generated by nebulizer 101, preferably using
a vibrating aperture-type aerosol generator, passes through barrel 104 into aerosol supply conduit 103 and into the junction, where it is entrained in gas flow 108 to form gas flow 110 comprising entrained aerosolized medicament. Gas flow 110 exits gas conduit 106 through outlet opening 107 into the pressure-assisted breathing system circuit. The aerosol of medicine is then ultimately carried by the gas flow in the pressure-assisted breathing system to the patient's respiratory system, e.g. through a patient interface device. When nebulizer 101 is withdrawn from connector 102 in the arrangement illustrated in
a and 4b illustrate embodiments of a connector according to the present
invention wherein insertion and removal of a nebulizer from the aerosol supply conduit may be accomplished without interrupting the positive pressure gas flow in the circuit of the pressure-assisted breathing system with which it is coupled, while maintaining a high efficiency of aerosol delivery, and further without impeding flow of aerosol or gas. In one or more embodiments, there is provided a connector 200, which comprises aerosol supply conduit 203 having inlet opening 205 into which a nebulizer barrel may be inserted, gas conduit 206 having inlet opening 209 for the entrance of gas from a circuit, and outlet opening 211 for the exit of entrained aerosol and gas into the circuit. In addition, connector 200 has a hinged lid 212 attached to aerosol supply conduit 203 by spring-loaded or otherwise biased hinge 213. As shown in
In some embodiments, lid 212 may have an “O”-ring seal 214 around its lower periphery to aid in the sealing of inlet opening 205. In some embodiments, a slotted flap seal or valve 215 may be positioned in inlet opening 205, as shown in
spring-loaded or otherwise biased hinge 710. In the position illustrated in
disposed over outlet opening 704 to seal aerosol supply conduit 702 and prevent the escape of the gas flow in gas conduit 705. When nebulizer barrel 707 is inserted into aerosol supply conduit 702 through inlet opening 703, nebulizer barrel 707 forces hinged door 706 downward, opening a pathway for the aerosol 708. In some embodiments, there is provided a notch or recess 708 in the internal wall of gas conduit 705 to further facilitate insertion of the nebulizer barrel 707 and to provide an unimpeded path for aerosol 709 from the nebulizer into the gas flow in gas conduit 705, as shown in
Another embodiment of the present invention is illustrated in
The aerosol generators or nebulizers contemplated for use herein may, for example, be a vibrating mesh nebulizer where the energy source is mechanical, such as wave energy, an ultrasonic nebulizer where the energy source is acoustic wave energy, a jet nebulizer where the energy source is compressed air, a metered dosing device where the energy source is a propellant, such as a composition that boils under preselected, such as ambient conditions, or a dry powder device where the energy source is compressed or flowing air or is a vibrating membrane or the like.
Some specific, non-limiting examples of technologies for producing fine liquid droplets comprise those which supply liquid to an aperture plate having a plurality of tapered apertures, and vibrate the aperture plate to eject liquid droplets through the apertures. Such techniques are described generally in U.S. Pat. Nos. 5,164,740; 5,938,117; 5,586,550; 5,758,637, 6,014,970, and 6,085,740, the complete disclosures of which are incorporated by reference. However, it should be appreciated that the present invention is not limited for use only with such devices.
For example, in one or more embodiments, the aerosol generator is the commercially available Aerogen (Aerogen, Inc. Mountain View, Calif.) aerosol generator which comprises a vibrational element and dome-shaped aperture plate with tapered holes. When the plate vibrates (at several thousand times per second), a micro-pumping action causes liquid to be drawn through the tapered holes, creating a low-velocity aerosol with a precisely defined range of droplet sizes. The Aerogen aerosol generator does not require propellant.
Jet nebulizers involve use of air pressure to break a liquid solution into aerosol droplets. In one or more embodiments, a jet nebulizer (e.g., Aerojet, AeroEclipse, Pari L. C., the Parijet, Whisper Jet, Microneb®, Sidestream®, Acorn 11®, Cirrus and Upmist®) generates droplets as a mist by shattering a liquid stream with fast moving air supplied by tubing from an air pump.
In one or more embodiments, an ultrasonic nebulizer that uses a piezoelectric transducer to transform electrical current into mechanical oscillations is used to produce aerosol droplets. Examples of ultrasonic nebulizers include, but are not limited to, the Siemens 345 UltraSonic Nebulizer™ and ones commercially available from, for example, Omron Heathcare, Inc. and DeVilbiss Health Care, Inc. See, e.g., EP 1 066 850, which is incorporated by reference herein in its entirety.
Vibrating porous plate nebulizers work by using a sonic vacuum produced by a rapidly vibrating porous plate to extrude a solvent droplet through a porous plate. See, e.g., U.S. Pat. Nos. 5,758,637; 5,938,117; 6,014,970; 6,085,740; and 6,205,999, which are incorporated herein by reference in their entireties.
In condensation aerosol generators, the aerosol is formed by pumping drug formulation through a small, electrically heated capillary. Upon exiting the capillary, the formulation is rapidly cooled by ambient air, and a gentle aerosol is produced that is relatively invariant to ambient conditions and the user inhalation rate. See, e.g., U.S. Pat. No. 6,701,922 and WO 03/059413, which are incorporated herein by reference in their entireties. In one or more embodiments, the condensation aerosol generator comprises one disclosed by Alexza Molecular Delivery Corporation. See, e.g., U.S. Published Application No. 2004/0096402, which is incorporated herein by reference in its entirety.
It is understood that while the invention has been described above in connection with preferred embodiments, the description and drawings are intended to illustrate and not limit the scope of the invention, which is defined by the appended claims and their equivalents.
This application is a continuation of U.S. application Ser. No. 15/151,415, filed May 10, 2016, which is a continuation of U.S. application Ser. No. 11/990,587, filed Feb. 12, 2010, which is a 371 application of International Application No. PCT/US2006/032677, filed Aug. 21, 2006, which claims the benefit of U.S. Provisional Application No. 60/710,932, filed 23 Aug. 2005, under 35 USC § 119(e), all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60710932 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15151415 | May 2016 | US |
Child | 16437540 | US | |
Parent | 11990587 | Feb 2010 | US |
Child | 15151415 | US |