The present disclosure relates generally to an apparatus for cleaning flexible floor mats including exercise mats and more particularly to a self-serve unit for cleaning such mats.
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
Floor mats and especially exercise mats are used on daily basis by multitude of individuals throughout the course of the day, so they become contaminated with bodily fluids containing germs, viruses, and bacteria excreted by the individuals using the exercise mats. The mats also become heavily soiled with dead skin and dirt form the floor. Current common practice in the yoga or exercise studios is to spray the mat with some strong antimicrobial chemical and wipe it with a cloth or leave the mat to air-dry. In some places the mats are simply folded and stored without cleaning. There is a need for an automated device that will easily clean the mat within a reasonable short amount of time (within few minutes).
In the known devices for cleaning floor or exercise mats, the mat is sprayed with a cleaning solution or it passes through a bath of cleaning solution, and then a set of rolling scrubbers or brushes clean the mat from one or both sides. However, none of the known cleaning devices provides a unit of scrubbers and/or brushes that are arranged in an independent compact module that could be easily replaced or refreshed after a number of cleaning cycles or for maintenance purposes. In the known cleaning devices each of the scrubbers and/or brushes are individual components so for maintenance purposes a specialized (skilled) technician needs to open the device, remove each of the individual components and assemble new individual components.
In one aspect, a self-serve cleaning device for cleaning flexible mats is provided. The device comprises a housing adapted to be easily opened to access housing's inside cavity for maintenance purposes. An entrance means having an entrance opening are provided in the housing to allow a leading edge of the mat to be inserted therein. A clean mat exits through an exit opening provided in the housing. A bath tub filled with a washing solution is positioned at the bottom of the housing. The bath tub has an outlet closure connected to a drainage pipe for removing the washing solution when the outlet is opened. A compact insert module comprising plurality of driving and washing components is mounted in the housing. The insert module comprises a frame designed to support a plurality of feeding rollers arranged in a double row and positioned bellow the entrance to draw the mat into the housing, a plurality of brushes arranged in a double row and submerged into the washing solution to scrub each side of the mat as it passes through the bath tub, a plurality of squeezing rollers arranged in a double row and position near the exit to take a liquid out of the mat and a mat driver design to drive at least the plurality of feeding rollers and the plurality of squeezing rollers to continuously pull the mat from the entrance toward the exit.
The cleaning further comprises an ultrasonic transducer connected to a power source. The transducer is immersed into the washing solution so that it triggers vibrations in the washing solution during a cleaning process to loosen debris from the mat. The transducer is automatically triggered at the beginning of the cleaning process to vibrate for the whole duration of the cleaning process.
In another aspect, the transducer comprises a controller to control a timing of a plurality of vibrating cycles.
In yet another aspect, the insert module further comprises a washing driver supported by the frame for driving the plurality of brushes. The washing driver rotates the brushes in a direction opposite of a rotation of the feeding and squeezing rollers.
In one aspect, ultra-violet sterilization means are provided. The UV means are arranged in double row and are positioned near and below the exit to sterilize both sides of the mat.
In another aspect, the insert module further comprises a plurality of wringing rollers arranged in a double row and connected to a mat driver. The plurality of wringing rollers are positioned bellow the squeezing rollers and are designed to wring out the mat before entering the squeezing rollers.
In one aspect, an independent compact cleaning module for inserting into a cleaning device is provided. The module comprises a frame having a first end and a second end and is designed to support a plurality of feeding rollers arranged in a double row and positioned at the first end of the frame, a plurality of squeezing rollers arranged in a double row and position at the second end of the frame, a plurality of brushes arranged in a double row and positioned between and lower than the plurality of feeding rollers and the plurality of squeezing rollers; and a driver design to drive at least the plurality of feeding rollers and the plurality of squeezing rollers to continuously pull a cleaning subject from the first end of the module toward the second end of the module.
In addition to the aspects and embodiments described above, further aspects and embodiments will become apparent by reference to the drawings and study of the following detailed description.
Throughout the drawings, reference numbers may be re-used to indicate correspondence between referenced elements. The drawings are provided to illustrate example embodiments described herein and are not intended to limit the scope of the disclosure. Sizes and relative positions of elements in the drawings are not necessarily drawn to scale. For example, the shapes of various elements and angles are not drawn to scale, and some of these elements are arbitrarily enlarged and positioned to improve drawing legibility.
The self-serve cleaning device of the present invention is an automated cleaning device that is designed to function primarily as a self-serve vending machine for cleaning mats that requires only a standard wall outlet to operate. The mats can be cleaned easily and quickly within a few minutes. The cleaning device comprises a unique insert washing module that comprises all of the washing and driving components, such as scrubbers, brushes and/or squeezers, and driving rollers to accomplish real functionality, reliability and serviceability. The washing module can be easily and quickly removed after a number of washing cycles and replaced with a new insert for refreshing and/or maintenance purposes.
The bottom of the housing comprises an opening 11 (see
The entrance means 14 further comprises an alignment means for mat alignment. For example, the entrance means can comprise a number of protrusions on each of its longitudinal ends 14b to help with the mat alignment. For example, there may be four circular protrusions (not shown), two on each on the ends 14b (one circular protrusion per guiding plates 14a at each end 14b). In addition, two or more sensors can be mounted into the entrance means to ensure that the mat that is fed into the device 10 is properly aligned.
The device 10 further comprises a bath tub (not shown for clarity) to hold the washing solution. The bath tub is sized so that it can fit at the bottom 12b of the housing 12. It can have shape that can be same or different than the shape of the housing 12 as long as it is sized and shaped to be accommodated within the housing 12. The tub comprises an outlet closure that is aligned with the drainage opening 11 at the bottom 12b so that when a replacement of the washing solution is required the outlet closure is opened to remove the washing solution from the bath tub and then replace it with a fresh one. The amount of the washing solution into the bath tub can be such to provide that the brushes 21 are submerged into the washing solution while the wringing/squeezing rollers 22/23 are out of the solution. When the mat enters into the washing solution it can be thoroughly scrubbed with the brushes. The washing solution can be water or a water solution of cleaning and/or antimicrobial substance or any combination thereof.
The cleaning device 10 can further comprise an ultrasonic transducer 30 that is immersed into the water solution contained in the bath tub (not shown). The ultrasonic transducer 30 produces ultrasonic vibrations that can be applied automatically on a regular and intermittent basis to cause streaming and stirring of the washing solution to loosen the debris and dirty of the mat. The ultrasonic vibrations also create a germicidal action further sanitizing the mat. The transducer 30 can be attached to the housing, such as for example the inner side of one of the side walls 12c. Person skilled in the art would understand that the transducer 30 can be attached to the inner side of the lid 12a or the inner side of the bottom 12b as long as the transducer 30 is immersed in the water solution without departing from the scope of the invention. In one implementation, the transducer 30 can be attached to the frame 40 (see
The insert module 18 is mounted in the housing using a plurality of guide, slots and/or fasteners that secure the insert within the housing 12 but allow easy and quick removal out of it for replacement.
While particular elements, embodiments and applications of the present disclosure have been shown and described, it will be understood, that the scope of the disclosure is not limited thereto, since modifications can be made without departing from the scope of the present disclosure, particularly in light of the foregoing teachings. Thus, for example, in any method or process disclosed herein, the acts or operations making up the method/process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Elements and components can be configured or arranged differently, combined, and/or eliminated in various embodiments. The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and sub-combinations are intended to fall within the scope of this disclosure. Reference throughout this disclosure to “some embodiments,” “an embodiment,” or the like, means that a particular feature, structure, step, process, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in some embodiments,” “in an embodiment,” or the like, throughout this disclosure are not necessarily all referring to the same embodiment and may refer to one or more of the same or different embodiments. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, additions, substitutions, equivalents, rearrangements, and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions described herein.
Various aspects and advantages of the embodiments have been described where appropriate. It is to be understood that not necessarily all such aspects or advantages may be achieved in accordance with any particular embodiment. Thus, for example, it should be recognized that the various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may be taught or suggested herein.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without operator input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment. No single feature or group of features is required for or indispensable to any particular embodiment. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.
Conjunctive language such as the phrase “at least one of X, Y and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y and at least one of Z to each be present.
The example calculations, simulations, results, graphs, values, and parameters of the embodiments described herein are intended to illustrate and not to limit the disclosed embodiments. Other embodiments can be configured and/or operated differently than the illustrative examples described herein. Indeed, the novel methods and apparatus described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions disclosed herein.