Self-sourced reservoir fluid for enhanced oil recovery

Information

  • Patent Grant
  • 10323495
  • Patent Number
    10,323,495
  • Date Filed
    Thursday, March 9, 2017
    7 years ago
  • Date Issued
    Tuesday, June 18, 2019
    5 years ago
Abstract
Disclosed techniques include a method of obtaining an enhanced oil recovery fluid from a hydrocarbon reservoir, comprising producing a hydrocarbon stream from the hydrocarbon reservoir, separating an associated gas stream from the hydrocarbon stream, and condensing at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid suitable for injecting into a liquid layer of the hydrocarbon reservoir to enhance recovery of hydrocarbons from the hydrocarbon reservoir.
Description
BACKGROUND

In the primary recovery of oil from a subterranean, oil-bearing formation or oil and gas reservoir, it is usually possible to recover only a limited proportion of the original oil present in the reservoir. For this reason, a variety of supplemental recovery techniques have been used to improve the displacement of oil from the reservoir rock. These techniques can be generally classified as thermally based recovery methods (such as steam flooding operations), water-flooding methods, and gas-drive based methods that can be operated under either miscible or immiscible conditions. These techniques are commonly categorized under the broad heading of enhanced oil recovery (EOR) techniques.


It may be desirable for gas-based EOR techniques that the EOR fluid and the oil are miscible under the conditions in the formation. In miscible flooding operations, an injection fluid or solvent is injected into the reservoir to form a single-phase solution with the oil in place so that the oil can then be removed as a more highly mobile phase from the reservoir. A fluid miscible with oil may enhance oil recovery by reducing or eliminating the interfacial tension between the oil and water thus improving oil displacement. The injection fluid may also enhance oil recovery, even if it does not form a single-phase solution with the oil, by swelling the oil, reducing viscosity, and/or vaporizing lighter components of the oil. The injection fluid may be a light hydrocarbon such as liquefied petroleum gas (LPG), a hydrocarbon gas containing relatively high concentrations of aliphatic hydrocarbons in the C2 to C6 range, nitrogen, and/or carbon dioxide. The injection fluid typically is a gas at atmospheric conditions, but becomes a dense fluid at reservoir conditions. Often, rail cars and/or truck transports are used to transport injection fluid to a well site for EOR operations, which can lead to increased costs and may prove challenging when access to the reservoir is restricted, e.g., by geography.


Various gas-based EOR flooding techniques known in the art include formulating particular mixtures of gases to increase the effectiveness of gas flooding operations. For example, U.S. Patent Application Publication No. 2015-0060075 discloses an EOR method that utilizes an ether-based injectant to mobilize oil within the hydrocarbon reservoir. Also, U.S. Pat. No. 4,512,400 discloses a method for upgrading natural gas to ethane, propane, and butane constituents using synthesis gas processing combined with the Fischer Tropsch process. The upgraded natural gas is then serially used in a multi-well miscible drive process. However, complicated techniques for formulating and/or synthesizing gas-based injection fluids can be expensive and/or time consuming, and may either require an amount of additional equipment that is infeasible for deployment to certain assets or may require sending products to a distant, centralized facility for processing.


Another supplemental recovery technique that has been used is to re-pressurize the formation. For example, in some circumstances, a portion of gas produced along with oil, so called “associated gas”, may be reinjected back into a gas cap of the hydrocarbon reservoir for pressure maintenance. However, reinjection of associated gas becomes less viable over the lifetime of a hydrocarbon asset as an increasing amount of pressure is needed to maintain production from a decreasing amount of associated gas available.


As such, a need exists for a simple, energy efficient, and economic way of providing gas-based fluids for enhanced oil recovery.


SUMMARY

The disclosure includes a method of obtaining an enhanced oil recovery fluid from a hydrocarbon reservoir, such as a self-sourced reservoir fluid. The method may comprise producing a hydrocarbon stream from the hydrocarbon reservoir, separating an associated gas stream from the hydrocarbon stream, and condensing at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid suitable for injecting into a liquid layer, such as an oil layer, of the hydrocarbon reservoir to enhance recovery of hydrocarbons from the hydrocarbon reservoir. In some embodiments, condensing the associated gas stream comprises refrigerating the associated gas stream to obtain an enriched injectant fluid and a remaining gas stream, wherein the enriched injectant fluid stream comprises at least a minimum amount of C2+ to function as an effective miscible enhanced oil recovery fluid, and wherein the remaining gas stream comprises primarily methane.


The disclosure further includes a system for obtaining an enhanced oil recovery fluid from a hydrocarbon reservoir. The system may comprise a wellhead operatively connected to the hydrocarbon reservoir, such as wellhead in fluid communication with the hydrocarbon reservoir, and an enrichment component operatively coupled to the wellhead, such as an enrichment component in fluid communication with the wellhead. The enrichment component may be configured to receive a hydrocarbon stream, separate an associated gas stream from the hydrocarbon stream, and condense at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid suitable for injecting into a liquid layer of the hydrocarbon reservoir to enhance recovery of hydrocarbons from the hydrocarbon reservoir.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic representation of a system for obtaining self-sourced reservoir fluid for EOR operations.





DETAILED DESCRIPTION

In the following detailed description, specific embodiments of the present techniques are described. However, to the extent that the following description is specific to a particular embodiment or a particular use of the present techniques, this is intended to be for exemplary purposes only and simply provides a description of the exemplary embodiments. Accordingly, the techniques are not limited to the specific embodiments described herein, but rather, include all alternatives, modifications, and equivalents falling within the true spirit and scope of the appended claims.


At the outset, for ease of reference, certain terms used in this application and their meanings as used in this context are set forth. To the extent a term used herein is not defined herein, it should be given the broadest definition persons in the pertinent art have given that term as reflected in at least one printed publication or issued patent. Further, the present techniques are not limited by the usage of the terms shown herein, as all equivalents, synonyms, new developments, and terms or techniques that serve the same or a similar purpose are considered to be within the scope of the present claims.


As used herein, the term “substantial” or “substantially” when used in reference to a quantity or amount of a material, or a specific characteristic thereof, refers to an amount that is sufficient to provide an effect that the material or characteristic was intended to provide. The exact degree of deviation allowable may depend, in some cases, on the specific context.


As used herein, the terms “a” and “an,” mean one or more when applied to any feature in embodiments of the present inventions described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated.


As used herein, the term “about” is intended to allow some leeway in mathematical exactness to account for tolerances that are acceptable in the trade. Accordingly, any deviations upward or downward from the value modified by the term “about” in the range of 1% to 10% or less should be considered to be explicitly within the scope of the stated value.


As used herein the terms “adapted” and “configured” mean that the element, component, or other subject matter is designed and/or intended to perform a given function. Thus, the use of the terms “adapted” and “configured” should not be construed to mean that a given element, component, or other subject matter is simply “capable of” performing a given function but that the element, component, and/or other subject matter is specifically selected, created, implemented, utilized, programmed, and/or designed for the purpose of performing the function. It is also within the scope of the present disclosure that elements, components, and/or other recited subject matter that are recited as being adapted to perform a particular function may additionally or alternatively be described as being configured to perform that function, and vice versa.


As used herein, the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity. Multiple entities listed with “and/or” should be construed in the same manner, i.e., “one or more” of the entities so conjoined. Other entities may optionally be present other than the entities specifically identified by the “and/or” clause, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, a reference to “A and/or B,” when used in conjunction with open-ended language such as “comprising” may refer, in one embodiment, to A only (optionally including entities other than B); in another embodiment, to B only (optionally including entities other than A); in yet another embodiment, to both A and B (optionally including other entities). These entities may refer to elements, actions, structures, steps, operations, values, and the like.


As used herein, the phrase “at least one,” in reference to a list of one or more entities should be understood to mean at least one entity selected from any one or more of the entities in the list of entities, but not necessarily including at least one of each and every entity specifically listed within the list of entities and not excluding any combinations of entities in the list of entities. This definition also allows that entities may optionally be present other than the entities specifically identified within the list of entities to which the phrase “at least one” refers, whether related or unrelated to those entities specifically identified. Thus, as a non-limiting example, “at least one of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A and/or B”) may refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including entities other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including entities other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other entities). In other words, the phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C” and “A, B, and/or C” may mean A alone, B alone, C alone, A and B together, A and C together, B and C together, A, B and C together, and optionally any of the above in combination with at least one other entity.


Unless the context indicates otherwise, all percentages used herein are mole %. Thus, for example, when the hydrocarbon fluid stream is referred to as containing greater than 55% C2+ this indicates the hydrocarbon fluid stream comprises at least 55 mole % of C2+ hydrocarbons.


As used herein, the term “fluid” refers to a substance that continually deforms under an applied shear stress. Fluids may include liquids, gases, combinations of gases and liquids, and combinations of liquids and solids.


As used herein, the term “higher hydrocarbons” and/or “C2+” refers to hydrocarbon(s) having more than one carbon atom per molecule, e.g., ethane, propane, butanes, etc.


As used herein, the term “hydrocarbon” refers to an organic compound that includes primarily, if not exclusively, the elements hydrogen and carbon. Hydrocarbons may also include other elements, such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons generally fall into two classes: aliphatic, or straight chain hydrocarbons, and cyclic, or closed ring hydrocarbons, including cyclic terpenes. Examples of hydrocarbon-containing materials include any form of natural gas, oil, coal, and bitumen.


As used herein, the term “hydrocarbon stream” refers to a hydrocarbon or mixtures of hydrocarbons that are gases or liquids. For example, hydrocarbon streams or hydrocarbon fluids may include a hydrocarbon or mixtures of hydrocarbons that are gases or liquids at formation conditions, at processing conditions, or at ambient conditions (e.g., 15° C. and 1 atm pressure). Hydrocarbon streams and hydrocarbon fluids may include, for example, oil, natural gas, coalbed methane, shale oil, pyrolysis oil, pyrolysis gas, a pyrolysis product of coal, and other hydrocarbons that are in a gaseous or liquid state.


As used herein, the term “light hydrocarbons” refer to hydrocarbons having carbon numbers in a range from 1 to 5.


As used herein, the term “natural gas” refers to a multi-component gas obtained from a crude oil well (associated gas) or from a subterranean gas-bearing formation (non-associated gas). The composition and pressure of natural gas can vary significantly. A typical natural gas stream contains methane (C1) as a significant component. Raw natural gas may also contain ethane (C2), higher molecular weight hydrocarbons, acid gases (such as carbon dioxide, hydrogen sulfide, carbonyl sulfide, carbon disulfide, and/or mercaptans), and minor amounts of contaminants such as water, nitrogen, iron sulfide, wax, and/or crude oil. As used herein, natural gas includes gas resulting from the regasification of a liquefied natural gas, which has been purified to remove contaminates, such as water, acid gases, and most of the higher molecular weight hydrocarbons.


As used herein, the term “oil and gas reservoir” refers to a well or reservoir that is a subsurface zone that produces oil and/or gas and lacks communication with other reservoirs.


As used herein, the term “operatively coupled” means that the identified components are connected in a way to perform a designated function.


As used herein, the term “proximate” means that two or more items are spatially close, without regard to whether the spatial relationship places one item underneath, over, or beside another item. Items of definite size and/or shape (e.g., physical components) can be proximate to one another and/or proximate to items that might be of indefinite size and/or shape (e.g., certain chemical reactions).


As used herein, the term “reservoir” refers to a formation or a portion of a formation that includes sufficient permeability and porosity to hold and transmit fluids, such as hydrocarbons or water.


As used herein, the definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.


The present disclosure includes techniques enabling a wide variety of oil fields to have their own source of miscible fluid and/or enriched hydrocarbon fluid for enhanced oil recovery (EOR) operations using the associated gas from the produced hydrocarbon stream. Associated gases that have sufficient ethane and/or higher hydrocarbon content can bring significant benefits as a source of EOR fluid. In some embodiments, this presumes that the produced hydrocarbon stream comprises enough higher hydrocarbons to yield a liquid stream. By self-sourcing enriched hydrocarbon fluids for EOR, the disclosed techniques enable the ability to increase oil production at little cost. For example, some embodiments may only require adding a simple propane refrigerated separation unit to a local facility in order to provide the EOR fluid. In addition to being more cost effective than other techniques (e.g., than those requiring transport of enriched hydrocarbon fluids, particularized solvent formulations, and/or processing at separate and/or distant facilities), the disclosed techniques may locally provide both an EOR fluid and pressure maintenance gas, may be more energy efficient for prolonged EOR operations, and may reduce or eliminate the problem of stranded natural gas resources. Furthermore, using enriched hydrocarbon flooding may provide significant benefits over leaner associated gas injection for pressure maintenance or for gas lift and, consequently, the disclosed techniques may have EOR efficacy benefits over prior techniques relying on gas reinjection.


The miscibility of the gas with oil in the formation may be determined by the pressure and temperature of the formation, the nature of the oil in the formation, and the components of the gas. Gases having components that are similar to the hydrocarbons in the formation are more likely to be miscible with the oil than gases that are less similar to the formation hydrocarbons. Higher formation pressure (e.g. formations with a pressure greater than 3000 pounds per square inch absolute (psia) (20.7 megapascals (MPa)), or greater than 4000 psia (27.6 MPa), or greater than 5000 psia (34.5 MPa), or greater than 6000 psia (41.4 MPa), or greater than 7000 psia (48.3 MPa), or greater than 7250 psia (50 MPa)) may also facilitate miscibility of the gas with the formation hydrocarbons, and therefore gases with relatively low miscibility in the oil at low pressures may be miscible in the formation hydrocarbons due to the pressure in the formation.


As discussed further below with reference to FIG. 1, a produced hydrocarbon stream containing a minimum amount of C2+ can become an effective miscible EOR fluid. Enriching the C2+ content of a natural gas hydrocarbon stream by reducing the presence of methane and lighter non-hydrocarbon components such that the C2+ concentration becomes relatively larger, for example ⅔ or greater, may make such an enriched stream a good miscible injectant fluid for EOR purposes.


Disclosed techniques include an enriching step for producing a produced hydrocarbon stream by means of refrigeration that condenses C2+ components in the associated gas while letting thru the lighter methane and more volatile gas components, such as helium and nitrogen. A refrigeration system of this kind might be a propane based refrigeration system operating, for example, at −30° F. The discharge of the chilled fluids can then be separated into a liquid stream (the desired miscible injectant fluid) and a vapor stream rich in methane that can be either sold as pipeline gas or reinjected in the reservoir for pressure maintenance.


As an additional benefit, the disclosed techniques utilize equipment with a relatively smaller capacity as compared to conventional processing facilities. Consequently, components may be standardized into truckable modules capable of deployment to remote, geographically challenging locations. Moreover, various embodiments of the disclosed approach may allow for reduced monitoring and/or maintenance.



FIG. 1 is a schematic representation of a system 100 for obtaining self-sourced reservoir fluid for EOR. Those of skill in the art will appreciate that the schematic of FIG. 1 is simplified and various components have been combined and/or omitted from FIG. 1 for ease of viewing, and that additional and/or alternate equipment configurations are suitably available for use with the disclosed approach. All such additional and/or alternate configurations are considered with the scope of this disclosure. The system 100 may be comprised within a facility located proximate to the hydrocarbon reservoir, e.g., at a wellhead. The system 100 utilizes a hydrocarbon stream 102 produced via a wellhead operatively coupled to a hydrocarbon reservoir 104. For example, the hydrocarbon stream 102 may be produced via a wellhead that is in fluid communication with the hydrocarbon reservoir 104. Hydrocarbon reservoirs generally include trapped oil and gas within rock formations and may include subsurface pools of hydrocarbons contained in porous sedimentary rock. A layer of impermeable rock formations, termed cap rock, may prevent the escape of the naturally occurring hydrocarbons into overlying sediment and rock formations (the overburden). Various recovery methods may be implemented to extract and recover both the oil and gas hydrocarbons. During recovery, the hydrocarbon reservoir may produce the crude oil and raw natural gas along with other liquid, gaseous, and/or solid hydrocarbons as hydrocarbon stream 102. The composition of the hydrocarbon stream 102 will vary depending on the hydrocarbon reservoir 104 characteristics. In some embodiments, the hydrocarbon stream 102 may comprise about 20-35% C2+ hydrocarbons. The hydrocarbon reservoir 104 may have a water layer 106, a liquid and/or oil layer 108, and/or a gas cap 110.


The hydrocarbon stream 102 may pass to an oil/gas separation component 112, e.g., a gas-oil separator, for separation into a bottom stream 116 containing primarily saleable oil and an associated gas stream 118. The associated gas stream 118 in the embodiment of FIG. 1 may be at a pressure between X and Y, wherein X is 100 psia, 200 psia, 300 psia, 400 psia, 500 psia, or 600 psia and wherein Y is 1,000 psia, 900 psia, 800 psia, 700 psia, or 600 psia. In the embodiment of FIG. 1, the associated gas stream 118 is in the range of 500 psia to 700 psia, such as at 600 psia. The associated gas stream 118 in the embodiment of FIG. 1 may comprise at least about 10% C2+, 20% C2+, 30% C2+, 40% C2+, or more. In the embodiment of FIG. 1, the associated gas stream 118 comprises from about 15% C2+ to about 25% C2+, such as about 20% C2+. The volume of the associated gas stream 118 in the embodiment of FIG. 1 may be between X and Y, wherein X is 5 thousand standard cubic feet per day (mscfd), 10 mscfd, 20 mscfd, 30 mscfd, 40 mscfd, or 50 mscfd, and wherein Y is 200 mscfd, 150 mscfd, or 100 mscfd. In the embodiment of FIG. 1, the associated gas stream 118 passes between 50 mscfd and 100 mscfd. Those of skill will appreciate that alternate embodiments may suitably utilize alternate and/or additional values in practicing the disclosed techniques, and such alternate embodiments are considered within the scope of this disclosure.


The associated gas stream 118 passes to an enrichment component 120. The enrichment component 120 may comprise a propane refrigeration unit configured to reduce the temperature of the associated gas stream 118 to between X and Y, wherein X is +50° Celsius (C.), +40° C., +30° C., +20° C., +10° C., 0° C., −10° C., −20° C., or −30° C., and wherein Y is −70° C., −60° C., −50° C., −40° C., or −30° C. In the embodiment of FIG. 1, the enrichment component 120 cools the associated gas stream 118 to between −20° C. and −40° C. Cooling the associated gas stream 118 by this amount may require that the enrichment component 120 be a refrigeration unit configured to reduce the temperature of the associated gas stream 118 by between 1° C. and 130° C. Some embodiments may produce the power for the enrichment component 120 locally, some embodiments may use off-site power, and still other embodiments may use a combination thereof.


Cooling the associated gas stream 118 may condense at least a portion of the associated gas stream 118 to obtain an enriched hydrocarbon fluid stream 124. Alternate embodiments may utilize a compression component as an enrichment component 120 rather than a refrigeration component in order to condense the portion of the associated gas stream 118. Still other embodiments may utilize a combination of compression and refrigeration steps. The enriched hydrocarbon fluid stream 124 may be suitable for injecting into the hydrocarbon reservoir 104, and may be, for example, injected into a liquid and/or oil layer 108 of the hydrocarbon reservoir 104, e.g., as a miscible flooding fluid. The enriched hydrocarbon fluid stream 124 in the embodiment of FIG. 1 may comprise at or above about 55% C2+, 60% C2+, 65% C2+, 70% C2+, or more. In the embodiment of FIG. 1, the enriched hydrocarbon fluid stream 124 comprises from about 60% C2+ to about 70% C2+, such as about 65% C2+. The volume of the enriched hydrocarbon fluid stream 124 in the embodiment of FIG. 1 may be between X and Y, wherein X is 5 mscfd, 10 mscfd, 15 mscfd, 20 mscfd, or 25 mscfd, and wherein Y is 40 mscfd, 35 mscfd, or 30 mscfd. In the embodiment of FIG. 1, the enriched hydrocarbon fluid stream 124 passes between 15 mscfd and 30 mscfd.


The enrichment component 120 comprises a separator 122 configured to obtain an enriched hydrocarbon fluid stream 124 and obtain a lean gas (i.e., lacking higher hydrocarbons), a volatile gas, a remaining gas stream, and/or a methane-rich stream 126, e.g., by condensing at least a portion of the associated gas stream 118. The methane-rich stream 126 in the embodiment of FIG. 1 may comprise less than or equal to about 20% C2+, 15% C2+, 10% C2+, or 5% C2+. In the embodiment of FIG. 1, the methane-rich stream 126 comprises less than 10% C2+. The volume of the methane-rich stream 126 in the embodiment of FIG. 1 may be between X and Y, wherein X is 5 mscfd, 10 mscfd, 20 mscfd, 30 mscfd, 40 mscfd, 50 mscfd, 60 mscfd, or 70 mscfd, and wherein Y is 150 mscfd, 125 mscfd, 100 mscfd, 80 mscfd, or 60 mscfd. In the embodiment of FIG. 1, the methane-rich stream 126 passes between 30 mscfd and 80 mscfd. The methane-rich stream 126 passes to a lean gas compression component 130 for processing and/or disposal. The lean gas compression unit 130 may pass at least a portion of the methane-rich stream 126 to a pipeline 132 for sale, to a pipeline 132 for use at a second hydrocarbon reservoir (e.g., for pressure maintenance, power, etc.), and/or may pass at least a portion of the methane-rich stream 126 to a reinjection line 128 operatively coupled to the hydrocarbon reservoir, e.g., for reinjection into the gas cap 110 for pressure maintenance. In embodiments that pass at least a portion of the methane-rich stream 126 to a pipeline for use at a second hydrocarbon reservoir, the second hydrocarbon reservoir may be located in a field proximate and/or adjacent to the first hydrocarbon reservoir. Using gas from a proximate and/or adjacent hydrocarbon reservoir for pressure maintenance may provide significant efficiencies over using gas from an alternate location. Those of skill in the art will appreciate that in embodiments that send at least a portion of the methane-rich stream 126 to a pipeline for sale, additional and/or alternate equipment may be required to ensure that the methane-rich stream 126 meets pipeline specifications, e.g., heating value, Wobbe index, etc.


Thus, as described herein are methods and systems for obtaining self-sourced enriched hydrocarbon fluids that are suitable for injecting into a hydrocarbon reservoir, such as a liquid layer of a hydrocarbon reservoir, to enhance recovery of hydrocarbons from the hydrocarbon reservoir. The methods may comprise producing a hydrocarbon stream from the hydrocarbon reservoir, separating an associated gas stream from the hydrocarbon stream, and condensing at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid. The method may also comprise separating a methane-rich stream from the associated gas stream. The method may further comprise injecting at least a portion of the enriched hydrocarbon fluid stream into the hydrocarbon reservoir, such as into a liquid layer of the hydrocarbon reservoir, such as an oil layer of the hydrocarbon reservoir.


In some embodiments, condensing the associated gas stream may comprise cooling by refrigerating the associated gas stream by at least 1° C. and up to by 130° C. In some embodiments, the associated gas stream may be cooled to a temperature that is in the range of from about +50° C. to about −70° C., or to a temperature as described further above with reference to FIG. 1.


Preferably, the enriched hydrocarbon stream comprises an amount of C2+ hydrocarbons such that the enriched hydrocarbon stream is miscible with the oil in the hydrocarbon reservoir at the temperature and pressure conditions within the reservoir. For example, the amount of C2+ hydrocarbons in the enriched hydrocarbon stream may be greater than 55 mole %, or greater than 60 mole %, or in an amount as described further above with reference to FIG. 1.

Claims
  • 1. A method of obtaining an enhanced oil recovery fluid from a hydrocarbon reservoir, comprising: producing a hydrocarbon stream from the hydrocarbon reservoir;separating an associated gas stream from the hydrocarbon stream; andcondensing at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid suitable for injecting into a liquid layer of the hydrocarbon reservoir to enhance recovery of hydrocarbons from the hydrocarbon reservoir, wherein condensing at least a portion of the associated gas stream comprises reducing the temperature of the associated gas stream by between 1° Celsius and 130° Celsius.
  • 2. The method of claim 1, further comprising: separating a methane-rich stream from the associated gas stream, wherein the methane-rich stream comprises substantially methane.
  • 3. The method of claim 2, wherein the methane stream is in a gas phase.
  • 4. The method of claim 1, wherein at least one of separating the associated gas stream from the hydrocarbon stream, andcondensing at least a portion of the associated gas stream, occur at a facility located proximate to the hydrocarbon reservoir.
  • 5. The method of claim 1, wherein the condensing step and the separating step occur at substantially the same time.
  • 6. The method of claim 1, wherein the condensing at least a portion of the associated gas stream comprises reducing the temperature of the associated gas stream to a temperature between +50° Celsius and −70° Celsius.
  • 7. A method of enhanced oil recovery using self-sourced reservoir fluids, comprising: producing a hydrocarbon stream from a hydrocarbon reservoir;separating an associated gas stream from the hydrocarbon stream;refrigerating the associated gas stream to obtain a remaining gas stream and an enriched hydrocarbon fluid, wherein the remaining gas stream comprises primarily methane, wherein refrigerating comprises reducing the temperature of the associated gas stream by between 1° Celsius and 130° Celsius, and wherein the enriched hydrocarbon fluid stream comprises at least 55% C2+ to thereby function as an effective miscible enhanced oil recovery fluid; andinjecting at least a portion of the enriched hydrocarbon fluid stream into an oil layer of the hydrocarbon reservoir.
  • 8. The method of claim 7, further comprising: injecting at least a portion of the remaining gas stream into a gas cap of the hydrocarbon reservoir.
  • 9. The method of claim 7, wherein the remaining gas stream comprise primarily methane, further comprising: selling a primarily methane portion of the remaining stream at a market.
  • 10. The method of claim 7, wherein at least one of the separating step, andthe refrigerating step, occur at a facility located proximate to the hydrocarbon reservoir.
  • 11. A system for obtaining an enhanced oil recovery fluid from a hydrocarbon reservoir, comprising: a wellhead operatively connected to the hydrocarbon reservoir and configured to receive a hydrocarbon stream from the hydrocarbon reservoir; andan enrichment component operatively coupled to the wellhead, wherein the enrichment component is configured to: receive the hydrocarbon stream;separate an associated gas stream from the hydrocarbon stream; andcondense at least a portion of the associated gas stream to obtain an enriched hydrocarbon fluid, wherein the enrichment component comprises a refrigeration portion configured to reduce the temperature of the associated gas stream by between 1° Celsius and 130° Celsius.
  • 12. The system of claim 11, further comprising: a reinjection line operatively coupled to the enrichment component and configured to pass the enriched hydrocarbon fluid to a miscible flooding component, wherein the miscible flooding component is configured to inject the enriched hydrocarbon fluid into an oil layer of the hydrocarbon reservoir.
  • 13. The system of claim 11, further comprising: a pipeline operatively coupled to the enrichment component and configured to pass a gas stream comprising substantially methane away from the hydrocarbon reservoir.
  • 14. The system of claim 11, wherein the enrichment component is further configured to obtain a volatile gas stream from the associated gas stream, wherein the volatile gas stream comprises methane.
  • 15. The system of claim 11, wherein the enriched hydrocarbon fluid comprises at least 60% C2+.
  • 16. The system of claim 11, further comprising: a pipeline operatively coupled to the enrichment component and configured to pass the enriched hydrocarbon fluid to a second hydrocarbon reservoir.
  • 17. The system of claim 11, wherein the enrichment component is proximate to the wellhead.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application Ser. No. 62/315,288 filed on Mar. 30, 2016, the entirety of which is incorporated by reference herein.

US Referenced Citations (233)
Number Name Date Kind
2621216 White Dec 1952 A
2843219 Habgood Jul 1958 A
2863527 Herbert Dec 1958 A
2960837 Swenson et al. Nov 1960 A
3050950 Karwat et al. Aug 1962 A
3109726 Karwat Nov 1963 A
3223157 Lacey et al. Dec 1965 A
3349571 Nebgen Oct 1967 A
3393527 Swensen et al. Jul 1968 A
3400512 McKay Sep 1968 A
3421984 Jensen et al. Jan 1969 A
3683634 Streich Aug 1972 A
3705625 Whitten et al. Dec 1972 A
3767766 Tjoa et al. Oct 1973 A
3824080 Smith et al. Jul 1974 A
3842615 Reigel et al. Oct 1974 A
3848427 Loofbourow Nov 1974 A
3895101 Tsuruta Jul 1975 A
3929635 Buriks et al. Dec 1975 A
3933001 Muska Jan 1976 A
4129626 Mellbom Dec 1978 A
4246015 Styring Jan 1981 A
4270937 Adler Jun 1981 A
4280559 Best Jul 1981 A
4281518 Muller et al. Aug 1981 A
4318723 Holmes et al. Mar 1982 A
4319964 Katz et al. Mar 1982 A
4336233 Appl et al. Jun 1982 A
4344485 Butler Aug 1982 A
4370156 Goddin et al. Jan 1983 A
4382912 Madgavkar et al. May 1983 A
4383841 Ryan et al. May 1983 A
4405585 Sartori et al. Sep 1983 A
4417449 Hegarty et al. Nov 1983 A
4417909 Weltmer Nov 1983 A
4421535 Mehra Dec 1983 A
4441900 Swallow Apr 1984 A
4459142 Goddin Jul 1984 A
4462814 Holmes et al. Jul 1984 A
4466946 Goddin et al. Aug 1984 A
4511382 Valencia et al. Apr 1985 A
4512400 Simon Apr 1985 A
4512782 Bauer et al. Apr 1985 A
4533372 Valencia et al. Aug 1985 A
4551158 Wagner et al. Nov 1985 A
4563202 Yao et al. Jan 1986 A
4592766 Kumman et al. Jun 1986 A
4602477 Lucadamo Jul 1986 A
4609388 Adler et al. Sep 1986 A
4636334 Skinner et al. Jan 1987 A
4695672 Bunting Sep 1987 A
4697642 Vogel Oct 1987 A
4710213 Sapper et al. Dec 1987 A
4717408 Hopewell Jan 1988 A
4720294 Lucadamo et al. Jan 1988 A
4747858 Gottier May 1988 A
4753666 Pastor et al. Jun 1988 A
4761167 Nicholas et al. Aug 1988 A
4762543 Pantermuehl et al. Aug 1988 A
4769054 Steigman Sep 1988 A
4822393 Markbreiter et al. Apr 1989 A
4831206 Zarchy May 1989 A
4923493 Valencia et al. May 1990 A
4927498 Rushmere May 1990 A
4935043 Blanc et al. Jun 1990 A
4954220 Rushmere Sep 1990 A
4972676 Sakai Nov 1990 A
4976849 Soldati Dec 1990 A
5011521 Gottier Apr 1991 A
5062270 Haut et al. Nov 1991 A
5120338 Potts et al. Jun 1992 A
5137550 Hegarty et al. Aug 1992 A
5152927 Rivers Oct 1992 A
5233837 Callahan Aug 1993 A
5240472 Sircar Aug 1993 A
5247087 Rivers Sep 1993 A
5265428 Valencia et al. Nov 1993 A
5335504 Durr et al. Aug 1994 A
5345771 Dinsmore Sep 1994 A
5567396 Perry et al. Oct 1996 A
5620144 Strock et al. Apr 1997 A
5643460 Marble et al. Jul 1997 A
5700311 Spencer Dec 1997 A
5720929 Minkkinen et al. Feb 1998 A
5819555 Engdahl Oct 1998 A
5820837 Marjanovich et al. Oct 1998 A
5899274 Frauenfeld et al. May 1999 A
5956971 Cole et al. Sep 1999 A
5964985 Wootten Oct 1999 A
5983663 Sterner Nov 1999 A
6053007 Victory et al. Apr 2000 A
6053484 Fan et al. Apr 2000 A
6082133 Barclay et al. Jul 2000 A
6082373 Sakurai et al. Jul 2000 A
6162262 Minkkinen et al. Dec 2000 A
6223557 Cole May 2001 B1
6240744 Agrawal et al. Jun 2001 B1
6267358 Gohara et al. Jul 2001 B1
6270557 Millet et al. Aug 2001 B1
6274112 Moffett et al. Aug 2001 B1
6336334 Minkkinen et al. Jan 2002 B1
6374634 Gallarda et al. Apr 2002 B2
6401486 Lee et al. Jun 2002 B1
6416729 DeBerry et al. Jul 2002 B1
6442969 Rojey et al. Sep 2002 B1
6500982 Hale et al. Dec 2002 B1
6505683 Minkkinen et al. Jan 2003 B2
6516631 Trebble Feb 2003 B1
6517801 Watson et al. Feb 2003 B2
6539747 Minta et al. Apr 2003 B2
6565629 Hayashida et al. May 2003 B1
6605138 Frondorf Aug 2003 B2
6631626 Hahn Oct 2003 B1
6632266 Thomas et al. Oct 2003 B2
6662872 Gutek et al. Dec 2003 B2
6708759 Leaute et al. Mar 2004 B2
6711914 Lecomte Mar 2004 B2
6735979 Lecomte et al. May 2004 B2
6755251 Thomas et al. Jun 2004 B2
6755965 Pironti et al. Jun 2004 B2
6818194 DeBerry et al. Nov 2004 B2
6883327 Iijima et al. Apr 2005 B2
6946017 Leppin et al. Sep 2005 B2
6958111 Rust et al. Oct 2005 B2
6962061 Wilding et al. Nov 2005 B2
7001490 Wostbrock et al. Feb 2006 B2
7004985 Wallace et al. Feb 2006 B2
7066986 Haben et al. Jun 2006 B2
7073348 Clodic et al. Jul 2006 B2
7121115 Lemaire et al. Oct 2006 B2
7128150 Thomas et al. Oct 2006 B2
7128276 Nilsen et al. Oct 2006 B2
7152431 Amin et al. Dec 2006 B2
7211128 Thomas et al. May 2007 B2
7211701 Muller et al. May 2007 B2
7219512 Wilding et al. May 2007 B1
7285225 Copeland et al. Oct 2007 B2
7325415 Amin et al. Feb 2008 B2
7424808 Mak Sep 2008 B2
7437889 Roberts et al. Oct 2008 B2
7442231 Landrum Oct 2008 B2
7442233 Mitariten Oct 2008 B2
7493779 Amin Feb 2009 B2
7536873 Nohlen May 2009 B2
7550064 Bassler et al. Jun 2009 B2
7575624 Cartwright et al. Aug 2009 B2
7597746 Mak et al. Oct 2009 B2
7635408 Mak et al. Dec 2009 B2
7637984 Adamopoulos Dec 2009 B2
7637987 Mak Dec 2009 B2
7641717 Gal Jan 2010 B2
7662215 Sparling et al. Feb 2010 B2
7691239 Kister et al. Apr 2010 B2
7722289 Leone et al. May 2010 B2
7729976 Hill et al. Jun 2010 B2
7770872 Delatour Aug 2010 B2
7795483 Kulprathipanja et al. Sep 2010 B2
7806965 Stinson Oct 2010 B2
7814975 Hagen et al. Oct 2010 B2
7879135 Ravikumar Feb 2011 B2
7901583 McColl et al. Mar 2011 B2
7955496 Iqbal et al. Jun 2011 B2
8002498 Leone et al. Aug 2011 B2
8020408 Howard et al. Sep 2011 B2
8133764 Dirks et al. Mar 2012 B2
8136799 Griepsma Mar 2012 B2
8303685 Schubert et al. Nov 2012 B2
8308849 Gal Nov 2012 B2
8312738 Singh et al. Nov 2012 B2
8372169 Tsangaris et al. Feb 2013 B2
8381544 Coyle Feb 2013 B2
8388832 Moffett et al. Mar 2013 B2
8428835 Habert et al. Apr 2013 B2
8475572 Prast et al. Jul 2013 B2
8500105 Nieuwoudt Aug 2013 B2
8529662 Kelley et al. Sep 2013 B2
9255731 Prim Feb 2016 B2
20020174687 Cai Nov 2002 A1
20020189443 McGuire Dec 2002 A1
20030181772 Meyer et al. Sep 2003 A1
20060207946 McColl et al. Sep 2006 A1
20060239879 Lallemand et al. Oct 2006 A1
20070056317 Amin et al. Mar 2007 A1
20070144943 Lemaire et al. Jun 2007 A1
20070277674 Hirano et al. Dec 2007 A1
20080034789 Fieler Feb 2008 A1
20080091316 Szczublewski Apr 2008 A1
20080092589 Tranier et al. Apr 2008 A1
20080307827 Hino et al. Dec 2008 A1
20090023605 Lebl et al. Jan 2009 A1
20090220406 Rahman Sep 2009 A1
20100011809 Mak Jan 2010 A1
20100018248 Fieler et al. Jan 2010 A1
20100024472 Amin et al. Feb 2010 A1
20100064725 Chieng et al. Mar 2010 A1
20100107687 Andrian et al. May 2010 A1
20100132405 Nilsen Jun 2010 A1
20100147022 Hart et al. Jun 2010 A1
20100187181 Sortwell Jul 2010 A1
20100310439 Brok et al. Dec 2010 A1
20110088897 Raman Apr 2011 A1
20110132034 Beaumont et al. Jun 2011 A1
20110146978 Perlman Jun 2011 A1
20110146979 Wallace Jun 2011 A1
20110154856 Andrian et al. Jun 2011 A1
20110168019 Northrop et al. Jul 2011 A1
20110192190 Andrian et al. Aug 2011 A1
20110265512 Bearden et al. Nov 2011 A1
20120006055 Van Santen et al. Jan 2012 A1
20120031143 Van Santem et al. Feb 2012 A1
20120031144 Northrop et al. Feb 2012 A1
20120079852 Northrop et al. Apr 2012 A1
20120125043 Cullinane et al. May 2012 A1
20120204599 Northrop et al. Aug 2012 A1
20120279728 Northrop et al. Nov 2012 A1
20130032029 Mak Feb 2013 A1
20130074541 Kaminsky et al. Mar 2013 A1
20130098105 Northrop Apr 2013 A1
20140034305 Dawson et al. Feb 2014 A1
20140130498 Randolph May 2014 A1
20140137599 Oelfke et al. May 2014 A1
20150060075 Blom et al. Mar 2015 A1
20150158796 Valencia et al. Jun 2015 A1
20150159939 Valencia et al. Jun 2015 A1
20150159940 Valencia et al. Jun 2015 A1
20150159941 Valencia et al. Jun 2015 A1
20150159942 Valencia et al. Jun 2015 A1
20150159943 Valencia et al. Jun 2015 A1
20150159944 Valencia et al. Jun 2015 A1
20150159945 Valencia et al. Jun 2015 A1
20150159946 Valencia et al. Jun 2015 A1
20150159947 Valencia et al. Jun 2015 A1
20150369023 MacPhail et al. Dec 2015 A1
Foreign Referenced Citations (23)
Number Date Country
2243105 Aug 1999 CA
3 149 847 Jul 1983 DE
0 133 208 Feb 1985 EP
0 508 244 Oct 1992 EP
1 338 557 Mar 2005 EP
2514071 Apr 1983 FR
1010403 Nov 1965 GB
WO 2002032536 Apr 2002 WO
WO 2002039038 May 2002 WO
WO 2004047956 Jun 2004 WO
WO 2008034789 Mar 2008 WO
WO 2008095258 Aug 2008 WO
WO 2008152030 Dec 2008 WO
WO 2009023605 Feb 2009 WO
WO 2009029353 Mar 2009 WO
WO 2009087206 Jul 2009 WO
WO 2010023238 Mar 2010 WO
WO 2010052299 May 2010 WO
WO 2010136442 Dec 2010 WO
WO 2011026170 Mar 2011 WO
WO 2011041086 Apr 2011 WO
WO 2013095828 Jun 2013 WO
WO 2013142100 Sep 2013 WO
Non-Patent Literature Citations (23)
Entry
Aaron, D. et al. (2005) “Separation of CO2 from Flue Gas: A Review,” Separation Science and Technology, 40, pp. 321-348.
Amin, R. (2003) “Advanced Mini Natural Gas Liquefier,” LNG Journal, Mar.-Apr. 2003, pp. 20-23.
Black, S. (2006) “Chilled Ammonia Process for CO2 Capture,” Alstom Position Paper, Nov. 2006, 6 pgs.
Ciulla, Vincent (2007) “How the Engine Works,” About.com, Mar. 21, 2007, [retrieved from the internet on Aug. 17, 2012]. <URL: http://autorepair.about.com/cs/generalInfo/a/aa060500a.html>.
“Cryogenics” Science Clarified, May 2, 2006 [retrieved from the internet on Aug. 17, 2012]. <URL: http://www.scienceclarified.com/Co-Di/Cryogenics.html>.
Denton, R. D. et al. (1985) “Integrated Low Temperature Processing of Sour Natural Gas,” Gas Processors Assoc., 64th Ann. Conv., pp. 92-96.
Guccione, E. (1963) “New Approach to Recovery of Helium from Natural Gas,” Chem. Engr., Sep. 30, 1963, pp. 76-78.
Hassan, S. M. N. (2005) “Techno-Economic Study of CO2 Capture Process for Cement Plants,” University of Waterloo—Thesis.
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” SPE 17757, SPE Gas Tech. Symp.—Dallas, TX, pp. 435-443.
Haut, R. C. et al. (1988) “Development and Application of the Controlled Freeze Zone Process,” OSEA 88197, 7th Offshore So. East Asia Conf., Singapore, Feb. 1988, pp. 840-848.
Haut, R. C. et al. (1989) “Development and Application of the Controlled Freeze Zone Process,” SPE Production Engineering, Aug. 1989, pp. 265-271.
Im, U. K. et al. (1971) “Heterogeneous Phase Behavior of Carbon Dioxide in n-Hexane and n-Heptane at Low Temperatures,” Jrnl. of Chem. Engineering Data, v.16.4, pp. 412-415.
Mitariten, M. et al. (2007) “The Sorbead™ Quick-Cycle Process for Simultaneous Removal of Water, Heavy Hydrocarbons and Mercaptans from Natural Gas,” Laurance Reid Gas Conditioning Conf., Feb. 25-27, 2007.
Northrop, P. Scott et al. (2004) “Cryogenic Sour Gas Process Attractive for Acid Gas Injection Applications,” 83rd Ann. Gas Processors Assoc. Convention, New Orleans, LA., pp. 1-8 (XP007912217).
Pagcatipunan, C. et al. (2005) “Maximize the Performance of Spray Nozzle Systems,” CEP Magazine, Dec. 2005, pp. 38-44.
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B, v.101, pp. 614-622.
Rubin, E. S. et al. (2002) “A Technical, Economic and Environmental Assessment of Amine-based CO2 Capture Technology for Power Plant Greenhouse Gas Control,” U.S. Dept. of Energy, Oct. 2002, DOE/DE-FC26-00NT40935, 26 pages.
Spero, C. (2007) “Callide Oxyfuel Project,” CS Energy, cLET Seminar, Jul. 12, 2007, 9 pages.
Thomas, E. R. et al. (1987) “Conceptual Studies Using the Controlled Freeze Zone (CFZ) Process,” AlChE Summer Nat'l Mtg., Aug. 16-19, 1987.
Thomas, E. R. et al. (1988) “Conceptual Studies for CO2/Natural Gas Separation Using the Control Freeze Zone (CFZ) Process,” Gas Separation and Purification, v. 2, pp. 84-89.
Valencia, J. A. et al. (2008) “Controlled Freeze Zone™ Technology for Enabling Processing of High CO2 and H2S Gas Reserves,” SPE-IPTC 12708, Kuala Lumpur, IN, v.4.1, Jan. 2008, pp. 2358-2363.
Victory, D. J. et al. (1987) “The CFZ Process: Direct Methane-Carbon Dioxide Fractionation,” 66th Ann. GPA Convention, Mar. 16-18, Denver, CO.
Wilson, R.W. et al. (1968) “Helium: Its Extraction and Purification,” Journ. Petrol. Tech., v. 20, pp. 341-344.
Related Publications (1)
Number Date Country
20170283688 A1 Oct 2017 US
Provisional Applications (1)
Number Date Country
62315288 Mar 2016 US