Some conventional pieces of luggage, such as carry-on bags and rolling duffel bags, may have rollers on the bottom to make the bags easier for travelers to transport. However, travelers often need to transport two or more wheeled pieces of luggage simultaneously. If a traveler needs to transport two wheeled pieces of luggage, both hands are typically required. Consequently, while transporting two or more large, heavy pieces of luggage, the traveler may find it difficult or impossible to do other things, such as answering a cellular telephone call, retrieving cash or keys from a pocket or purse, holding the hand of a small child, etc.
Furthermore, in many situations, travelers find it difficult to maneuver multiple pieces of luggage simultaneously. For instance, it can be difficult to safely transport two large pieces up or down a step or escalator, or to transport both pieces through a narrow opening. Such maneuvers may be particularly difficult when the traveler is small and one or both of the pieces of luggage are large and heavy. When more than two pieces need to be transported, these kinds of difficulties may be multiplied.
Features and advantages of the present invention will become apparent from the appended claims, the following detailed description of one or more example embodiments, and the corresponding figures, in which:
Assembly 100 is self-stabilized when in motion and when stationary, and in particular, a traveler does not need to hold handle 236 for the assembly 100 to remain upright or in an inclined position whether or not assembly 100 is in motion. These and other characteristics of luggage assembly 100 provide for excellent stability and maneuverability. Additional details concerning the components and steps used for creating a rollable luggage assembly 100, as well as various operating characteristics of luggage assembly 100, are provided below.
For purposes of this disclosure, carry-on bag 102 may be referred to as a first bag, a base bag, or a leading bag 102. In one embodiment, the dimensions of first bag 102 are approximately 23 inches high, 12 inches wide, and 10 inches deep. In other embodiments, other types and/or sizes of bags may be used as the first bag or base bag.
In the embodiment of
First bag 102 can also have a pair of wheels 242, with one wheel situated at the back left corner of the bottom of the bag 102, and the other wheel situated at the back right corner of the bottom of the bag 102. One or more feet 244 may also be provided at or near the front edge of the bottom of first bag 102, to provide stability and prevent movement when first bag 102 is parked in an upright position with the weight resting on feet 244 and wheels 242.
In some embodiments, rolling duffel bag 104 is connected to first bag 102 to create a luggage assembly 100 that can easily be transported, maneuvered, and parked. Accordingly, for purposes of this disclosure, rolling duffel bag 104 may be referred to as a second bag or a trailing bag 104. In at least one embodiment, the trailing bag 104 is larger than the leading bag. In one embodiment, the dimensions of second bag 104 are approximately 28.5 inches high, 13.5 inches wide, and 11.5 inches deep.
In another embodiment, the dimensions of the second bag are approximately 33 inches high, 16 inches wide, and 13 inches deep. In another embodiment, the second bag may be greater than 47 inches high. In other embodiments, other types and/or sizes of bags may be used as the second bag or trailing bag 104. For example, the trailing bag 104 may be the same size as, or smaller than, the leading bag 102, with attachment means 604 (
In the embodiment of
In the embodiment of
As shown in
In one embodiment, two ends of main handle strap 602 are connected to the top of second bag 104, at two points at or near the left and right edges of the top 306 of bag 104, while two ends of reinforcement handle strap 604 are connected to the upper portion 322 (e.g., the upper third) of the back of second bag 104. For instance, the two ends of reinforcement handle strap 604 may be connected at two points at or near the top edge of the back 302. In one embodiment, the two attachment points for reinforcement handle strap 604 are approximately equal distances from the longitudinal center of second bag 104, and the two attachment points are situated at least as far apart from each other as are the upright members 240 of handle 236 of first bag 102. Other embodiments may use other configurations of uprights, handles, and/or straps.
Once the traveler has separated reinforcement handle strap 604 from main handle strap 602, the traveler lifts reinforcement handle strap 604 over grip 238 of handle 236, as shown by arrow 608. Extendable handle 236 may be retracted to make this operation easier.
As shown in
For instance, segments 604A and 604C may be approximately 10 inches long, and segment 604B may be approximately six inches long. The distance between the attachment points on second bag 104 for segments 604A and 604C may also be approximately six inches 904 The relatively wide intermediate segment, in conjunction with the relatively wide attachment points on second bag 104, may provide increased stability for the luggage assembly 100 by helping to prevent the left or right side of second bag 104 from lifting away from first bag 102.
Other dimensions and/or proportions may be used in other embodiments. For instance, the rigid handle 236 on the leading bag 102 could be wider than six inches or less than six inches (e.g., a single post), and the attachment strap could be longer or shorter, correspondingly. A rollable luggage assembly 100 may thus use an attachment strap 604 that is proportionate in length to the distance from the trailing bag 104 to and around the handle 236 to prevent the trailing bag 104 from sliding too far down the leading bag 102.
Referring again to
Furthermore, as indicated above, many different kinds of objects could be used as the third bag 106. For instance, a box or package may be placed on top of first bag 102 to serve as the third bag 106, and the rollable luggage assembly 100 may also serve as a self-stabilized dolly for transporting that box or package. Third bag 106 may or may not include strap 406.
When handle 236 has been extended up through reinforcement handle strap 604, the assembly may take on substantially the configuration shown in
In other embodiments, the attachment member may allow the second bag 104 to slide a short distance further down the back of the first bag 102. However, it is generally preferable to keep to top of the second bag 104 within a certain distance, such as, for example, approximately two inches of the top of the first bag 102, to provide weight distribution advantages such as those described below.
Referring again to
Reinforcement handle strap 604 is dimensioned to engage handle 236 when second bag 104 is situated next to first bag 102. Reinforcement handle strap 604 is typically flexible but substantially inelastic, but strap 604 can also have some elasticity. Consequently, when first bag 102 is tilted forward from an upright position into the inclined position shown in FIG. 8, reinforcement handle strap 604 substantially prevents second bag 104 from sliding down the front of first bag 102 or moving away from first bag 102 while assembly 100 is in motion and stationary. For instance, the relative positions of the tops of first bag 102 and second bag 104 may change by less than five percent of the height of first bag 102 (e.g., approximately one inch) in the embodiment of
When first bag 102 and second bag 104 are tilted or inclined as shown in
In one embodiment, the contact area where the front 222 of first bag 102 contacts the back 302 of second bag 104 covers more than seventy-five percent of the front 224 of first bag 102 and more than sixty percent of the back 302 of second bag 104. This contact area helps to keep second bag 104 from shifting relative to first bag 102.
Accordingly, when the bags 102, 104 are substantially fully loaded and are configured in the position depicted in
In addition, in some embodiments, when in the completed and ready-to-roll position depicted in
Furthermore, handle 236 provides significant leverage, and reinforcement handle strap 604 prevents second bag 104 from shifting from its position on first bag 102. Consequently, it is typically easy to press down on handle 236 and lift wheels 318 completely off of the ground. For example, if the weight is well distributed within the bags, it may be easy for a 100 pound traveler to perform this operation with one hand on a luggage assembly 100 weighing in excess of 100 pounds. Additionally, the further down the traveler pushes handle 236, the more weight shifts in front of wheels 242. The traveler may therefore easily balance the whole assembly 100 on wheels 242 similar to maneuvering baby strollers over steps, escalators, etc. Accordingly, with the assembly 100 balanced on the wheels 242 of the leading bag 102, the traveler may find it very easy to maneuver the entire assembly 100 around turns, over steps, up and down escalators, and through various other obstacles which would be more difficult to handle with two or more pieces of conventional luggage, one in each hand. Further, since assembly 100 is no wider than the widest bag in the assembly 100, it may be easy to maneuver assembly 100 through crowded or narrow openings or passages.
When the traveler does not want assembly 100 to move, the traveler may simply return first bag 102 to the upright position, so that feet 244 contact the ground and bear some of the weight of assembly 100.
Also, as indicated above, the way reinforcement handle strap 604 connects the first and second bags together helps to keep the left and right sides of second bag 104 from lifting or moving away from first bag 102 when assembly 100 is in the rollable configuration. In other words, reinforcement handle strap 604 prevents second bag 104 from spinning or rotating along its longitudinal axis, relative to first bag 102. For example, in the embodiment of
Assembly 100 also exhibits good internal and external pitch stability. For purposes of this disclosure, internal pitch stability refers to the tendency of both bags 102, 104 to retain the same angle of inclination, relative to each other, when the first and second bags 102, 104 are in the rollable configuration. In other words, the attachment members, the weight distribution, and other features work to resist forces which might otherwise cause one bag to lean up or down, relative to the other bag, even when a traveler is not holding onto handle 236 or any other part of the first bag 102 or second bag 104. Good internal pitch stability is one of the attributes that makes it easy to lift wheels 318 by pressing down on handle 236. External pitch stability refers to the tendency of the complete assembly 100 to keep all four wheels 242, 318 on the ground.
Furthermore, assembly 100 exhibits good internal and external yaw stability. For purposes of this disclosure, internal yaw stability refers to the tendency for the first and second bags 102, 104 to keep the same relative alignment for their longitudinal axes. In other words, considering the contact patch 802 between the first and second bags 102, 104, the front 304 of the second bag 104 tends not to rotate relative to the back 222 of the first bag 102. External yaw stability refers to the tendency for assembly 100 to track straight when it is rolling on all four wheels. The characteristics of pitch, roll, and yaw stability exhibited by assembly 100 contribute to assembly 100 being self-stabilized when in motion and when stationary, whether bags 102, 104 are tilted or not. Note that components of assembly 100 can be coupled using alternative attachment means such as one or more Velcro straps, straps with snaps or zippers, and straps on the trailing bag 104 that disconnect and reconnect with corresponding straps on the leading bag 102. The straps may or may not be adjustable to provide suitable balance/leverage for bags packed with different weights, and that may serve as reinforcement straps when not being used to form a luggage assembly 100.
Mating strap 1042 is dimensioned to receive mating hook 1052. For instance, the top 1054 of mating hook 1052 may be approximately 4 inches wide, and the opening 1044 between mating strap 1042 and the back of first bag 1040 may be substantially the same width as top 1054. The relatively wide mating hook 1052, when engaged by mating strap 1042 may tend to prevent the left and right sides of second bag 1050 from moving or lifting away from first bag 1040. Opening 1044 may also be referred to as a mating slot 1044. Other dimensions may be used in other embodiments.
Thus, as has been described, embodiments of a rollable luggage assembly may be made of two or more luggage pieces using suitable attachment means to keep the luggage assembly self-stabilized when stationary and when rolling. The size and weight of each luggage piece, when fully loaded, as well as the configuration of the attachment means, may serve to keep the pieces balanced on the wheels of the assembly,
In light of the principles and example embodiments described and illustrated herein, it will be recognized that the illustrated embodiments can be modified in arrangement and detail without departing from such principles. For instance, alternative embodiments may use approaches like those described above to create luggage assemblies with other types and sizes of bags, other types of attachment members, etc. For instance, the trailing bag may be shaped substantially like a rectangular cuboid in some embodiments. Also, second trailing bag may be attached to the first trailing bag to form a rolling luggage assembly with six wheels on the ground. Likewise, more than two trailing bags could be used.
Also, the foregoing discussion has focused on particular embodiments, but other configurations are contemplated. In particular, even though expressions such as “in one embodiment,” “in another embodiment,” or the like are used herein, these phrases are meant to generally reference embodiment possibilities, and are not intended to limit the invention to particular embodiment configurations. As used herein, these terms may reference the same or different embodiments that are combinable into other embodiments.
Similarly, although example processes have been described with regard to particular operations performed in a particular sequence, numerous modifications could be applied to those processes to derive numerous alternative embodiments of the present invention. For example, alternative embodiments may include processes that use fewer than all of the disclosed operations, processes that use additional operations, and processes in which the individual operations disclosed herein are combined, subdivided, rearranged, or otherwise altered.
In view of the wide variety of useful permutations that may be readily derived from the example embodiments described herein, this detailed description is intended to be illustrative only, and should not be taken as limiting the scope of the invention. What is claimed as the invention, therefore, are all implementations that come within the scope of the following claims and all equivalents to such implementations.
Number | Date | Country | Kind |
---|---|---|---|
PCT/US09/65414 | Nov 2009 | US | national |
This application is a Continuation of U.S. patent application Ser. No. 12/348,857 filed on Jul. 8, 2010 which claims priority to PCT Patent Application serial number PCT/US09/65414 filed on Nov. 20, 2009, both of which are included herein in their respective entirety, by this reference thereto.
Number | Date | Country | |
---|---|---|---|
Parent | 12348857 | Jan 2009 | US |
Child | 14599961 | US |