The present invention pertains generally to buoys. More specifically, the present invention pertains to self-stabilizing buoys with structure that can facilitate stowage and transport, but can also change to increase the buoy stability as the buoys are deployed.
Buoys are well known in the prior art for use in various purposes, including marking navigational hazards, aids to navigation channels, etc. In some instances, buoys are deployed from a ship. In other instances, it may be desired to deploy a buoy from a stowage configuration that is already underwater. Reasons for such stowage can include preventing (or at least slowing) the growth of marine growths such as kelp on the outer hull of the buoy.
Before the buoy can be deployed the buoy often must be transported to the deployment location. Transportation space costs resources for the deployment vehicle, whether it is a ship, UUV, or aerial vehicle; thus, any advantage that allows for compact buoy storage prior to deployment can be desired.
Once the buoy is at the desired deployment location, however, the needs of the user can change. Buoys are often designed so that the separation distance between the center of gravity (CG) and the center of buoy (CB) is a great as possible. The greater the separation distance, the more stable the buoy is in the water. But a large separation distance can also run counter to the compactness proposition. Thus, what is desired is a buoy that can be compact during transportation, but can also have a separation distance that promotes stability (i.e., not be compact) after deployment.
Additionally, if may often be necessary to deploy large number of buoys. For these instances, it can be extremely disadvantageous to the operator to have to take the time to modify the structure of each buoy to “set” the buoy prior to deployment. Further, the use of electronic or other active actuated methods can add to costs, complexity, and can add leak points via siding seals in the case of a pressure vessel. Any lip or edge that is exposed becomes a snag point for kelp and if the system is not rigid enough, it lends itself to possible jamming or partial retraction due to wave action.
In view of the above, it is an object of the present invention is to provide a self-stabilizing buoy that has a compact configuration for storage and transportation. Another object of the present invention is to provide a self-stabilizing buoy which has a relatively large separation distance between the (CB) and (CG) for good stability after deployment. Still another object of the present invention to provide a self-stabilizing buoy that can increase the separation distance between the (CB) and (CG) during deployment of the buoy without intervention of the operator. Yet another object of the present invention to provide a self-stabilizing buoy, which can transition from a transportation configuration to a deployed configuration automatically, without any activation or arming by the user. Another object of the present invention to provide a self-stabilizing buoy that can transition from a stowage configuration to a deployed configuration without any power, and without having an adverse effect on the buoy ability to shed kelp. Another object of the present invention is to provide a self-stabilizing buoy and methods of deployment that are easy to use in a cost-efficient manner.
A self-stabilizing buoy and methods for deployment therefor in accordance with several embodiments of the present invention can include a main body and a cage that can be attached to the main body. The cage can have a proximal end and a distal end, and the proximal end of the cage can be attached to that body. A ballast can be slidably positioned with the cage so that the ballast moves from within said cage at the cage proximal end when the buoy is in stowed configuration to outside of the cage at the cage distal end when the buoy is in a deployed configuration.
The buoy can include a locking mechanism to fix the ballast at the distal end of cage when the buoy is deployed. To do this, the cage can be formed with at least one slot, and a locking head can be fixed to the ballast and the inserted into the slot. At least one flexible cantilevered arm can extend into the slot at its distal end. With this configuration, as the buoy is deployed, the weight of the ballast can be sufficient to orient the buoy vertically and urge the locking head past the cantilevered arm to fix the ballast when the buoy is deployed. In several alternative embodiments, the cage can be formed with a strut in lieu of the cantilevered arm. The strut can extend into the slot, and the weight of the ballast can be sufficient to urge said locking head past the strut.
For all of the embodiments above, the buoy can have a stowed configuration, a deployed configuration, a center of gravity (CG), a center of buoyancy (CG) and a separation distance between the CG and the CB. Once the buoy becomes deployed, the separation distance between CG and CB can be greater for the deployed configuration than for the stowed configuration, to thereby establish a buoy with a compact stowage configuration, but also with a greatly increased stability once deployed.
The novel features of the present invention will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similarly-referenced characters refer to similarly-referenced parts, and in which:
Referring initially to
Cage 12 can further be formed with at least one slot 24, as shown in
As perhaps best seen in
When the buoy is deployed (dropped into the water or released from an underwater docking station, not shown), the weight of the ballast 20 can be sufficient to orient the buoy 10 vertically and cause the ballast 20 to move downward. As the ballast 20 continues to slide downward the locking head 26 can come into contact with a corresponding cantilevered locking arm 30. Because the locking arm 30 is flexible, the material of the locking arm can be chosen to have flexibility such that the weight of ballast 20 is sufficient to urge the locking head 26 past locking arms 30 and seat in niche 32, to thereby lock the ballast in place. This configuration can be illustrated in
Referring now to
The present invention can provide the still further advantage of providing increased stability when buoy 10 has a deployment configuration. This can be because the separation distance between the center of gravity (CG) and the center of buoyancy (CB) is greater when the buoy has fully deployed. CG can be the theoretical point through which the summation of all the weight forces acts. CB can be a theoretical point though which the buoyant forces acting on the wetted surface of the hull act through. The position of CB can change depending on the draft of the vessel (buoy 10) in the water. As the vessel increases or reduces its draft so the center of buoyancy moves up or down respectively, depending on the increase or decrease of water displaced.
As shown in
As can be seen from the above, the buoy 10 of the present invention according to several embodiments can have several advantages that can set it apart from other inventions. For example, the buoy 10 can be thought as passive, in that it can deploy without any activation or arming by the user, and without any power or other overhead or resources needed for the structure and cooperation of structure described above to activate. Additionally, because of its low profile design, it will not have an adverse effect on the buoy's ability to shed kelp (such as a telescoping rod might for instance). Still further, the buoy 10 can telescope and can become part of the structure as it locks into place, the feature of the locking mechanism 28 can be key to this feature.
The inventions disclosed herein discuss buoys 10 having the structure described herein. However, any deployable device that spends part of its time traversing the water column can benefit from this design, including Unmanned Underwater Vehicles (UUV's) or bottom dwelling payloads that require orientation as they fall or have to maintain orientation once set.
Referring now to
To “lock” ballast 20 in a deployed configuration, and as shown in
The use of the terms “a” and “an” and “the” and similar references in the context of describing the invention (especially in the context of the following claims) is to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
The United States Government has ownership rights in this invention. Licensing inquiries may be directed to Office of Research and Technical Applications, Space and Naval Warfare Systems Center, Pacific, Code 72120, San Diego, Calif., 92152; telephone (619) 553-5118; email: ssc_pac_t2@navy.mil, referencing NC 102679.
Number | Name | Date | Kind |
---|---|---|---|
6052332 | Obara | Apr 2000 | A |
8512088 | Jone et al. | Aug 2013 | B2 |