The various embodiments herein relate generally to apparatuses used in forming concrete structures and, more specifically, to a concrete forming apparatus for use in forming corners of a concrete structure.
Various concrete forming devices and systems are in wide use in the construction of buildings, bridges, and other concrete structures. A common system for forming concrete structures uses a plurality of form components that are adapted to be assembled into a wide variety of configurations to conform to virtually any dimensional requirement. Such forming apparatus components are typically made of metal so that they are strong enough to support the lateral pressure of poured concrete and durable so that the components can be reused many times.
One of the configurations that is most frequently encountered in constructing concrete structures is the right angle corner. To form a concrete wall having a corner, two sets of forms must be constructed, an inside corner form and a corresponding outside corner form that is spaced from the inside corner form by the thickness of the wall to be formed between the two forms. Once the concrete has been poured and has set sufficiently, the forms must be stripped (removed) from the wall. This typically does not present a problem on the outside corner form where there is sufficient room to separate the form components and release them from the wall. On the inside corner form, however, the form components frequently are difficult to disassemble and release from the wall because of the inside corner geometry and because of the pressure that is exerted on the inside forms by the poured concrete.
Since it has become common to have hydraulic power systems at concrete construction sites, it is advantageous to have the ability to use hydraulically actuated cylinders to set and strip forming system components.
There is a need in the art for an improved corner form for forming concrete corners that can be actuated to strip the form from the corner after the concrete has set.
Discussed herein are various embodiments of a self-stripping corner form that has an actuation component that can be actuated to remove the form from the set concrete.
The various implementations herein consist of a double bias form component used in forming a corner of a concrete structure. The component consists of a rigid, angled form member having a pair of leg sections extended at a predetermined angle, such as a right angle. Each of the leg components has a form extension that is movable between a pour position wherein it is co-planar with its associated leg section and a stripped position wherein it has been moved inside of the rigid, angled form member.
A post is mounted for axial movement upwardly and downwardly relative to the rigid, angled member inside a plurality of gussets of the rigid, angled member. A linear actuator extends between a mounting point on the rigid, angled form member and mounting bracket affixed to the post. The post also carries one or more plates. A pair of arms are pivotally mounted at a first end to the plates and are also pivotally attached at the opposite, second end to a corresponding one of the form extensions. Accordingly, extension and retraction of the actuator moves the post in opposing directions and results in movement of the form extensions between the pour position and the stripped position.
An object of the present invention is to provide a form apparatus for forming corners of a concrete structure that can be integrated with conventional wall form components.
Another object of the invention is to provide a form apparatus for forming corners of a concrete structure which can be easily and readily stripped from the formed wall using motive power such as, for example, hydraulic power.
These and other objects of the invention will be made apparent to those skilled in the art upon a review and understanding of this specification, the associated drawings, and the appended claims.
In Example 1, a corner form apparatus comprises a rigid, angled form having a pair of leg sections and a plurality of gussets extending between the leg sections, a post mounted for axial sliding back-and-forth movement within openings formed in the gussets between a pour position and a strip position, a linear actuator mounted between the rigid, angled form and the post, and a pair of extension mounting arms, each pivotally attached to the post at a first end and pivotally attached to an associated slidable form extension using slotted holes at an outer, second end, whereupon movement of the post between the pour position and the stripping position moves each of the form extensions from a position coplanar with a corresponding one of the rigid, angled form leg sections in the pour position inwardly to a strip position.
Example 2 relates to the corner form apparatus according to Example 1, wherein a first of the pair of leg sections comprises a first form outer surface, a second of the pair of leg sections comprises a second form outer surface, a first of the slidable form extensions comprises a first extension outer surface, and a second of the slidable form extensions comprises a second extension outer surface.
Example 3 relates to the corner form apparatus according to Example 2, wherein, in the pour position, the first extension outer surface is coplanar with the first form outer surface and the second extension outer surface is coplanar with the second form outer surface.
Example 4 relates to the corner form apparatus according to Example 2, wherein, in the strip position, the first extension outer surface is not coplanar with the first form outer surface and the second extension outer surface is not coplanar with the second form outer surface.
Example 5 relates to the corner form apparatus according to Example 1, wherein, in the pour position, the second end of each of the pair of extension arms is disposed at an outermost position in the slotted holes.
Example 6 relates to the corner form apparatus according to Example 1, wherein, in the strip position, the second end of each of the pair of extension arms is disposed at an innermost position in the slotted holes.
Example 7 relates to the corner form apparatus according to Example 1, wherein, in the pour position, the linear actuator is disposed in an extended position, and further wherein, in the strip position, the linear actuator is disposed in a retracted position.
In Example 8, a corner form apparatus comprises a body comprising a first leg, a second leg attached to the first leg such that the body has a generally triangular cross-section, and at least two gussets disposed between and coupled to the first and second legs. The corner form apparatus further comprises a post slidably coupled to the body such that the post is slidable along an axis parallel to a longitudinal axis of the body between a first position and a second position, a linear actuator operably coupled to the body and the post, wherein the linear actuator is movable between a first actuator position corresponding with the first position of the post and a second actuator position corresponding with the second position of the post, a first movable wing movably coupled to the first leg, a second movable wing movably coupled to the second leg, wherein each of the first and second movable wings are movable between an extended position corresponding to the first actuator position and a retracted position corresponding to the second actuator position, and at least a first set of pivot arms, wherein the first pivot arm is pivotably coupled at a first end to the post and is pivotably coupled at a second end to the first movable wing, and wherein the second pivot arm is pivotably coupled at a first end to the post and is pivotably coupled at a second end to the second movable wing, wherein the first set of pivot arms are movable between an extended position corresponding to the first actuator position and a retracted position corresponding to the second actuator position.
Example 9 relates to the corner form apparatus according to Example 8, wherein the post is slidably disposed through openings defined in the at least two gussets.
Example 10 relates to the corner form apparatus according to Example 8, wherein the second end of the first pivot arm is slidably disposed within a first elongate opening defined within the first leg and the second end of the second pivot arm is slidably disposed within a second elongate opening defined within the second leg.
Example 11 relates to the corner form apparatus according to Example 10, wherein the second end of the first pivot arm comprises a first pin disposed within the first elongate opening and the second end of the second pivot arm comprises a second pin disposed within the second elongate opening.
Example 12 relates to the corner form apparatus according to Example 11, wherein the first pin is fixedly coupled to the first movable wing and the second pin is fixedly coupled to the second movable wing.
Example 13 relates to the corner form apparatus according to Example 8, further comprising a first form outer surface disposed on an outer portion of the first leg, a second form outer surface disposed on an outer portion of the second leg, a first wing outer surface disposed on an outer portion of the first wing, and a second wing outer surface disposed on an outer portion of the second wing.
Example 14 relates to the corner form apparatus according to Example 13, wherein, when the first and second wings are in the extended position, the first wing outer surface is coplanar with the first form outer surface and the second wing outer surface is coplanar with the second form outer surface.
Example 15 relates to the corner form apparatus according to Example 13, wherein, when the first and second wings are in the retracted position, the first wing outer surface is not coplanar with the first form outer surface and the second wing outer surface is not coplanar with the second form outer surface.
Example 16 relates to the corner form apparatus according to Example 8, wherein the first actuator position is an extended actuator position and the second actuator position is a retracted actuator position.
In Example 17, a method of forming a corner of a concrete structure comprises attaching a corner form apparatus to adjacent concrete form panels, the corner form apparatus comprising a rigid, angled body having a pair of leg sections and at least two gussets extending between the leg sections, a slidable post disposed within openings formed in the gussets such that the post is slidable along an axis parallel to a longitudinal axis of the body, a linear actuator mounted between the rigid, angled body and the post, a pair of extendable wings movably coupled to the pair of leg sections, wherein a first of the pair of wings is movably coupled to a first of the pair of leg sections and a second of the pair of wings is movably coupled to a second of the pair of leg sections, and a pair of pivot arms, wherein the first pivot arm is pivotably coupled at a first end to the post and is pivotably coupled at a second end to the first extendable wing, and wherein the second pivot arm is pivotably coupled at a first end to the post and is pivotably coupled at a second end to the second extendable wing. The method further comprises configuring the corner form apparatus in a pour position, wherein the pair of pivot arms is disposed in an extended pivot arm position such that the pair of extendable wings are disposed in an extended wing position, pouring concrete adjacent to the corner form apparatus, allowing the concrete to cure, actuating the linear actuator to move from a first position to a second position, whereby the slidable post slides from a first position to a second position, whereby the pair of pivot arms move from the extended pivot arm position to a retracted pivot arm position, whereby the pair of extendable wings move from the extended wing position to a retracted wing position, and removing the corner form apparatus from the concrete.
Example 18 relates to the method according to Example 17, wherein, when the pair of extendable wings are in the extended wing position, a first outer surface of a first wing of the pair of extendable wings is coplanar with a first outer surface of the first leg section and a second outer surface of a second wing of the pair of extendable wings is coplanar with a second outer surface of the second leg section.
Example 19 relates to the method according to Example 17, wherein, when the pair of extendable wings are in the retracted wing position, a first outer surface of a first wing of the pair of extendable wings is not coplanar with a first outer surface of the first leg section and a second outer surface of a second wing of the pair of extendable wings is not coplanar with a second outer surface of the second leg section, wherein the retracted wing position facilitates removal of the corner form apparatus from the concrete.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. As will be realized, the invention is capable of modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
The various implementations disclosed or contemplated herein relate to a corner form assembly having a linear actuator that actuates form extensions to move between an extended position in which the form can be used to pour concrete and a retracted position that facilitates removal of the form assembly from the cured concrete.
One exemplary corner form assembly 10 according to one embodiment is depicted in
In addition, the body 12 also has an actuation assembly. As best shown in
According to one embodiment, as mentioned above, the slidable post 20 has two sets of pivot arms 30A, 32A, 30B, 32B pivotably attached at one end to the post 20. More specifically, in this implementation, the first (or upper) set of pivot arms 30A, 32A is pivotably coupled to a first mounting plate 28A that is fixedly attached to the post 20, and the second (or lower) set of pivot arms 30B, 32B is pivotably coupled to a second mounting plate 28B that is fixedly attached to the post 20. The pivot arm 30A is coupled via a pivotal joint 34A to the first mounting plate 28A, and the pivot arm 32A is coupled via a pivotal joint 36A to the first mounting plate 28A. Similarly, the pivot arm 30B is coupled via a pivotal joint 34B to the second mounting plate 28B, and the pivot arm 32B is coupled via a pivotal joint 36B to the second mounting plate 28B. It is understood that the pivotal joints 34A, 34B, 36A, 36B according to one embodiment, are bolt and bushing combinations. Alternatively, the pivotal joints 34A, 34B, 36A, 36B can be any known pivotal joints for use in concrete form assemblies. Further, it is understood that the number of pivot arm sets can vary from one set to any number of sets required, depending on the size of the body 12.
At the other end, the pivot arms 30A, 32A, 30B, 32B are slidably coupled to the body 12 and fixedly coupled to the wings 14, 16 such that actuation of the post 20 and the resulting actuation of the pivot arms 30A, 32A, 30B, 32B causes movement of the wings 14, 16 (as best shown in
In one embodiment, the slidable joints 42, 44 are bolt and bushing combinations 42, 44 slidably disposed within the slots 38, 40. Alternatively, the slidable joints 42, 44 can be slidable pins 42, 44 disposed within the slots 38, 40. In a further embodiment, the slidable coupling of the pivot arms 30, 32 to the body 12 and fixed coupling to the wings 14, 16 can be any known coupling.
Thus, the post 20 (and thus the pivot arms 30, 32 and thus the wings 14, 16) moves between a deployed (or “pour”) position as shown in
In use, when the assembly 10 is being prepared to be coupled to adjacent form panels (not shown) to pour a corner of a concrete structure, the actuator 24 is actuated to retract the post 20 to the position depicted in
One specific exemplary embodiment of a slidable joint 60, which could be incorporated into any of the assembly embodiments disclosed or contemplated herein, is depicted in
One exemplary implementation of the bolt and bushing (or slidable pin) 60 is depicted in further detail in
It is understood that the corner form assembly can be constructed in any desirable size. For example, a smaller embodiment of a corner form assembly 90 is depicted in
According to a further embodiment as shown in
Although the present invention has been described with reference to preferred embodiments, persons skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.
This application claims the benefit under 35 U.S.C. § 119(e) to U.S. Provisional Application 62/685,414, filed Jun. 15, 2018 and entitled “Self-Stripping Corner Form,” which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62685414 | Jun 2018 | US |