The present invention generally relates to Bulk Acoustic Wave (BAW) structures and, more particularly to, a cavity formation and manufacturing process that simplifies the cavity formation underneath the BAW structure, and eliminates the need of substrate trench etching and subsequent planarization processes.
Piezoelectric thin film Bulk Acoustic Wave (BAW) structures are typically used to manufacture Bulk Acoustic Resonators (BAR) for filter and duplexer in microwave applications. Two basic BAW structures have developed over the years, namely FBAR (Film BAR) and SMBAR. (Solidly Mounted BAR) FBAR and SMBAR both have their own pros and cons, but overall the FBAR has been gaining more and more market share in today's microwave communication applications. The FBAR structurer is a cavity-based structure wherein the manufacturing of it has been mainly based on etching a trench on the silicon substrate, combined with surface planarization with Chemical Mechanical Polishing (CMP).
U.S. Pat. No. 6,060,818 discloses a prior art method of forming a FBAR structure. In this patent, as may be seen in
Therefore, it would be desirable to provide a device and method that overcome the above problems. The device and method would simplify the cavity formation underneath the BAW structure, and eliminate the need of substrate trench etching and subsequent planarization processes.
In accordance with one embodiment, a Bulk Acoustic Resonator (BAR) structure is disclosed, The Bulk Acoustic Resonator (BAR) structure has a substrate. A cavity pattern is formed on the substrate, A Bulk Acoustic Wave (BAW) structure is formed on the cavity pattern and the substrate, wherein portions of the cavity pattern are exposed. The cavity pattern under the BAW structure is removed creating a cavity.
In accordance with one embodiment, a method of forming method of forming a Bulk Acoustic Resonator (BAR) structure is disclosed. The method comprising: providing a substrate; applying an interfacial layer on the substrate; etching the interfacial layer to form a cavity pattern; forming a Bulk Acoustic Wave (BAW) structure on the cavity pattern and the substrate, wherein portions of the cavity pattern are exposed; and removing the cavity pattern under the BAW structure to create a cavity.
The present application is further detailed with respect to the following drawings. These figures are not intended to limit the scope of the present application but rather illustrate certain attributes thereof. The same reference numbers will be used throughout the drawings to refer to the same or like parts.
The description set forth below in connection with the appended drawings is intended as a description of presently preferred embodiments of the disclosure and is not intended to represent the only forms in which the, present disclosure may be constructed and/or utilized. The description sets forth the functions and the sequence of steps for constructing and operating the disclosure in connection with the illustrated embodiments. it is to be understood, however, that the same or equivalent functions and sequences may be accomplished, by different embodiments that are also intended to be encompassed within the spirit and scope of this disclosure.
The current invention involves a novel cavity formation and manufacturing process that simplifies a cavity formation underneath a BAW structure, and eliminates the need of substrate trench etching and subsequent planarization processes. The new cavity forming process uses a bare thermal oxide and BAW (typically sandwiched Mo—AlN—Mo) layer itself to form a cavity without any substrate trench etching and silica glass filling and planarization processes as in the prior art.
Referring to
In accordance with one embodiment, thermal oxide may be used. Thermal oxide may be used due to two factors. One is that a thickness of the cavity to be formed is in the range of couple thousand angstroms to maybe a half micron which is readily achievable by using thermal oxide. The other factor is that thermal oxide is relatively “thin and smooth” in nature compared to other interfacial layers coated either by spin on and bake or physical evaporated or chemically deposited.
Once the interfacial layer 12 may be applied, a cavity pattern 14 may be formed. The cavity pattern 14 may be formed by removing portions of the interfacial layer 12 to form a shape of a cavity 18 to be formed. The cavity pattern 14 may generally be rectangular in shape with dimensions in the range of one to couple hundred microns in size. The cavity thickness is normally determined by the resonant frequency, the higher the frequency the thinner the thickness can be. For a resonant frequency of 2 GHz, the minimum cavity thickness may be in the range of 0.5 um to avoid the acoustic energy to tunnel through the cavity.
The cavity pattern 14 may be created by standard photolithography and the interfacial layer 12 may be etched, as shown in
After the cavity pattern 14 may be formed, a BAW structure 16 may be formed. The BAA structure 16 may be formed of a plurality of layers as shown in
In accordance with one embodiment, the bottom metal layer 20 may consists of Molybdenum (Mo) in a thickness of around one to several thousand angstroms. The piezoelectric layer 22 may be Aluminum Nitride (AlN) having a thickness of a couple of microns depending on the resonant frequency. The top metal layer 26 may be Molybdenum (Mo) having, a thickness of several thousand angstroms to may be a couple of microns as the top metal layer 26 thickness may he used for frequency tuning as an example.
Since mechanically the piezoelectric layer 22 is relatively rigid and strong, it is feasible to use it to form the cavity 18 by itself without introducing any additional post like mechanical supports or complicated cross-sectional structures as used in the prior art.
As may be seen in
Referring now to
The BAW resonator region created by the cavity pattern 14 has a dimension of typically tens to couple hundred microns. As may be seen in
While embodiments of the disclosure have been described in terms of various specific embodiments, those skilled in the art will recognize that the embodiments of the disclosure may be practiced with modifications within the spirit and scope of the claims
This patent application is related to U.S. Provisional Application No. 62/633,754 filed Feb. 22, 2018, entitled “NOVEL SELF-SUPPORTING CAVITY STRUCTURE OF BULK ACOUSTIC RESONATOR” in the names of Yi-Ching Pao, Majid Riaziat and James Pao, and which is incorporated herein by reference in its entirety. The present patent application claims the benefit under 35 U.S.C § 119(e).
Number | Date | Country | |
---|---|---|---|
62633754 | Feb 2018 | US |