Self-supporting structures having active materials

Information

  • Patent Grant
  • 10710053
  • Patent Number
    10,710,053
  • Date Filed
    Wednesday, November 29, 2017
    6 years ago
  • Date Issued
    Tuesday, July 14, 2020
    3 years ago
Abstract
A method and system for manufacturing and using a self-supporting structure in processing unit for adsorption or catalytic processes. The self-supporting structure has greater than 50% by weight of the active material in the self-supporting structure to provide an open-celled structure providing access to the active material. The self-supporting structures, which may be disposed in a processing unit, may be used in swing adsorption processes and other processes to enhance the recovery of hydrocarbons.
Description
FIELD

The present techniques relate to fabrication of self-supporting structures being open-celled and including active material. In particular, the self-supporting structures may be used in separation and/or catalysis processes, such as swing adsorption processes and other processes to enhance the recovery of hydrocarbons.


BACKGROUND

Processing techniques are useful in many industries and can typically be accomplished by flowing a mixture of fluids over an active material, such as a catalyst or adsorbent material, to provide the preferred product stream. For adsorption process, the adsorbent materials preferentially adsorbs one or more gas components, while not adsorbing one or more other gas components. The non-adsorbed components are recovered as a separate product. For catalytic processes, the catalyst is configured to interact with the components in the stream to increase the rate of a chemical reaction.


By way of example, one particular type of gas separation technology is swing adsorption, such as temperature swing adsorption (TSA), pressure swing adsorption (PSA), partial pressure purge swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle partial pressure swing adsorption (RCPPSA), and not limited to but also combinations of the fore mentioned processes, such as pressure and temperature swing adsorption. As an example, PSA processes rely on the phenomenon of gases being more readily adsorbed within the pore structure or free volume of an active material, such as an adsorbent material, when the gas is under pressure. That is, the higher the gas pressure, the greater the amount of readily-adsorbed gas adsorbed. When the pressure is reduced, the adsorbed component is released, or desorbed from the adsorbent material.


The swing adsorption processes (e.g., PSA and TSA) may be used to separate gases of a gas mixture because different gases tend to fill the micropore of the adsorbent material to different extents. For example, if a gas mixture, such as natural gas, is passed under pressure through a vessel containing an adsorbent material that is more selective towards carbon dioxide than it is for methane, at least a portion of the carbon dioxide is selectively adsorbed by the adsorbent material, and the gas exiting the vessel is enriched in methane. When the adsorbent material reaches the end of its capacity to adsorb carbon dioxide, it is regenerated in a PSA process, for example, by reducing the pressure, thereby releasing the adsorbed carbon dioxide. The adsorbent material is then typically purged and repressurized. Then, the adsorbent material is ready for another adsorption cycle.


Typically, the structures used in catalytic processes and adsorption processes have a limited array of physical structure types. The active material are often structured into beads, granules, spheres or pellets using binders and processing techniques like extrusion or spray drying. The beads, granules, spheres or pellets are then packed together within a unit as a packed bed for the catalytic or adsorption processes. As a result, the conventional fabrication of catalysts or adsorbents, involve extrusions of small sphere-like active materials to be used in packed beds (e.g., spheres, pellets, lobes, etc.). However, the packed beds provide tortuous paths through the packed bed, which result in large pressure drops.


In other configurations, the structure may be an engineered structure, such as a monolith. In engineered structures, the active materials are coated onto substrates, such as a metal or ceramic monolith. The engineered structures provide substantially uniform flow paths, which lessen pressure drops as compared to packed beds. However, with these structures the majority of weight is inactive material that is used to form the underlying support structure.


As a result, typical fabrication approaches of structures involve extrusions of small sphere-like active materials to be used in packed beds (e.g., spheres, pellets, lobes, etc.), or the application of thin coatings of active material on monolith substrates (e.g., ceramic or metal monoliths). The packed beds have large pressure drops as compared with engineered structures. Also, the engineered structures include additional weight from structural support that is inactive material, which increases the size and weight of the structure.


Accordingly, there remains a need in the industry for apparatus, methods, and systems that provide enhancements in processes having self-supporting structures that include active materials and may include complex geometries. Further, the present techniques provide enhancements by integrating self-supporting open-celled structures with adsorption or catalytic processes, such as swing adsorption processes to separate contaminants from a feed stream. Accordingly, the present techniques overcome the drawbacks of conventional structures in separation and/or catalysis processes.


SUMMARY OF THE INVENTION

In one embodiment, a processing unit is described. The processing unit includes a housing forming an interior region; a self-supporting structure disposed within the interior region, wherein the self-supporting structure has greater than 50% by weight of the active material in the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure; and a plurality of valves secured to the housing, wherein each of the plurality of valves is configured to control fluid flow along a flow path extending between the self-supporting structure and a location external to the housing.


In one or more embodiment, the processing unit may include various enhancements. For example, the processing unit may include two or more of the plurality of valves are operated via common actuation mechanism; the processing unit may be a cyclical swing adsorbent bed unit configured to remove contaminants from a gaseous feed stream that passes through the self-supporting structure; the self-supporting structure may have greater than 60% by weight of the active material in the self-supporting structure or the self-supporting structure may have greater than 70% by weight of the active material in the self-supporting structure; the self-supporting structure may have an inert support member (e.g., inorganic or inactive support member) coated by the active material in the self-supporting structure (e.g., inert with respect to the stream passing through the self-supporting structure or inert at operating conditions); may include a flow distributor disposed between the adsorbent bed and the plurality of valves; the housing may be configured to maintain a pressure from 5 pounds per square inch absolute (psia) and 1,400 psia; the self-supporting structure may have a layer of active material that is greater than 10 micrometers or may have a layer of active material that is greater than 100 micrometers; wherein the one or more defined channels comprise two or more channels that are substantially parallel and/or the self-supporting structure has a low thermal mass.


In yet another embodiment, a method for removing contaminants from a feed stream is described. The method comprises: a) performing one or more adsorption steps in an adsorbent bed unit, wherein each of the one or more adsorption steps comprise: passing a gaseous feed stream through the self-supporting structure disposed in an interior region of a housing of the adsorbent bed unit to remove one or more contaminants from the gaseous feed stream, wherein the self-supporting structure has greater than 50% by weight of the active material in the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure; b) performing one or more regeneration steps, wherein each of the one or more regeneration steps comprise conducting away at least a portion of the one or more contaminants in a contaminant output stream; and c) repeating the steps a) to b) for at least one additional cycle.


Further, in one or more embodiment, the method for removing contaminants from a feed stream may include various enhancements. For example, the method may be a swing adsorption method and the cycle duration may be for a period greater than 1 second and less than 600 seconds or a period greater than 1 second and less than 300 seconds; wherein the performing one or more regeneration steps comprises performing one or more purge steps, wherein each of the one or more purge steps comprise passing a purge stream through the self-supporting structure to conduct away at least a portion of the one or more contaminants in the contaminant output stream; wherein the gaseous feed stream may be a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the gaseous feed stream; wherein a feed pressure of the gaseous feed stream may be in the range between 400 pounds per square inch absolute (psia) and 1,400 psia; wherein performing the one or more adsorption steps may be configured to lower the carbon dioxide (CO2) level to less than 50 parts per million volume; wherein performing the one or more adsorption steps may be configured to lower the water (H2O) level to less than 105 parts per million volume; and/or the self-supporting structure has a low thermal mass.


In yet another embodiment, a method of manufacturing a processing unit is described. The method may include: creating a template for a self-supporting structure; disposing a mixture within the template, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the remaining mixture includes binder material; curing the template and the mixture to form a self-supporting structure that is maintains a solid form; removing the template from the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure based on the template; and disposing the self-supporting structure within housing of a processing unit having an interior region.


Moreover, in one or more embodiment, the method of manufacturing a processing unit may include various enhancements. For example, the method may include creating a three-dimensional model of the self-supporting structure having predetermined geometries for one or more defined channels in the through the self-supporting structure; may include creating a model of a template based on the three-dimensional model of the self-supporting structure; may include printing a three-dimensional template based on the model of the template; wherein removing the template from the self-supporting structure may further comprise heating the self-supporting structure and the template to melt or decompose the template and conduct away the melted template; may include vibrating the template and the mixture prior to curing the template and mixture to lessen any voids that may be formed between the template and mixture; wherein curing the template and the mixture may further comprise sintering the binder material and active material into a cohesive solid structure that is the self-supporting structure; and/or may include creating a plurality of valve ports into the housing; and securing a valve to the housing in each of the plurality of valve ports to form a plurality of valves, wherein each of the plurality of valves is configured to control fluid flow between the self-supporting structure and a location external to the housing.


Further still, in yet another embodiment, a method of manufacturing a processing unit is described. The method comprises: extruding a mixture into a monolith form comprising a plurality of substantially parallel channels, separated by thin walls, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the remaining mixture includes binder material; drying the monolith form; and calcining the monolith form from 400° C. to 800° C. to form a mechanically stable, active monolith form; wherein the plurality of substantially parallel channels have a cross sectional shape of a square, a circle, a triangular, or a hexagonal; wherein the cell density of the monolith form is in a range between 200 cells per square inch and 2,000 cells per square inch; and wherein the walls separating the plurality of substantially parallel channels have a thickness in the range between 40 micron to 1 millimeter.





BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other advantages of the present disclosure may become apparent upon reviewing the following detailed description and drawings of non-limiting examples of embodiments.



FIG. 1 is a flow diagram of a method for fabricating and using a self-supporting structure in accordance with an embodiment of the present techniques.



FIGS. 2A, 2B and 2C are various diagrams of a mold, combined mold and mixture and resulting self-supporting structure in accordance with an embodiment of the present techniques.



FIGS. 3A, 3B and 3C are various diagrams of a mold, combined mold and mixture and resulting self-supporting structure in accordance with another embodiment of the present techniques.



FIGS. 4A, 4B and 4C are various diagrams of a mold, combined mold and mixture and resulting self-supporting structure in accordance with yet another embodiment of the present techniques.



FIGS. 5A and 5B are various diagrams of a combined mold and mixture and resulting self-supporting structure in accordance with still yet another embodiment of the present techniques.



FIGS. 6A and 6B are various diagrams of a mold and a self-supporting structure in accordance with another embodiment of the present techniques.



FIGS. 7A and 7B are various diagrams of two monolith structures in accordance with an embodiment of the present techniques.



FIG. 8 is an exemplary diagram of an x-ray diffraction scan of the self-supporting structure.



FIG. 9 is an exemplary SEM diagram of a self-supporting structure.



FIGS. 10A and 10B are exemplary SEM diagrams of a self-supporting structure.



FIG. 11 is an exemplary diagram of overlay patterns that match 5A zeolites.



FIG. 12 is a diagram of the weight loss for 3A, due to loss of adsorbed water, as a function of temperature.



FIGS. 13A to 13D are diagrams of various profiles.



FIG. 14 is an exemplary diagram of self-supporting structure monolith testing.



FIGS. 15A and 15B are exemplary diagrams of polyethylene spheres used in self-supporting structure monoliths.



FIGS. 16A to 16D are exemplary diagrams of a permeance measurements in accordance with an embodiment of the present techniques.



FIG. 17 is an exemplary diagram of average pore diameter based on gas permeance measurements in accordance with an embodiment of the present techniques.



FIG. 18 is an exemplary diagram of water breakthrough in accordance with an embodiment of the present techniques.



FIG. 19 is a three-dimensional diagram of the swing adsorption system with six adsorbent bed units and interconnecting piping in accordance with an embodiment of the present techniques.





DETAILED DESCRIPTION OF THE INVENTION

Unless otherwise explained, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. The singular terms “a,” “an,” and “the” include plural referents unless the context clearly indicates otherwise. Similarly, the word “or” is intended to include “and” unless the context clearly indicates otherwise. The term “includes” means “comprises.” All patents and publications mentioned herein are incorporated by reference in their entirety, unless otherwise indicated. In case of conflict as to the meaning of a term or phrase, the present specification, including explanations of terms, control. Directional terms, such as “upper,” “lower,” “top,” “bottom,” “front,” “back,” “vertical,” and “horizontal,” are used herein to express and clarify the relationship between various elements. It should be understood that such terms do not denote absolute orientation (e.g., a “vertical” component can become horizontal by rotating the device). The materials, methods, and examples recited herein are illustrative only and not intended to be limiting.


As used herein, “majority component” means greater than 50% by weight.


As used herein, “open-celled” refers to structures having open channel networks, compared to extruded solid shapes, such as spheres or pellets. The open-celled structures include monoliths or other engineered structures that provide flow paths through channels or passages in the respective structure.


As used herein, “stream” refers to a fluid (e.g., solids, liquid and/or gas) being conducted through various equipment. The equipment may include conduits, vessels, manifolds, units or other suitable devices.


As used herein, volume percent is based on standard conditions. The standard conditions for a method may be normalized to the temperature of 0° C. (e.g., 32° F.) and absolute pressure of 100 kiloPascals (kPa) (1 bar).


The present techniques relate to the fabrication of self-supporting structures from active material, which may have complex geometries and be open-celled structures. In particular, the present techniques relate to enhancements in the self-supporting structures that contain a majority of active material (e.g., greater than 50% by weight or greater than or equal to 60% by weight) to provide enhanced structures. The enhanced structures may provide flexibility through customizable configurations, which may enhance the flow paths and provide higher volumetric efficiency in the configurations, which are lighter than conventional structures. The self-supporting structures may be configured to have various defined channels to provide fluid flow paths through the structure.


The self-supporting structures may be useful in various chemical and engineering applications. The self-supporting structures of active material may be referred to engineered into various geometric structures. By way of example, certain methods may be enhanced with the active materials, such as adsorption and catalytic processes. In particular, a self-supporting structure may be used instead of a packed adsorbent bed, which have higher pressure drops and slower mass transfer rates. In the packed bed configurations, the pressure drops and mass transfer limitations do not permit or are inefficient in operating the adsorption or catalytic processes at rapid cycles. Further, large volume gas separation processes, which rely upon pressure swing adsorption and rapid cycling, involve self-supporting structures with low pressure drop and high volumetric efficiency. The present techniques may provide enhancements to the associated structures to enhance the respective method and associated economics.


The self-supporting structure may be fabricated from various techniques, such as intrusion and extrusion techniques. For example, the techniques may include intrusion processes that employs three-dimensional (3D) printing. The 3D printing approach may use templates to produce custom structures of active material (e.g., a zeolite) that is combined with a binder material. By using the templates, the self-supporting structure may be formed into complex geometries, which may be an open-celled structure configured to provide defined channels for fluid flow paths through the structure. As another example, an extrusion method may be employed to produce monolith structures composed of the active material combined with the binder material. Both fabrication methods may utilize active materials, such as active inorganic materials, that are stable to high temperature calcinations (e.g., equal to or greater than 500° C.) and combination of organic and inorganic binders.


By way of example, the present techniques may also utilize 3D printing techniques to design and produce custom self-supporting structures made of active materials. The use of 3D printing and intrusion methods provide geometric flexibility in the design of structures that may not be made using conventional extrusion methods. These structures may form an open-celled structures, which are configured to provide defined channels for fluid flow paths through the respective structure. Further, engineering flexibility in the adsorbent material structures is also provided, which removes the use and reliance on a ceramic or metal substrate, which lessen the cost of fabricating the self-supporting structures, such as adsorbent beds.


The present techniques may also include an extrusion method to produce bulk monolith structures, which have the active material as the majority component. In contrast, conventional techniques involve applying a thin coating of active material to an inactive substrate, such as an inert ceramic or metal monolith substrates. The inactive substrate, which typically provides mechanical support for the thin coating of active material, is more than 90% of the total weight of the self-supporting structure. Accordingly, the thin coating of active material in conventional self-supporting structures equal to or less than 10% of the total weight of the self-supporting structure.


In certain configurations, the self-supporting structure may include different combinations of active material and binder material. For example, the self-supporting structure may be fabricated from a microporous zeolites, which may be the active material. In certain configurations, the active material may be greater than or equal to 25% by weight of the self-supporting structure; greater than or equal to 40% by weight of the self-supporting structure; greater than or equal to 50% by weight of the self-supporting structure; greater than or equal to 60% by weight of the self-supporting structure; or greater than or equal to 70% by weight of the self-supporting structure; while the remaining portion may include binder material. In other configurations, the binder material may be less than 75% by weight of the self-supporting structure; less than 60% by weight of the self-supporting structure; less than 50% by weight of the self-supporting structure; less than 40% by weight of the self-supporting structure; or less than 30% by weight of the self-supporting structure; while the remaining portion may include active material.


The self-supporting structure may include higher masses of active material per unit volume that is greater than conventional coating techniques. For example, the layer or thickness of active material that is greater than 10 micrometers, is greater than 100 micrometers or is greater than 200 micrometers.


The active materials may include one or more adsorbent materials in certain configurations to adsorb contaminants from the stream. By way of example, the active materials may include zeolites, aluminophosphate molecular sieves (e.g., AlPOs and SAPOs), ZIFs (zeolitic imidazolate frameworks (e.g., ZIF-7, ZIF-9, ZIF-8, ZIF-11, etc.) and carbons, as well as mesoporous materials, such as the amine functionalized MCM materials, SBA, KIT materials. Other example of active materials may include cationic zeolites, amine-functionalized mesoporous materials, stannosilicates, and/or carbons. In other configurations, the adsorbent materials may include zeolite type A (e.g., LTA structures), such as 3A, 4A, 5A and/or 13X (which are highly porous adsorbents that have a high affinity and high capacity to adsorb water, as well as other molecules that have dimensions small enough to fit into the uniform pores of these structures), 8-member ring zeolite materials (e.g., ZSM 58 and/or DDR).


In other configurations, the active material may include one or more catalytic materials that are configured to react with the components in the stream.


In addition, various enhancements in macro-pore engineering may be used to provide additional pores and porosity. In particular, polymer spheres may be added to the composition, which may be diminished or removed (e.g., a material that may be burn out) when calcination process is performed on the composition. These polymer spheres may be used to increase the system porosity and enhance the diffusional performance.


The binder materials may include organic and inorganic binders. The organic binder may include, for example, 2% aqueous solution of methyl cellulose derivatives. The inorganic binder material may include, for example, Si02 and/or clays. Silica particle diameter may be in the range between 25 nanometer and 1,000 nanometer and silica particles in a string of pearls configuration.


By way of example, a processing unit may include a housing forming an interior region; a self-supporting structure disposed within the interior region, wherein the self-supporting structure has greater than 50% by weight of the active material in the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure; and a plurality of valves secured to the housing, wherein each of the plurality of valves is configured to control fluid flow along a flow path extending between the self-supporting structure and a location external to the housing. In various configurations, the processing unit may include two or more of the plurality of valves are operated via common actuation mechanism; the processing unit may be a cyclical swing adsorbent bed unit configured to remove contaminants from a gaseous feed stream that passes through the self-supporting structure; the self-supporting structure may have greater than 60% by weight of the active material in the self-supporting structure or the self-supporting structure may have greater than 70% by weight of the active material in the self-supporting structure; the self-supporting structure may have a support member coated by the active material in the self-supporting structure, for example, a washcoated ceramic or metal structure; may include a flow distributor disposed between the adsorbent bed and the plurality of valves; the housing may be configured to maintain a pressure from 5 pounds per square inch absolute (psia) and 1,400 psia; the self-supporting structure may have a layer of active material that is greater than 10 micrometers or may have a layer of active material that is greater than 100 micrometers; wherein the one or more defined channels comprise two or more channels that are substantially parallel and/or the self-supporting structure has a low thermal mass.


As yet another example, a method for removing contaminants from a feed stream may include: a) performing one or more adsorption steps in an adsorbent bed unit, wherein each of the one or more adsorption steps comprise: passing a gaseous feed stream through the self-supporting structure disposed in an interior region of a housing of the adsorbent bed unit to remove one or more contaminants from the gaseous feed stream, wherein the self-supporting structure has greater than 50% by weight of the active material in the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure; b) performing one or more regeneration steps, wherein each of the one or more regeneration steps comprise conducting away at least a portion of the one or more contaminants in a contaminant output stream; and c) repeating the steps a) to b) for at least one additional cycle. In certain configurations, the method may be a swing adsorption method and the cycle duration may be for a period greater than 1 second and less than 600 seconds or a period greater than 1 second and less than 300 seconds; wherein the performing one or more regeneration steps comprises performing one or more purge steps, wherein each of the one or more purge steps comprise passing a purge stream through the self-supporting structure to conduct away at least a portion of the one or more contaminants in the contaminant output stream; wherein the gaseous feed stream may be a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the gaseous feed stream; wherein a feed pressure of the gaseous feed stream may be in the range between 400 pounds per square inch absolute (psia) and 1,400 psia; wherein performing the one or more adsorption steps may be configured to lower the carbon dioxide (CO2) level to less than 50 parts per million volume; wherein performing the one or more adsorption steps may be configured to lower the water (H2O) level to less than 105 parts per million volume; wherein the one or more defined channels comprise two or more channels that are substantially parallel and/or the self-supporting structure has a low thermal mass.


As yet another example, a method of manufacturing a processing unit may include: creating a template for a self-supporting structure; disposing a mixture within the template, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the remaining mixture includes binder material; curing the template and the mixture to form a self-supporting structure that is maintains a solid form; removing the template from the self-supporting structure, wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure based on the template; and disposing the self-supporting structure within housing of a processing unit having an interior region. In certain configurations, the method may include creating a three-dimensional model of the self-supporting structure having predetermined geometries for one or more defined channels through the self-supporting structure (e.g., the open-celled structure is configured to provide defined channels for fluid flow paths through the structure); may include creating a model of a template based on the three-dimensional model of the self-supporting structure; may include printing a three-dimensional template based on the model of the template; wherein removing the template from the self-supporting structure may further comprise heating the self-supporting structure and the template to melt or decompose the template and conduct away the melted template; may include vibrating the template and the mixture prior to curing the template and mixture to lessen any voids that may be formed between the template and mixture; wherein curing the template and the mixture may further comprise sintering the binder material and active material into a cohesive solid structure that is the self-supporting structure; and/or may include creating a plurality of valve ports into the housing; and securing a valve to the housing in each of the plurality of valve ports to form a plurality of valves, wherein each of the plurality of valves is configured to control fluid flow between the self-supporting structure and a location external to the housing.


Further still, in yet another configuration, a method of manufacturing a processing unit is described. The method comprises: extruding a mixture into a monolith form comprising a plurality of substantially parallel channels, separated by thin walls, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the remaining mixture includes binder material; drying the monolith form; and calcining the monolith form from 400° C. to 800° C. to form a mechanically stable, active monolith form; wherein the plurality of substantially parallel channels have a cross sectional shape that may be a square, a circle, a triangular, or a hexagonal; wherein the cell density of the monolith form is in a range between 200 cells per square inch and 2,000 cells per square inch (e.g., cross sectional shape is along a plane that is perpendicular to the primary flow path for the feed stream through the self-supporting structure); and wherein the walls separating the plurality of substantially parallel channels have a thickness in the range between 40 micron to 1 millimeter. Further, the method may include disposing the self-supporting structure within housing of a processing unit having an interior region and/or may include creating a plurality of valve ports into the housing; and securing a valve to the housing in each of the plurality of valve ports to form a plurality of valves, wherein each of the plurality of valves is configured to control fluid flow between the self-supporting structure and a location external to the housing.


Beneficially, the present techniques provide self-supporting structures that may be utilized to provide various enhancements over conventional approaches. For example, the present techniques may provide structures that provide geometric design flexibility and provide custom structures and flow paths. The custom structures may be an open-celled structure configured to provide defined channels for fluid flow paths through the structure, which enhance the interaction of the active material with the fluid passing through the channels. Further, by utilizing the active material to form the self-supporting structure, the working capacity may be increased and volumetric efficiency may be enhanced, which may further lessen the size of the structure and associated weight of the structure. The lessening of the size and weight may also lessen the associated size of the equipment utilized with the housing that contains the self-supporting structure. The present techniques may be further understood with reference to the FIGS. 1 to 14 below.



FIG. 1 is a flow diagram 100 of a method for fabricating and using a self-supporting structure in accordance with an embodiment of the present techniques. In this diagram 100, the method includes fabricating a self-supporting structure including active material along with using the self-supporting structure. In particular, the method may include determining a configuration for the self-supporting structure, as shown in block 102, creating a mold or template for the self-supporting structure, as shown in block 104, producing the self-supporting structure as shown in blocks 106 and 108, and forming a processing unit with the self-supporting structure and utilizing the self-supporting structure in processing of feeds, as shown in blocks 110 and 112.


The method begins at block 102. In block 102, a configuration for a self-supporting structure is determined. This determination may involve modeling and identifying various aspects of the self-supporting structure to enhance process engineering selections, such as determining the mechanical features of the self-supporting structure, determining flow paths (e.g., the level of tortuousness of the flow path) through the self-supporting structure, determining the cell size within the self-supporting structure, determining the pressure drop for flow through the self-supporting structure, determining the operating conditions that the self-supporting structure may be subject to during process operations (e.g., pressures, temperatures and stream compositions) and/or determining the contaminants to be adsorbed by the active material in the self-supporting structure.


Once the configuration for the self-supporting structure is determined, a mold is created for the self-supporting structure, as shown in block 104. The creation of the self-supporting structure may involve modeling the desired structure and then three-dimensional (3D) printing the mold or template from a specific material. The template material utilized in the three-dimensional printing may include materials that may be dissolved as part of the self-supporting structure fabrication process, or may be materials that may be removed from the resulting self-supporting structure. For example, the template may include plastics, such as Acrylonitrile Butadiene Styrene (ABS), polylactide (PLA), and/or other suitable plastics and/or waxes.


Once the mold is created, the self-supporting structure is produced, as shown in blocks 106 and 108. At block 106, the self-supporting structure is created. The creation of the self-supporting structure may involve mixing an active material with organic and/or inorganic binders to provide a specific formulation. The mixture, which may be an aqueous slurry, may be provided to the mold directly, or may be combined with the mold inside a container or vessel. The container or vessel may be used to vibrate the mold and mixture to lessen any voids that may be formed between the mold and mixture. Then, the mold and mixture may be processed to cure the mixture into a solid form. The processing may include heating the mold and mixture to dry and/or cure the mixture and melt or decompose the mold. At block 108, the created self-supporting structure may be verified. The verification of the created self-supporting structure may include using sensors to obtain measurements on the created self-supporting structure to identify voids, fractures and/or non-homogeneous sections of the created self-supporting structure. The verification may include performing a high temperature x-ray diffraction on the self-supporting structure. For example, a high temperature x-ray diffraction scan indicates that an active component of 5A zeolite is stable at 860° C. for several minutes and then loses stability, as shown by decreasing peak heights. This analysis may be used to determine maximum temperatures and time for calcination of the self-supporting structures. The mechanical strength of the self-supporting structures is related to calcination temperatures greater than 500° C.


Once the self-supporting structure is produced, the self-supporting structure is formed into a processing unit, as shown in block 110. The forming the processing unit, may involve disposing the self-supporting structure within a housing, coupling a head to the housing, coupling one or more valves (e.g., poppet valves) to the housing and coupling one or more conduits to the housing and/or one or more of the valves. The processing unit may be an adsorbent bed unit that includes a housing, which may include a head portion coupled to one or more body portions, that forms a substantially gas impermeable partition. The housing may include the self-supporting structure (e.g., formed as an adsorbent bed) disposed within an interior region enclosed by the housing. Various valves may be configured to provide fluid flow passages through openings in the housing between the interior region of the housing and locations external to the housing. Then, the self-supporting structure may be utilized in processing of fluids, as shown in block 112. For example, the processing of feeds may include performing swing adsorption method (e.g., rapid cycle processes) for the removal of one of more contaminants from a feed stream. Other examples may include utilizing the self-supporting structure in a catalytic process.


One method for forming the self-supporting structure may involve the use of 3D molds or templates. By way of example, the self-supporting structure, which may include complex geometries, may be prepared by modeling techniques (e.g., modeling software) to model the shape of the three dimensional objects that are used as templates. The modeling software may produce sets of location coordinates (e.g., x, y, z coordinates), which may be used by a 3D printer to construct a plastic mold or template, in a layer-by-layer method. A high solids aqueous slurry of active material, organic and inorganic binders and other additives may be processed and added to the mold. The organic binder acts as a temporary binder to facilitate particle cohesion during low temperature processing and drying. The slurry is dried and calcined in the template (e.g., the plastic 3D printed mold). During the calcination process, which may be performed at 500° C. or higher, the plastic mold melts or decomposes, the inorganic binder and active material particles sinter into a cohesive, self-supporting structure with a geometric form derived from the mold. As a result, the self-supporting structure may be an open-celled structure configured to provide defined channels for fluid flow paths through the structure, which are based on the template. Various different templates or molds are shown in FIGS. 2A to 7B, as examples of the different self-supporting structure that may be created.



FIGS. 2A, 2B and 2C are various diagrams 200, 220 and 240 of a mold, combined mold and mixture and resulting self-supporting structure in accordance with an embodiment of the present techniques. In FIG. 2A, a plastic mold 202 is shown, which may be a 3D printed sacrificial template or mold having a circular prism shape. In FIG. 2B, the mold 202 is combined with the mixture 222, which includes active material and binder. The resulting self-supporting structure 242 is shown in FIG. 2C. The resulting self-supporting structure 242 is a laminar sheet structure of 3A/Si02 (e.g., about a 70:30 ratio of active material by weight to binder by weight for the self-supporting structure (w/w)) formed by intrusion. The self-supporting structure 242 has a 1 inch diameter by 2 inch length, total weight of 19.02 grams, which includes 13.3 grams of 3A zeolite and 5.7 grams of Si02 binder.



FIGS. 3A, 3B and 3C are various diagrams 300, 320 and 340 of a mold, combined mold and mixture and resulting self-supporting structure in accordance with another embodiment of the present techniques. In FIG. 3A, a plastic mold 302 is shown, which may be a 3D printed sacrificial mold having a rectangular prism shape. In FIG. 3B, the mold 302 is combined with the mixture 322 of binder and active material. The resulting self-supporting structure 342 is shown in FIG. 3C. The resulting self-supporting structure 342 is a fractal-type structure of 3A/Si02 (e.g., about 70:30 w/w) formed by intrusion. The self-supporting structure 342 has a 2.25 inch width by 2 inch length.



FIGS. 4A, 4B and 4C are various diagrams 400, 420 and 440 of a mold, combined mold and mixture and resulting self-supporting structure in accordance with yet another embodiment of the present techniques. In FIG. 4A, a plastic mold 402 is shown, which may be a 3D printed sacrificial mold having a rectangular prism shape. In FIG. 4B, the mold 402 is combined with the mixture 422 of binder and active material. The resulting self-supporting structure 442 is shown in FIG. 4C. The resulting self-supporting structure 442 is a cross-flow structure of 3A/Si02 (e.g., about 70:30 w/w) formed by intrusion. The self-supporting structure 442 has a 2.25 inch width by 2 inch length, which has six faces of interconnecting channels.



FIGS. 5A and 5B are various diagrams 500 and 520 of a combined mold and mixture and resulting self-supporting structure in accordance with still yet another embodiment of the present techniques. In FIG. 5A, a plastic mold 502 is shown with a mixture 504 of active material and binder. The mold 502 may be a 3D printed sacrificial mold having a circular prism shape. The resulting self-supporting structure 522 is shown in FIG. 5B. The resulting self-supporting structure 522 is a crescent structure of 3A/Si02 (e.g., 70:30 w/w) formed by intrusion. The self-supporting structure 522 has a 2.25 inch diameter by 2 inch length, which may be formed by a calcination process.



FIGS. 6A and 6B are various diagrams 600 and 620 of a mold and a self-supporting structure in accordance with another embodiment of the present techniques. In FIG. 6A, a plastic mold 602 is shown, which may be a 3D printed sacrificial mold having a hexagonal prism shape. The resulting self-supporting structure 622 is shown in FIG. 6B. The resulting self-supporting structure 622 is a hexagonal structure of ZSM 58/Si02 (e.g., 70:30 w/w) formed by intrusion. The self-supporting structure 622 has a 2.25 inch width by 2 inch length, which may be formed by a calcination method heating the mixture to about 500° C.



FIGS. 7A and 7B are various diagrams 700 and 720 of two monolith structures in accordance with an embodiment of the present techniques. In FIG. 7A, the self-supporting structure 702 is a circular structure of 5A/Si02 (e.g., 70:30 w/w) formed by an extrusion process. The self-supporting structure 622 has a 1 inch diameter by 3 inch length, and has cells that are triangular shaped. In FIG. 7B, the self-supporting structure 722 is a circular structure of 5A/Si02 (e.g., 70:30 w/w) formed by an extrusion process. The self-supporting structure 722 has a 1 inch diameter by 3 inch depth and has cells that are square shaped.


To cure the mixture into the self-supporting structure, the thermal stability of active material by high temperature may be assessed. As noted above, one of the final steps in creating a self-supporting structure may include calcination. Calcination at high temperatures, which may include temperatures equal to or greater than 500° C., dehydrates the zeolite and SiO2 particle mixture and coalesces the mixture into more dense structures that result in enhanced mechanical strength. To assess the high temperature stability of the active material (e.g., adsorbent or catalyst material) for calcination purposes, a high temperature x-ray diffraction may be performed on the self-supporting structure. For example, a high temperature x-ray diffraction scans may provide a representation to indicate that the 5A zeolite (e.g., active material) was stable at a specific temperature for a certain period of time (e.g., about 860° C. for several minutes) and then loses stability, which may be shown by decreasing peak heights. Accordingly, this type of analysis may be used to determine the maximum temperatures and time for calcination of the structures. The mechanical strength of the self-supporting structures is related to calcination temperatures greater than 500° C.



FIG. 8 is an exemplary diagram 800 of an x-ray diffraction scan of the self-supporting structure. In the diagram 800, the x-ray diffraction scan of the self-supporting structure is performed at 860° C. that monitored the first 2-theta peaks of 5A zeolite on the two-theta axis 802 in degrees versus the number of scans axis 804. The scans may be performed using an x-ray diffractometer with a high temperature environmental cell. The scans may be performed every minute, which includes the 48 second scan time and 12 second reset time. The scans may be conducted in the 2° to 12° 2 theta region at 860° C. for six hours.


By way of example, the preparation scheme for producing self-supporting structures resulting from processing the materials in 3D printed plastic molds or templates. A high solids aqueous mixture of adsorbent zeolite or catalyst powder and organic and inorganic binder materials was prepared. The well-mixed slurry was added into 3D printed plastic mold, while vibrating the mold and slurry. The mixture was dried and calcined to 500° C. or higher inside the plastic mold producing an active, mechanically stable structure with a geometry derived from the mold. The channels are defined channels for fluid flow paths through the structure based on the plastic mold.


For example, 118.3 grams of 3A zeolite powder may be added to a container (e.g., a plastic bowl or cup). Then, 126.75 grams of colloidal silica (40 wt. % solution with 25 nanometers (nm) suspended SiO2 particles) may be added to the 3A zeolite powder in the container. The mixture rapidly heats to 65° C. (e.g., self-heated), due to heat of adsorption of the water into the 3A zeolite. Then, the sample may be cooled to room or ambient temperatures, which results in the mixture being a damp solid. Then, it is mixed well for 1 to 2 minutes at 2,000 revolutions per minute (rpm). In a separate container, 15.02 grams of water and 10.3 grams of 1.5% methylcellulose polymer (used as organic binder) may be mixed and once mixed, added to the container containing the 3A zeolite along with the colloidal silica. The combined mixture was mixed at 2,000 rpm for 2 minutes. The resulting viscous, pourable slurry may be decanted into a 3D printed plastic mold.


Self-supporting structure may be fabricated from a 3D template intrusion structures. The intruded adsorbent zeolite structures, after calcination, consist of 70:30 weight/weight of zeolite adsorbent to SiO2 binder. The zeolite particles may be in the range between 2 micron diameter and 25 micron diameter. The SiO2 binder particles used were either 25 nanometer (nm) or 100 nm monodisperse particles. The particle size distribution of the Linde Type A (LTA) adsorbent powders indicates that the particle size ranges are 2 micrometer (μm) to 5 μm, with a mean value of 4 μm (e.g., Zeolite A (Linde Division, Union Carbide)). The particle size distribution of the ZSM-58 adsorbent powders indicates that the particle size ranges are 20 μm to 30 μm, with a mean value of 25 μm. Zeolite or other inorganic catalytic particles are not inherently cohesive after a high temperature calcination processes. The organic binder materials used were a 1% aqueous solution of methyl cellulose derivatives.


Also, the aqueous slurry sample was prepared at 65 weight percentage (wt. %) solids in aqueous slurry. The ratio of adsorbent zeolite to SiO2 (e.g., 25 nm) binder was about a 70:30 (w/w). On a dry basis, the 3A zeolite and SiO2 are solids, which has formulation targets of a 70:30 dry weight ratio. The organic binder (e.g., methyl cellulose and/or methyl cellulose derivatives) target was 0.06 wt. % organic binder solid in total slurry weight, or 6 wt. % as a 1 wt. % organic binder solution in total slurry weight.


The aqueous slurry was well mixed using an asymmetric mixer for one to three minutes at 1,000 to 2,500 revolutions per minute (rpm). Further, small alumina agates were added to reduce any solid agglomerates, if needed.


The resulting viscous, pourable slurry was decanted into a 3D printed plastic mold. The structure was vibrated for fifteen to twenty minutes during addition and afterwards, using a vibrating table.


The LTA zeolite self-supporting structures involved a modified slurry preparation method because of the rapid temperature increase, as a result of high H20 adsorption. The slurry temperatures increase quickly from room temperature to 70° C. within seconds. The 70° C. temperature can decompose common aqueous organic binders, such as methyl cellulose, which cause them to become irreversibly insoluble. Thus, with LTA slurry preparations, the aqueous organic binder was added to a slurry of LTA and colloidal SiO2 after the LTA zeolite/SiO2 mixture had cooled to room temperature to avoid damaging the aqueous organic binder properties.


As an example, the self-supporting structure may include an example of 3A/SiO2 (25 nm) slurry and fractal-type structure preparation. In forming the mixture, 118.33 grams of 3A zeolite, a white fine powder, was added to a tared plastic jar. Then, 126.75 grams of colloidal silica was added to the 3A in the jar and contents were mixed with a spatula. The colloidal silica is 40 wt. % SiO2 solution, while the diameter size of the SiO2 particles in the solution are 25 nanometers (nm). There was a rapid temperature rise to 65° C. as the 3A material adsorbed much of the water in the colloidal solution. After the sample cooled to room temperature, the jar was capped and the contents were placed inside an asymmetric mixer for one to two minutes at 1,500 to 2,000 rpms to mix the sample, resulting in a gritty, damp solid. In a separate jar, 15.02 grams of water were added, followed by 10.32 grams of a 1.5 wt. % methylcellulose organic binder solution. The sample was mixed and the resulting viscous solution was added to the 3A/SiO2 mixture. The combined mixture was mixed using the mixer at 2,000 rpm for two minutes, resulting in a moldable, cohesive sand-like solid. Then, 10.3 grams of additional water was added to the solid mixture, along with 8 alumina agates to eliminate any agglomerated solids. The sample was mixed using the mixer at 2,000 rpm for two minutes resulting in a viscous, pourable white slurry. In other embodiments, the organic binder solution may include methyl cellulose and/or methyl cellulose derivatives.


The resulting slurry was added to a fractal-type 3D printed plastic mold, such as the mold 302 in FIG. 3A, while vibrating the structure on a vibration table for fifteen minutes to degas and densify (e.g., vibration procedure that serves to compact the slurry material, and bring solid particles closer together). The vibration of the slurry is performed to remove trapped air bubbles in the mixture by bringing the air bubbles to the top of slurry. The sample was air dry overnight in the mold in an oven at 80° C. The sample and mold were then dried at 120° C. for ten hours. For example, samples may be gently dried at a temperature, such as 80° C., which is lower than the boiling point temperature of water (e.g., 120° C.) for twelve to sixteen hours. This method is performed in a manner to remove the water slowly. Once dried, the sample and mold were removed from the oven and the plastic walls were removed from the mold. The exposed walls of 3A/SiO2 were smooth and crack-free. The plastic mold base remained attached to 3A/SiO2 structure. The structure was then calcined to 500° C. using a programmable furnace. The sample was exposed to temperatures around 120° C. for six hours, exposed to temperatures increasing from 120° C. to 350° C. for in ten hours, thermally soaked at 350° C. for four hours to decompose the plastic mold, exposed to temperatures increasing from 350° C. to 500° C. for six hours, thermally soaked at 500° C. for six hours, and then cooled to 120° C. Following calcination process, the resulting self-supporting structure has a weight of 121.283 grams of 70:30 w/w 3A/SiO2. The self-supporting structure had a fractal-type geometric form (e.g., FIG. 3C), with dimensions of 2.25 inch width by 2 in length. The surfaces of the structure were in very good condition, with only some minor hair-line cracks in the top of the structure.


Various SEM images of a self-supporting structure is shown in FIG. 9. FIG. 9 is exemplary SEM diagrams 900 and 920 of the self-supporting structure. In these diagrams 900 and 920, the self-supporting structure is calcined ZSM 58/SiO2 100 nm (70:30 w/w), which shows high temperature binding. In diagram 900, the edge of a zeolite particle is shown by the light line indicated by arrow 902, while the SiO2 particles are shown by 904. Further, as indicated by region 906, which is expanded into the diagram 920, various 100 nm SiO2 spheres.


SEM diagrams 900 and 920 in FIG. 9 show that smaller 100 nm SiO2 spheres act as an inorganic particle glue to bind the 20 micron diameter zeolite particles together into a cohesive composite of zeolite and SiO2 particles after 500° C. calcination. The SiO2 binder particles are too large to enter the zeolite pores, but small enough to form a dense-packed surface layer on the much larger (e.g., 15 μm to 20 μm) zeolite crystals. High temperature calcination (500° C. to 800° C.) sinters the zeolite and inorganic particles together to form a connected solid network that is still porous. The 30 nm to 50 nm diameter space (pores) between the spherical binder particles is large enough for reactant gases to access the zeolite particles where catalytic and/or separation processes can occur.


Colloidal silicas, when used as binders for adsorbent or catalyst powders, are a very weak bonding agent at low temperatures. However, the bonding strength of the Colloidal silicas increase dramatically with 500° C. to 800° C. calcination temperatures, if there are enough silica particles to make point-to-point contact and also bridge the interstitial spaces between the larger adsorbent particles, as shown in FIG. 9. During drying, prior to the 500° C. to 800° C. calcination process, the slurry shrinks during water loss and the adsorbent particles are pulled closer together, surrounded by a thin layer of SiO2 particles.


As another example, SEM images of a self-supporting structure is shown in FIGS. 10A and 10B. FIGS. 10A and 10B are exemplary SEM diagrams 1000 and 1020 of a self-supporting structure. In these diagrams 1000 and 1020, the self-supporting structures are monoliths, such as monolith 1002 in diagram 1000 and monolith 1022 in diagram 1020. These monoliths 1002 and 1022 are 5A/SiO2 25 nm (70:30 w/w) extruded monoliths (e.g., include 70 wt. % active 5A zeolite and 30 wt. % SiO2 binder, which are 25 nm diameter SiO2 particles). The diagram 1000 in FIG. 10A has the square cell structure from FIG. 7B, while the diagram 1020 in FIG. 10B has the triangular cell structure from FIG. 7A. The two monoliths, a square-celled monolith 1002 and a triangular-celled monolith 1022, were extruded using the same formulation that was used to produce the intrusion structures above that utilized 3D printed molds. The monoliths were calcined to 750° C. The square-celled monolith 1002 has cell wall thickness 1004 of about 280 μm, and the square-shaped channels are approximately 700 μm by 700 μm. Specifically, the square-shaped channels have a cell length 1006 of 700 μm and cell width 1008 of 700 μm. The resulting structure yields a cell density of approximately 650 cells per square inch (cpsi). The triangular-celled monolith 1022 has cell wall thickness 1024 of about 200 μm, a side length 1026 of about 1.274 μm and a height 1028 of about 1,060 μm.


In this example, the same formulation utilized to produce a self-supporting structure having custom and complex geometries for the flow passages or channels, as shown in monoliths 1002 and 1022, was also applied to a ceramic extrusion method to produce active material monoliths instead of inactive ceramic monoliths. The resulting structure may be an open-celled structure configured to provide predefined channels for fluid flow paths through the respective monoliths 1002 and 1022.


Extruded ceramic monoliths involve very high “firing” temperatures (e.g., 1,200° C. to 1,500° C.) to achieve mechanical strength. After firing, these ceramic monoliths are typically used as inert support structure (e.g., inorganic support material or inactive support material with the streams passing through the monolith or the environmental conditions the monolith is exposed to during operations). These monoliths, after firing, are usually post-coated with a thin layer of active material. So, the purpose of the ceramic monolith is to act as a substrate/support that provides mechanical strength for the active coating. The ceramic monolith structure, because of its open channel geometry, provides laminar flow and low pressure drop.


The extruded active material monoliths formed by the present techniques are made to be formed from 70% by weight of active material, calcined to much lower temperatures than ceramics (e.g., calcined to 500° C. to 650° C.). The lower temperatures are utilized to maintain activity of the zeolite. The strength for the resulting self-supporting structures is provided by the inorganic SiO2 and/or clay binders. However, the self-supporting structures, while mechanically stable, are not nearly as strong as ceramic monoliths. While clay may be used as a binder for zeolites, it does not provide the strength of sintered SiO2.



FIG. 11 is an exemplary diagram 1100 of powder x-ray diffraction overlay patterns 1106 and 1108 of samples from inner and outer walls of extruded 5A/SiO2 monoliths that match 5A zeolites. As shown in this diagram 1100, the 5A zeolite structure survived the extrusion and calcination method and the outer co-extruded wall and inner cells are the same formulation. The patterns 1106 and 1108 of the interior cells and exterior wall of the sample indicate that the material in the interior walls and exterior walls is the substantially similar, which are shown along a two-theta axis 1102 in degrees (deg) against intensity counts axis 1104.


As a selection for the active material, the zeolite type A (e.g., LTA structures), such as 3A, 4A and/or 5A, are highly porous adsorbents that have a high affinity and high capacity to adsorb water, as well as other molecules that have dimensions small enough to fit into the uniform pores of these structures. Accordingly, processes that involve drying and purification of gases and liquids rely on the adsorption capacity and efficiency of LTA-type zeolites, such as swing adsorption methods. These 3A, 4A, 5A LTA-type zeolites have the ability to readily adsorb water over a wide range of conditions. They also release the adsorbed water when heated, without the zeolite structure degrading. Thus, they have the ability to cycle between releasing water when heated and readsorbing water upon cooling.


The use of 3A in water desorption is shown in relation to a thermogravimetric analysis (TGA). The TGA was performed by starting with a 3A zeolite powder without binder additives. The TGA experiment yields data on weight loss to the sample versus temperature, as shown in FIG. 12.



FIG. 12 is a diagram 1200 of the weight loss for 3A, due to loss of adsorbed water, as a function of temperature. In this diagram 1200, a first response 1208 and a second response 1210 are shown along a time axis 1202 in minutes (min), a weight percentage axis 1204 in percent and a temperature axis 1206 in ° C. The sample was heated in air from 30° C. to 600° C., at a rate of 10° C. per minute, as shown along the second response 1210. The first response 1208 represents a total weight loss of 15.3%, indicating that the 3A powder had adsorbed 15.3% by weight of water at ambient conditions. The adsorbed water was removed from the sample at 280° C. (e.g., 25 minutes times 10° C./minute plus 30° C. starting temperature).


Further enhancements may be described by comparing H2O desorption in 3A powder with H2O adsorption in a 500° C. calcined 3A/SiO2 intrusion structure. As noted below, Table 1 compares the water adsorption in a calcined 3A/SiO2 (e.g., 70:30 w/w) structure, to the water desorption results in response 1208 of FIG. 12 on the 3A powder.



















TABLE 1












3A in

3A powder
Agreement







Wt

structure
3A wt. %
TGA result
between


3A/Si02




increase

(dry,
increase
(above) wt.
TGA wt. loss


structure
3A wt.


Structure
due to
Wt. %
500° C.) +
due to
loss due to
and structure


wt. after
(%) in
3A wt.
Si02 wt
wt. after
H20
increase in
H2O
H20
H20
H2O uptake


500° C.
3A/SiO2
calcd.
calcd
3 days RT
uptake
3A/SiO2
uptake
uptake
desorption
(% of


(grams)
structure
(grams)
(grams)
(grams)
(grams)
structure
(grams)
(%)
(%)
agreement)







20.560
70%
14.392
6.168
22.837
2.217
11.07%
16.609
15.4%
15.3%
993%









In Table 1, the 3A/SiO2 structure used in the comparison is similar to that in FIG. 2C, which is a 70:30 w/w 3A:SiO2 laminar sheet monolith obtained by the method described above. The structure was calcined to 500° C. to decompose the 3D printed plastic mold and organic binder and sinter the 3A and SiO2 25 nm particles together. The 3A/Si02 laminar sheet structure was stored in a 120° C. furnace, after 500° C. calcination process. The 3A component of the structure was expected to have no adsorbed water. The 3A/SiO2 structure, which is 1 inch d by 2 inch length, was weighed at 120° C. from the furnace and its weight, as recorded in Table 1 was 20.560 grams, which has 70% of the 20.560 gram total weight, or 14.392 grams is the 3A component. The remaining 30% of the 20.560 grams of total weight, or 6.168 grams, is the 25 nm diameter SiO2 binder particles.


After weighing the 3A/SiO2 structure devoid of water (H2O), the structure was exposed on a lab bench for seventy-two hours to ambient conditions. After seventy-two hours of being exposed to ambient conditions, the 3A/SiO2 structure was re-weighed, and its weight was 22.837 grams. This increase in weight was 11.07%, which is a result of adsorbing 2.217 grams of water from the ambient air. The majority of the water could only be adsorbed by the 3A component in the 3A/SiO2 structure. When determining the water uptake for the 3A component of the structure, it corresponds to a 15.4% weight increase. This weight increase is similar to the 15.3% weight loss in 3A powder, due to water desorption in response 1210 of FIG. 12. As a result, the weight increase in the 3A/Si02 laminar sheet structure indicates that the 3A component in the structure is accessible to the water molecules, but this ambient moisture test does not provide information about the rate of access.


In recent tests, the rate of access to 3A, by adsorbing gas molecules, may be hindered by the 25 nm SiO2 binder, especially at elevated calcination temperatures (700 C+). Accordingly, the method may include adjustments to the binder to enhance access to the pores.


For examples, the 3A component in the 3A/SiO2 structure is porous. The “windows” or pores of the 3A structure have openings of 3 angstroms size. Water molecules have a diameter of about 2.8 angstroms and may fit into the 3A structure or “adsorbed” to the inside of the 3A structure. The SiO2 binder is non-porous. The SiO2 spheres do not have pores and thus, do not adsorb water into its structure. The water can wet the surface of the SiO2 spheres, but that amount of water may be a very small fraction of the total amount of water that could be adsorbed by a 3A zeolite (70 wt. %)/SiO2 (30 wt. %) structure. Thus, the 3A zeolite component is the primary material to adsorb water in the 3A/SiO2 composite structure. TGA (thermal gravimetric analysis) measures weight loss versus temperature. FIG. 12 is the TGA analysis of 3A zeolite only. It shows that the 3A powder lost 15.3% of weight, which is due to desorbing the water that it adsorbed under ambient conditions.


From the example above, this TGA result on 3A zeolite powder is approximately equal to the 15.4% weight gain in the 3A/SiO2 structure in the example due to adsorption of water under ambient conditions. The nearly identical TGA desorption (weight loss) result and adsorption (weight gain) result in the 3A/SiO2 structure shows that the 3A zeolite component was accessible to the water.


As an additional enhancement, gas adsorption break-through test were also performed on the self-supporting structures. A gas adsorption break-through unit, which is referred to as NatGas Unit, was used to measure gas adsorption and break-through profiles of coated substrates. A sample of known weight is wrapped to prevent gas bypass and inserted into a tube in the gas adsorption break-through unit. The samples are exposed to a total 1,000 standard cubic centimeters per minute (sccm) gas flow rate, comprised of 300 sccm N2 saturated with H2O at 25° C., 100 sccm He and 600 sccm N2. The gas break-through is monitored by a mass spectrometry. The gas flow measurement term of sccm represents cm3/min at standard temperature and pressure.


As part of this testing, an aqueous slurry with 35 wt. % solids, comprised of 3A/SiO2 (70:30) and methyl cellulose (temporary organic binder), was formulated, as described above in the example 3A/SiO2 slurry preparation. The slurry was applied to an Al2O3 ceramic monolith, which has dimensions suitable for testing in the gas adsorption break-through unit. The washcoat on the ceramic monolith had a similar composition to the self-supported structures after calcination. Thus, the 3A/SiO2 washcoated monolith was used as a suitable surrogate for the self-supporting intrusion and extrusion structures and, hence, breakthrough results should be and are expected to be comparable.


In this testing, the 900 cpsi Al2O3 monoliths had dimensions of 0.5 inch d by 1 inch L, 30% wall porosity and 55% open frontal area. The starting, uncoated weight of the monolith was 4.099 gram. Two coatings of the slurry were applied by conventional washcoating techniques and the sample was dried and calcined to 500° C. The sample weight after calcination was 4.893 grams. The resulting 3A/SiO2 (25 nm d) washcoated monolith contained approximately 0.556 gram of 3A adsorbent and was a representative sample for formulations used in self-supporting intrusion and extrusion structures. Prior to break-through testing, the 3A/SiO2 coated monolith was dried for twelve hours at 150° C. and 100 sccm He flow.



FIGS. 13A and 13B are diagrams 1300 and 1320 of break-through profiles. The breakthrough profile is reasonably sharp. In FIG. 13A, the He response 1306 and H2O response 1308 are shown along a time axis 1302 in minutes versus a mass spectrometer axis 1304 in counts per second to water. The estimated rate of water feed is 5.48 milligrams (mg) per minutes (min). The estimated time for 0.55 grams of 3A in the 3A/SiO2 washcoat to adsorb water before break-through is 25 minutes (e.g., 30 minutes at uptake level off minus 5 minutes at beginning of uptake). The response 1306 represents a blank trace (e.g., no sample), which from time 0 to 50 minutes of dry He purge and the response 1306 is flat and near the baseline, indicating no counts for H2O. Then, after 50 minutes, the valve switches to feed humidified stream, which may be primary a nitrogen stream N2. The response 1306 rises vertically as the mass spectrometer shows increasing counts per second of H2O, until the H2O is removed at 300 minutes. Then, the response 1306 returns to the baseline indicating no counts of H2O. The response 1308 shows a shows a similar experiment through a sample of 3A/SiO2 coated onto Al2O3 ceramic monolith. As indicated by this response 1308, it is about 5 minutes longer for the response 1308 to rise as compared to the response 1306 for the blank sample, which indicates that H2O breakthrough is being slowed by the adsorption of H2O in the 3A component until the sample reaches water saturation and equilibrium.


In FIG. 13B, the He response 1326 and H2O response 1328 are shown along a time axis 1322 in minutes versus a normalized fractional concentration of H2O axis 1324 in C/Co, which expresses the normalized fractional concentration of H2O being measured by a mass spectrometer as a function of time axis 1322. In this diagram 1320, the 3A adsorbs water for about 25 minutes, indicating that the 3A adsorbent particles are accessible without signs of major diffusional hindrance. The response 1326 represents a dry He purge passing through an empty cell for 5 minutes, which is flat and near the baseline. Once a valve is switched to feed humidified He stream, the mass spectrometer indicates a breakthrough of the Helium (He) at time 0 minutes. In comparison, the response 1328 represents a sample cell with 3A/SiO2 washcoated ceramic monolith responding to a humidified He flow. The response 1328 indicates the normalized H2O concentration versus time. Accordingly, it indicates that it takes several minutes (e.g., about 25 minutes) until the 3A component in the sample is saturated with H2O and the full concentration (100%) of H2O is indicated by the mass spectrometer.



FIGS. 13C and 13D are diagrams 1340 and 1360 of transition feed versus purge temperature profiles. In this diagrams 1340 and 1360, ceramic monoliths perform significantly better to thermal transitions than the metal monoliths. The ceramic materials should perform similar to the self-supported active structures, which have a low thermal mass structures similar to ceramics and should exhibit similar thermal swing advantages. Further, the self-supported structures of the present techniques are composed of a majority of active material, which is the material that the thermal swing process is attempting heat and cool rapidly.


In the diagrams 1340 and 1360, a cyclic process was used that involved fluid flows for 20 seconds each for feed and purge steps of the cycle. The gas flow rates were 14 standard cubic feet per minute (scfm) for feed gas and 22 scfm for purge gas. Nitrogen gas was used for feed and purge streams, which were introduced at opposite ends of the monoliths or bed. The feed stream was at ambient temperature, while the purge stream was at 180° C. To monitor the temperature, fast response thermocouples were used to measure and store the temperatures, which had a first thermocouple positioned to measure temperatures at the feed gas inlet side of the structure and a second thermocouple positioned to measure temperatures at the purge gas inlet side of feed gas.


In FIG. 13C, the temperature responses 1346 and 1348 are shown along a time axis 1342 in seconds versus a temperature axis 1344 in ° C. The metal monolith used as a sample bed were three monoliths of 0.75 inches in diameter by 2 inches in length, made of stainless steel, with cell density greater than 1,000 cell per square inch (cpsi), with 50 micron thick cell walls and a center steel arbor of ⅜ inch diameter. The monolith cells were coated with thin layer of adsorbent and the monoliths were wrapped with fibrous insulation to prevent gas bypass. The resulting structure was loaded into a sample tube. The diagram 1340 with temperature responses 1346 and 1348 for the metal monoliths indicate a large temperature gap of approximately 70° C. in responding to temperature transitions between 180° C. purge gas and ambient temperature feed gas. This indicates that the metal monolith is adsorbing significant heat into the structure.


In FIG. 13D, the temperature responses 1366 and 1368 are shown along a time axis 1362 in seconds versus a temperature axis 1364 in ° C. The ceramic monolith used as a sample bed includes the monoliths of 0.75 inch diameter and 2 inch length, made of alumina ceramic, with cell density of 900 cpsi, with 100 micron thick cell walls, no center arbor. Ceramic monoliths were wrapped with fibrous insulation to prevent gas bypass. The resulting structure was loaded into a sample tube. The diagram 1360 with the temperature responses 1366 and 1368 for the alumina ceramic monoliths indicate that the temperature transitions during the temperature cycle has a smaller temperature change than the metal monolith, as shown in FIG. 13C. The temperature gap in the responses 1366 and 1368 for the ceramic monoliths is approximately 20° C. during cycling process. This indicates that the ceramic monoliths adsorb less heat into the structure than the metal monoliths, as shown in FIG. 13C.


Testing may be performed on the self-supporting structure. For example, an ambient air exposure test may be performed, which is a passive test. There is no driving force to add water to the 3A/SiO2 structure. It slowly adsorbs water from the air and it is affected by conditions of relative humidity and temperature, which are measured. This test delivers a calibrated flow of gas in sccm with known concentration of water and monitors the time until the 3A/SiO2 structure has adsorbed water to its capacity. There is a mass spectrometer instrument monitoring the exit gas stream from the structure. The mass spectrometer instrument is monitoring water in the gas versus time. When water is detected, which is referred to as “breakthrough”, it indicates that the 3A component of structures is saturated with water at these specific conditions and cannot adsorb more water.


As yet another example, the self-supporting structure may be formed through an extrusion process. For example, a mixture may be formed into a monolith form comprising defined channels (e.g., substantially parallel channels), separated by thin walls, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the remaining mixture includes binder material. Then, the monolith form may be dried and the monolith form may be calcined within a temperature range between 400° C. and 800° C. to form a mechanically stable, active monolith form. The monolith form may include the defined channels have a cross sectional shape (e.g., cross sectional shape that is along a plane that is perpendicular to direction of primary flow through the respective channel) that may be a square, a circle, a triangular, a hexagonal or any other suitable shape. The cell density of the monolith form may be in a range between 200 cells per square inch and 2,000 cells per square inch. The walls separating the channels may have a thickness in the range between 40 micron and 1 millimeter.


Once formed, the monolith form, which is the self-supporting structure, may be disposed within a housing of a processing unit having an interior region. The housing may have a plurality of valve ports created into the housing (e.g., drilled or formed into the housing); and valves may be secured to the housing in each of the valve ports to form the valves, wherein each of the valves is configured to control fluid flow between the self-supporting structure and a location external to the housing.


In certain configurations, the present techniques may be utilized in a swing adsorption method (e.g., a rapid cycle process) for the removal of one of more contaminants from a feed stream. In particular, the present techniques involve a one or more adsorbent bed units to perform a swing adsorption method or groups of adsorbent bed unit configured to perform a series of swing adsorption methods. Each adsorbent bed unit is configured to perform a specific cycle, which may include an adsorption step and a regeneration step. By way of example, the steps may include one or more feed steps, one or more depressurization steps, one or more purge steps, one or more recycle steps, and one or more re-pressurization steps. The adsorption step may involve passing a feed stream through the adsorbent bed to remove contaminants from the feed stream. The regeneration step may include one or more purge steps, one or more blowdown steps, one or more heating steps and/or one or more repressurization steps.


The present techniques may also include active materials that are configured to perform at various operating conditions. For example, the feed pressure may be based on the preferred adsorption feed pressure, which may be in the range from 400 pounds per square inch absolute (psia) to 1,400 psia, or in the range from 600 psia to 1,200 psia. Also, the purge pressure may be based on the sales pipeline pressure, which may be in the range from 400 psia to 1,400 psia, in the range from 600 psia to 1,200 psia.


In addition, other configurations may involve enhancements for adsorption structures that may be formed primarily from active component. Beneficially, the use of primarily active components may provide significantly cheaper, higher working capacity potential in smaller volume, cell uniformity, increased geometric and engineering flexibility, and/or lower thermal mass. For example, the self-supporting structures may be formed into self-supporting structure monoliths, self-supporting 3D structures (e.g., indirect from 3D printing), and/or self-supporting structure foams. The self-supporting structure monoliths may be preferred for applications, such as pressure swing adsorption, which involves low pressure drop.


By way of example, the compositions of the self-supporting structure monoliths may include thin films that are used with natural gas stream, which indicate that the compositions are beneficial. One configuration includes extruded self-supporting structure monoliths. This configuration may lack a preferred breakthrough front because gas diffusion hindrance issues and/or damaged adsorbent crystals.



FIG. 14 is an exemplary diagram 1400 of self-supporting structure monolith test results. As shown in FIG. 14, an extruded self-supporting structure monolith may be formed of a composition of 5A/SiO2 to 25 nm (70:30) and may be calcinated at 750° C. As shown in the diagram 1400, a plot of a natural gas test is shown. In the diagram 1400, a first response 1408 of Helium and a second response 1406 of Water (H20) are shown along a time axis 1402 in minutes (min) and a normalized fractional concentration of H2O axis 1404 in normalized concentration (C/Co). The first response 1408 is a breakthrough curve increases at an angle to the right, which may preferably be vertical. Gas permeance testing may be performed to determine if extrusion pressures (e.g., 2000 pounds per square inch gauge (psig) to 4,000 psig) needed to form self-supported extruded monoliths, have diminished the macro pore system, thus increasing diffusional hindrance. Similarly, a H2O breakthrough test may be performed to determine whether the extrusion pressure damaged the adsorbent crystals. This testing may include using the same sample and/or the sample holder, which may be performed after gas permeance test completed. The gas permeance testing, may involve using a carver press to compress disks of self-supporting structures monoliths compositions to 5,000 psig to simulate monolith extrusion pressures.


In one or more configurations, measurements of the effects on gas permeance are obtained in disk structures of self-supporting structure monolith compositions. For example, the effects on gas permeance may be compared with extrusion-type pressures, such as disks compressed to 5,000 psig before drying and/or calcination or may be compared with various polyethylene sphere additives. The gas permeation results indicate that a method of using polyethylene spheres as an approach to enhance gas transport in self-supported compositions, appears to be effective. The effects of macro-pore additive may include greater impact with smaller (e.g., 25 nm) binder system than in 100 nm binder system. The larger effect on average pore size of 25 nm binder system is enhanced because 25 nm particles (e.g., 25 nm SiO2 particles) are smaller than 100 nm particles (e.g., 100 nm SiO2 particles) and there are more 25 nm particles for same composition of 5A/SiO2 w/w ratio than 100 nm particles. By way of example, the self-supported structures may utilize pore engineering methods, which may involve using polyethylene spheres. The adsorbent (e.g., 5A) may be a combination of macro-pore additives (polyethylene spheres dimensions of 2 to 4 micrometer spherical) and an inorganic binder (e.g., SiO2 particles colloidal solution of 40 weight percent (wt. %) of 25 nm SiO2 or 40 wt. % of 100 nm SiO2.



FIGS. 15A and 15B are exemplary diagrams 1500 and 1520 of polyethylene spheres, which may be used in self-supporting structure monoliths. FIG. 15A is a diagram 1500 of spheres, which includes a first diameter 1502 and a second diameter 1504. The first diameter 1502 and second diameter 1504 may be in the range between 2 micrometers and 4 micrometers. FIG. 15B is a diagram 1520 of spherical macro-porous holes after burnout after 500° C. calcination in a 5A/SiO2 sample (with 5% polyethylene spheres).


To assess self-supporting structure monolith compositions, testing may be performed to determine porosity (e.g., gas permeance and/or mercury porosimetry testing) and capacity (e.g., H2O uptake by adsorbent). By way of example, the testing may include gas permeance testing, water uptake testing and mercury porosimetry testing. For the gas permeance testing, the gas permeance is compared with the feed pressure. The probing porosity system of self-supporting structure monolith disks may involve deriving information about permeability, connected porosity, pore diameter, and any combination thereof. The gas permeance configuration of the test unit may include a housing having an interior region configured to hold a disk, a pressure meter at the inlet side of the housing, and a flow meter at the outlet side of the housing. The formulated disks may be compressed to 5,000 psig, which is used to mimic the monolith extrusion pressure in the range between 2,000 psig and 4,000 psig. The gas permeance testing may include passing various streams through the self-supporting structure monolith disks, such as Helium (He) to provide a non-adsorbing trace line and other gases having mass and viscosity (e.g., four other compositions, which are run separately through the disks). These different streams may include Helium (He), Nitrogen (N2), carbon dioxide (CO2), methane (CH4) and Argon (Ar). The gas permeance testing may include measuring the gas pressure on an inlet side of the test unit and measuring the fluid flow on the outlet side of the test unit. The associated measurements provide insights of the open pore system.


In addition, the testing may include water uptake testing, which may be performed after the gas permeance testing. This testing may involve determining H2O breakthrough. The water uptake testing configuration of the test unit may include a housing having an interior region configured to hold a disk and a humidity sensor at the outlet side of the housing. The water uptake testing may involve probing working capacity of zeolite adsorbent in self-supporting structure monoliths, disks or films. The testing may include 40% relative humidity (RH) water on gas feed side to be used for measuring breakthrough humidity versus time on outlet side. The weight of disk with adsorbent composition is known and is used to calculate and compare breakthrough time. This indicates the amount of the adsorbent (e.g., zeolite) is accessible (e.g., working capacity) as compared to the known amount of adsorbent.


Further still, the testing may include Mercury (Hg) porosimetry testing, which may be performed after the gas permeance testing and water uptake testing. The Hg porosimetry testing may include determining the Hg intrusion. The Hg porosimetry testing configuration of the test unit may include a housing having an interior region configured to hold a disk. The testing may include probing porosity system of the disks using Hg liquid and pressures (e.g., ambient to 60,000 psig). This testing may be used to determine pore diameter and/or pore volume. Portions or pieces of formulated disks may be used in permeance and breakthrough tests are sent to Micromeritics Analytical Services Company for testing.


Various observations are shown in FIGS. 16A to 16D. In particular, FIGS. 16A, 16B, 16C and 16D are exemplary diagrams 1600, 1620, 1640 and 1660 of a permeance measurements in accordance with embodiments of the present techniques. In these diagrams 1600, 1620, 1640 and 1660, the gas permeances of extrusion-type samples tested are high (e.g., 10e-6 to 10e-5 moles/s m2 Pa). The self-supporting structure monolith disks have a composition that is an adsorbent zeolite to SiO2 (e.g., 25 nm) binder having about a 80:20 (w/w) ratio. The disks are compressed at 5,000 psig.



FIG. 16A is an exemplary diagram 1600 of permeance measurements for Helium (He) gas passing through the self-supporting structure monolith disks. In this diagram 1600, various response points, such as points 1606, 1607, 1608 and 1609, are shown along a permeance axis 1604 in moles per second meter squared Pascal (moles/s m2 Pa) against a pressure axis 1602 in kilo-Pascal (kPa). In particular, the points, such as points 1606, shown by x's represent the disk made of 5A/SiO2 100 nm having 10% w/w macropore additive before calcination, while the points, such as points 1607, shown by the squares represent the disk made of 5A/SiO2 25 nm having 5% w/w macropore additive before calcination, and the points, such as points 1608, shown by the triangles represent the disk made of 5A/SiO2 100 nm having 0% w/w macropore additive before calcination, and the points, such as points 1609, shown by the diamonds represent the disk made of 5A/SiO2 25 nm having 0% w/w macropore additive before calcination.



FIG. 16B is an exemplary diagram 1620 of permeance measurements for Nitrogen (N2) gas passing through the self-supporting structure monolith disks. In this diagram 1620, various response points, such as points 1626, 1627, 1628 and 1629, are shown along a permeance axis 1624 in moles per second meter squared Pascal (sm2 Pa) against a pressure axis 1622 in kilo-Pascal (kPa). In particular, the points, such as points 1626, shown by x's represent the disk made of 5A/SiO2 100 nm having 10% w/w macropore additive before calcination, while the points, such as points 1627, shown by the squares represent the disk made of 5A/SiO2 25 nm having 5% w/w macropore additive before calcination, and the points, such as points 1628, shown by the triangles represent the disk made of 5A/SiO2 100 nm having 0% w/w macropore additive before calcination, and the points, such as points 1629, shown by the diamonds represent the disk made of 5A/SiO2 25 nm having 0% w/w macropore additive before calcination.



FIG. 16C is an exemplary diagram 1640 of permeance measurements for methane (CH4) gas passing through the self-supporting structure monolith disks. In this diagram 1640, various response points, such as points 1646, 1647, 1648 and 1649, are shown along a permeance axis 1644 in moles per second meter squared Pascal (sm2 Pa) against a pressure axis 1642 in kilo-Pascal (kPa). In particular, the points, such as points 1646, shown by x's represent the disk made of 5A/SiO2 100 nm having 10% w/w macropore additive before calcination, while the points, such as points 1647, shown by the squares represent the disk made of 5A/SiO2 25 nm having 5% w/w macropore additive before calcination, and the points, such as points 1648, shown by the triangles represent the disk made of 5A/SiO2 100 nm having 0% w/w macropore additive before calcination, and the points, such as points 1649, shown by the diamonds represent the disk made of 5A/SiO2 25 nm having 0% w/w macropore additive before calcination.



FIG. 16D is an exemplary diagram 1660 of permeance measurements for carbon dioxide (CO2) gas passing through the self-supporting structure monolith disks. In this diagram 1660, various response points, such as points 1666, 1667, 1668 and 1669, are shown along a permeance axis 1664 in moles per second meter squared Pascal (sm2 Pa) against a pressure axis 1662 in kilo-Pascal (kPa). In particular, the points, such as points 1666, shown by x's represent the disk made of 5A/SiO2 100 nm having 10% w/w macropore additive before calcination, while the points, such as points 1667, shown by the squares represent the disk made of 5A/SiO2 25 nm having 5% w/w macropore additive before calcination, and the points, such as points 1668, shown by the triangles represent the disk made of 5A/SiO2 100 nm having 0% w/w macropore additive before calcination, and the points, such as points 1669, shown by the diamonds represent the disk made of 5A/SiO2 25 nm having 0% w/w macropore additive before calcination.


As shown by the diagrams 1600, 1620, 1640 and 1660, the permeance improves between the addition of 0% polyethylene spheres, 5% polyethylene spheres and 10% polyethylene spheres to the composition. Further, the differences between 25 nm binder and 100 nm binder samples are shown in these diagrams 1600, 1620, 1640 and 1660. Accordingly, the addition of 5% polyethylene spheres to disk composition having 25 nm diameter yield similar permeance to disk compositions for 100 nm diameter (100 nm) binder with 0% polyethylene spheres.


The average pore diameter may be determined from the gas permeance measurements and/or Knudsen and Poiseuille models, as shown in FIG. 17. FIG. 17 is an exemplary diagram 1700 of average pore diameter based on gas permeance measurements in accordance with an embodiment of the present techniques. In the diagram 1700, the effect of the macropore additive in disks for the 25 nm binder material versus 100 nm binder materials. In this diagram 1700, various disks, which have various compositions are shown along a pore diameter axis 1704 in micrometers (μm) against a sample identification (ID) axis 1702. The disk may have a composition of 5A/25 nm SiO2 particles having 0% polyethylene spheres, as shown by response 1706, while the disk may have a composition of 5A/25 nm SiO2 particles having 5% polyethylene spheres, as shown by responses 1708. The disk may have a composition of 5A/100 nm SiO2 particles having 0% polyethylene spheres, as shown by response 1710, while the disk may have a composition of 5A/100 nm SiO2 particles having 5% polyethylene spheres, as shown by responses 1712, and the disk may have a composition of 5A/100 nm SiO2 particles having 10% polyethylene spheres, as shown by responses 1714.


As shown by the responses 1706, 1708, 1710, 1712 and 1714, the average pore diameters may indicate the effects of pore engineering macro-pore additives. In the model, the calculations indicates the average pore diameter sizes between 0.6 micrometers to 2.0 micrometers. The addition of macropore additives have a greater impact on increasing average pore diameters of 5A compositions containing smaller diameter binder materials (e.g., 25 nm) as compared to the larger diameter binder materials (e.g., 100 nm). The larger effect on average pore size of 5A compositions containing smaller diameter binder materials (e.g., 25 nm) is attributed to differences in binder particle diameter sizes (e.g., 25 nm SiO2 particles are smaller than 100 nm SiO2 particles) and/or the larger number of particles for volume (e.g., more 25 nm particles for same 5A/SiO2 w/w ratio than 100 nm particles).


The water uptake testing may be used to generate qualitative results of water breakthrough on a self-supporting structure monolith disks. FIG. 18 is an exemplary diagram 1800 of water breakthrough in accordance with an embodiment of the present techniques. In the diagram 1800, the composition of the self-supporting structure monolith disks may include 5A/SiO2 in a ratio of 80:20 (w/w), wherein the SiO2 are 25 nm and the composition include 5% polyethylene spheres. The water uptake testing may be performed after gas permeance testing. For example, a disk that was tested in a gas permeance test unit has approximately 1.943 grams mass with a composition of approximately 80:20 5A/SiO2. In the diagram 1800, a first response 1808 of Helium and a second response 1810 of water (H20) are shown along a time axis 1802 in seconds (s), a relative humidity axis 1804 in percentage (%) and a concentration axis 1806 in parts per million (ppm). In this diagram 1800, the flow rate is about 90 sccm, 38% relative humidity (RH), and 0.00088 grams water per minute (g H2O/min). The estimated breakthrough time for 15% uptake capacity is about 15,311 seconds. The response 1810 has an initial sharp, vertical breakthrough portion, which is followed by a portion of the response 1810 flattens to a nearly horizontal line. As a result, the water uptake and breakthrough graph result indicates that the 5A crystals are functional after 5,000 psig compression.


Beneficially, the gas permeation results indicate that the method of using polyethylene spheres as one approach to pore engineering is effective. The use of polyethylene spheres to enhance gas transport in self-supported monolith disk compositions is also effective. In addition, pore engineering using macro-pore additives appears to provide greater advantage to compositions with smaller (25 nm) binder materials than in 100 nm binder materials at a similar w/w of binder material. These effects may include having a larger effect on average pore size of 25 nm binder materials because 25 nm SiO2 particles are smaller than 100 nm SiO2 particles and there are more 25 nm particles for same volume of material than 100 nm particles. Accordingly, the pore engineering may improve gas transport in self-supported structures, which may be specifically be used with polyethylene spheres, as an example approach to pore engineering.


Further enhancements in the self-supported structures may be used to enhance the fabrication processes and/or resulting structure. For example, the present techniques may include optimizing the order of components that are added, may include additives to enhance porosity and diffusional performance, and/or may include additives to enhance formulation processing (e.g., extruded monolith structures). As a first enhancement, the order of addition may be used to enhance the self-supported monolith. In this method, the pre-condition adsorbent may be filled to capacity with water. The order of addition may prevent fouling of adsorbent, which may include adding a sodium cation stabilizer in colloidal silica solutions. Also, the order of addition may involve preventing agglomeration and poor distribution of SiO2 binder particles, as a result of adsorbing the H2O from the binder solution. As a second enhancement, the addition of macro pore additives to the composition. The addition of macro pore additives may improve macro porosity and reduce diffusional hindrance issues and may involve using polyethylene spheres (e.g., between 2 μm and 4 μm in diameter). As a third enhancement, the addition of plasticizing additive to the composition. The addition of plasticizing additive, such as clay materials, to the composition may be used to enhance material workability for processing by extrusion or intrusion or other methods. Also, the addition of plasticizing additive may improve structure defect issues that may result from drying and calcining.


By way of example, FIG. 19 is a three-dimensional diagram of the swing adsorption system 1900 having six adsorbent bed units and interconnecting piping. While this configuration is a specific example, the present techniques broadly relate to adsorbent bed units that can be deployed in a symmetrical orientation, or non-symmetrical orientation and/or combination of a plurality of hardware skids. Further, this specific configuration is for exemplary purposes as other configurations may include different numbers of adsorbent bed units. In this configuration, the adsorbent bed units may include self-supporting structures.


In this system, the adsorbent bed units, such as adsorbent bed unit 1902, may be configured for a cyclical swing adsorption method for removing contaminants from feed streams (e.g., fluids, gaseous or liquids). For example, the adsorbent bed unit 1902 may include various conduits (e.g., conduit 1904) for managing the flow of fluids through, to or from the adsorbent bed within the adsorbent bed unit 1902. These conduits from the adsorbent bed units 1902 may be coupled to a manifold (e.g., manifold 1906) to distribute the flow of the stream to, from or between components. The adsorbent bed within an adsorbent bed unit may separate one or more contaminants from the feed stream to form a product stream. As may be appreciated, the adsorbent bed units may include other conduits to control other fluid steams as part of the process, such as purge streams, depressurizations streams, and the like. Further, the adsorbent bed unit may also include one or more equalization vessels, such as equalization vessel 1908, which are dedicated to the adsorbent bed unit and may be dedicated to one or more step in the swing adsorption process.


In certain configurations, the self-supporting structure may be utilized in an adsorbent bed unit that includes a housing, which may include a head portion and other body portions, that forms a substantially gas impermeable partition. The housing may include the self-supporting structure (e.g., formed as an adsorbent bed) disposed within the housing and a plurality of valves (e.g., poppet valves) providing fluid flow passages through openings in the housing between the interior region of the housing and locations external to the interior region of the housing. Each of the poppet valves may include a disk element that is seatable within the head or a disk element that is seatable within a separate valve seat inserted within the head (not shown). The configuration of the poppet valves may be any variety of valve patterns or configuration of types of poppet valves. As an example, the adsorbent bed unit may include one or more poppet valves, each in flow communication with a different conduit associated with different streams. The poppet valves may provide fluid communication between the adsorbent bed and one of the respective conduits, manifolds or headers. The term “in direct flow communication” or “in direct fluid communication” means in direct flow communication without intervening valves or other closure means for obstructing flow. As may be appreciated, other variations may also be envisioned within the scope of the present techniques.


The adsorbent bed comprises adsorbent material formed into the self-supporting structure, which is capable of adsorbing one or more components from the feed stream. Such adsorbent materials are selected to be durable against the physical and chemical conditions within the adsorbent bed unit and can include metallic, ceramic, or other materials, depending on the adsorption process.


In certain configurations, the swing adsorption system, which includes the active material, may process a feed stream that predominately comprises hydrocarbons along with one or more contaminants. For example, the feed stream may be a hydrocarbon containing stream having greater than one volume percent hydrocarbons based on the total volume of the feed stream. Further, the feed stream may include hydrocarbons along with H2O, H2S, and CO2. By way of example, the stream may include H2O as one of the one or more contaminants and the gaseous feed stream may comprise H2O in the range of 50 parts per million (ppm) molar to 1,500 ppm molar; or in the range of 500 ppm to 1,500 ppm molar. Moreover, the feed stream may include hydrocarbons and H2O, wherein the H2O is one of the one or more contaminants and the feed stream comprises H2O in the range of two ppm molar to saturation levels in the feed stream.


In addition, the present techniques may provide an adsorption system that utilizes a rapid cycle swing adsorption method to separate acid gas contaminants from feed streams, such as acid gas from hydrocarbon streams. Acid gas removal technology may be useful for gas reserves exhibit higher concentrations of acid gas (e.g., sour gas resources). Hydrocarbon feed streams vary widely in amount of acid gas, such as from several parts per million acid gas to 90 volume percent (vol. %) acid gas. Non-limiting examples of acid gas concentrations from exemplary gas reserves include concentrations of at least: (a) 1 vol. % H2S, 5 vol. % CO2, (b) 1 vol. % H2S, 15 vol. % CO2, (c) 1 vol. % H2S, 60 vol. % CO2, (d) 15 vol. % H2S, 15 vol. % CO2, and (e) 15 vol. % H2S, 30 vol. % CO2. Accordingly, the present techniques may include equipment to remove various contaminants, such as H2S and CO2 to desired levels. In particular, the H2S may be lowered to levels less than 4 ppm, while the CO2 may be lowered to levels less than 1.8 molar percent (%) or, preferably, less than 50 ppm. As a further example, the acid gas removal system may remove CO2 to LNG specifications (e.g., less than or equal to 50 parts per million volume (ppmv) CO2).


In certain configurations, the active material may be used in a rapid cycle swing adsorption method, such as a rapid cycle PSA process, to remove moisture from the feed stream. The specific level may be related to dew point of desired output product (e.g., the water content should be lower than the water content required to obtain a dew point below the lowest temperature of the stream in subsequent process and is related to the feed pressure). As a first approximation, and not accounting for fugacity corrections as a function of pressure, the water concentration in ppm that yields a certain dew point varies inversely with the pressure. For example, the output stream from the adsorbent bed may be configured to be the cryogenic processing feed stream, which satisfies the cryogenic processing specifications (e.g., approximately −150° F. (−101.1° C.) dew point for NGL processes or approximately −60° F. (−51.1° C.) for Controlled Freeze Zone (CFZ) processes. The cryogenic processing feed stream specification may include a water content in the stream (e.g., output stream from the adsorbent bed or feed stream to the to be cryogenic processing) to be in the range between 0.0 ppm and 10 ppm, in the range between 0.0 ppm and 5.0 ppm, in the range between 0.0 ppm and 2.0 ppm, or in the range between 0.0 ppm and 1.0 ppm. The resulting output stream from the adsorbent beds during the purge step may include a water content in the stream to be in the range between 0.0 ppm and 7 pounds per standard cubic feet (lb/MSCF).


In one or more embodiments, the present techniques can be used for any type of swing adsorption method. Non-limiting swing adsorption methods for which the present techniques may include pressure swing adsorption (PSA), vacuum pressure swing adsorption (VPSA), temperature swing adsorption (TSA), partial pressure swing adsorption (PPSA), rapid cycle pressure swing adsorption (RCPSA), rapid cycle thermal swing adsorption (RCTSA), rapid cycle partial pressure swing adsorption (RCPPSA), as well as combinations of these methods, such as pressure and/or temperature swing adsorption. Exemplary kinetic swing adsorption methods are described in U.S. Patent Application Publication Nos. 2008/0282892, 2008/0282887, 2008/0282886, 2008/0282885, 2008/0282884 and 2014/0013955 and U.S. Ser. Nos. 15/233,617, 15/233,623, 15/233,631 and 15/233,640, which are each herein incorporated by reference in their entirety. However, rapid cycle may be preferred to process the stream. However, the self-supporting structures may be preferably utilized with rapid cycle swing adsorption methods.


Further, in certain configurations of the system, the present techniques may include a specific process flow to remove contaminants, such as water (H2O) or acid gas, in the swing adsorption system. For example, the method may include an adsorbent step and a regeneration step, which form the cycle. The adsorbent step may include passing a feed stream at a feed pressure and feed temperature through an adsorbent bed unit having an active material structure to separate one or more contaminants from the feed stream to form a product stream. The feed stream may be passed through the adsorbent bed in a forward direction (e.g., from the feed end of the adsorbent bed to the product end of the adsorbent bed). Then, the flow of the feed stream may be interrupted for a regeneration step. The regeneration step may include one or more depressurization steps, one or more purge steps and/or one or more re-pressurization steps. The depressurization steps may include reducing the pressure of the adsorbent bed unit by a predetermined amount for each successive depressurization step, which may be a single step and/or may be a blowdown step. The depressurization step may be provided in a forward direction or may preferably be provided in a countercurrent direction (e.g., from the product end of the adsorbent bed to the feed end of the adsorbent bed). The purge step may include passing a purge stream into the adsorbent bed unit, which may be a once through purge step and the purge stream may be provided in countercurrent flow relative to the feed stream. The purge product stream from the purge step may be conducted away and recycled to another system or in the system. Then, the one or more re-pressurization steps may be performed, wherein the pressure within the adsorbent bed unit is increased with each re-pressurization step by a predetermined amount with each successive re-pressurization step. Then, the cycle may be repeated for additional feed streams and/or the cycle may be adjusted to perform a different cycle for a second configuration. The cycle duration may be for a period greater than 1 second and less than 600 seconds, for a period greater than 2 second and less than 300 seconds, for a period greater than 2 second and less than 200 seconds, or for a period greater than 2 second and less than 90 seconds.


Also, the present techniques may be integrated into a various configurations, which may include a variety of compositions for the streams. Adsorptive separation methods, apparatus, and systems, as described above, are useful for development and production of hydrocarbons, such as gas and oil processing. Particularly, the provided methods, apparatus, and systems are useful for the rapid, large scale, efficient separation of a variety of target gases from gas mixtures. In particular, the methods, apparatus, and systems may be used to prepare feed products (e.g., natural gas products) by removing contaminants and heavy hydrocarbons (e.g., hydrocarbons having at least two carbon atoms). The provided methods, apparatus, and systems are useful for preparing gaseous feed streams for use in utilities, including separation applications. The separation applications may include dew point control; sweetening and/or detoxification; corrosion protection and/or control; dehydration; heating value; conditioning; and/or purification. Examples of utilities that utilize one or more separation applications include generation of fuel gas; seal gas; non-potable water; blanket gas; instrument and control gas; refrigerant; inert gas; and/or hydrocarbon recovery.


To provide fluid flow paths through the self-supporting structure in an adsorbent bed unit, valve assemblies may include poppet valves, which each may include a disk element connected to a stem element which can be positioned within a bushing or valve guide. The stem element may be connected to an actuating means, such as actuating means, which is configured to have the respective valve impart linear motion to the respective stem. As may be appreciated, the actuating means may be operated independently for different steps in the method to activate a single valve or a single actuating means may be utilized to control two or more valves. Further, while the openings may be substantially similar in size, the openings and inlet valves for inlet manifolds may have a smaller diameter than those for outlet manifolds, given that the gas volumes passing through the inlets may tend to be lower than product volumes passing through the outlets. Further, while this configuration has valve assemblies, the number and operation of the valves may vary (e.g., the number of valves) based on the specific cycle being performed.


In one or more embodiments, the rapid cycle swing adsorption method that utilize the self-supporting structures in the present techniques may include rapid cycle temperature swing adsorption (RCTSA) and/or rapid cycle pressure swing adsorption (RCPSA). For example, the total cycle times may be less than 600 seconds, less than 300 seconds, preferably less than 200 seconds, more preferably less than 90 seconds, and even more preferably less than 60 seconds.


In view of the many possible embodiments to which the principles of the disclosed invention may be applied, it should be recognized that the illustrative embodiments are only preferred examples of the invention and should not be taken as limiting the scope of the invention.

Claims
  • 1. A processing unit comprising: a housing forming an interior region;a self-supporting structure disposed within the interior region, wherein the self-supporting structure has greater than 50% by weight of an active material in the self-supporting structure, and wherein the self-supporting structure is an open-celled structure configured to provide one or more defined channels for fluid flow paths through the self-supporting structure, and wherein the self-supporting structure consists essentially of the active material and a silica binder material; anda plurality of valves secured to the housing, wherein each of the plurality of valves is configured to control fluid flow along a flow path extending between the self-supporting structure and a location external to the housing;wherein the self-supporting structure is formed by: creating a template for a self-supporting structure;disposing a mixture within the template, wherein the mixture has greater than 50% by weight of the active material in the self-supporting structure and the silica binder material;curing the combination of the template and the mixture to form a self-supporting structure that is maintains a solid form; andremoving the template from the self-supporting structure, wherein the one or more defined channels are based on the template.
  • 2. The processing unit of claim 1, wherein the processing unit is a cyclical swing adsorbent bed unit configured to remove contaminants from a gaseous feed stream that passes through the one or more defined channels in the self-supporting structure.
  • 3. The processing unit of claim 1, wherein the self-supporting structure has greater than 60% by weight of the active material in the self-supporting structure.
  • 4. The processing unit of claim 1, wherein the self-supporting structure has greater than 70% by weight of the active material in the self-supporting structure.
  • 5. The processing unit of claim 1, wherein the processing unit further comprises a flow distributor disposed between the self-supporting structure and the plurality of valves.
  • 6. The processing unit of claim 1, wherein the housing is configured to maintain a pressure from 5 pounds per square inch absolute (psia) and 1,400 psia.
  • 7. The processing unit of claim 1, wherein the self-supporting structure has a low thermal mass.
  • 8. The processing unit of claim 1, wherein the one or more defined channels comprise two or more channels that are substantially parallel.
  • 9. The processing unit of claim 1, wherein the self-supporting structure has a plurality of pores formed in the active material by removing a plurality of polyethylene spheres from the active material to form the plurality of pores.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 62/437,327 titled “Self-Supporting Structures Having Active Materials,” filed on Dec. 21, 2016, and U.S. Provisional Patent Application No. 62/585,574 titled “Self-Supporting Structures Having Active Materials,” filed on Nov. 14, 2017, having common inventors and assignee, the disclosure of which is incorporated by reference herein in its entirety. This application is related to U.S. Provisional Patent Application No. 62/437,319 titled “Self-Supporting Structures Having Active Materials,” filed on Dec. 21, 2016, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (425)
Number Name Date Kind
1868138 Fisk Jul 1932 A
3103425 Meyer Sep 1963 A
3124152 Payne Mar 1964 A
3142547 Marsh et al. Jul 1964 A
3508758 Strub Apr 1970 A
3602247 Bunn et al. Aug 1971 A
3788036 Lee et al. Jan 1974 A
3967464 Cormier et al. Jul 1976 A
4187092 Woolley Feb 1980 A
4261815 Kelland Apr 1981 A
4324565 Benkmann Apr 1982 A
4325565 Winchell Apr 1982 A
4329162 Pitcher May 1982 A
4340398 Doshi et al. Jul 1982 A
4386947 Mizuno Jun 1983 A
4445441 Tanca May 1984 A
4461630 Cassidy et al. Jul 1984 A
4496376 Hradek Jan 1985 A
4705627 Miwa et al. Nov 1987 A
4711968 Oswald et al. Dec 1987 A
4737170 Searle Apr 1988 A
4770676 Sircar et al. Sep 1988 A
4783205 Searle Nov 1988 A
4784672 Sircar Nov 1988 A
4790272 Woolenweber Dec 1988 A
4814146 Brand et al. Mar 1989 A
4816039 Krishnamurthy et al. Mar 1989 A
4877429 Hunter Oct 1989 A
4977745 Heichberger Dec 1990 A
5110328 Yokota et al. May 1992 A
5125934 Krishnamurthy et al. Jun 1992 A
5169006 Stelzer Dec 1992 A
5174796 Davis et al. Dec 1992 A
5224350 Mehra Jul 1993 A
5234472 Krishnamurthy et al. Aug 1993 A
5292990 Kantner et al. Mar 1994 A
5306331 Auvil et al. Apr 1994 A
5332426 Tang Jul 1994 A
5354346 Kumar Oct 1994 A
5365011 Ramachandran et al. Nov 1994 A
5370728 LaSala et al. Dec 1994 A
5486227 Kumar et al. Jan 1996 A
5547641 Smith et al. Aug 1996 A
5547648 Buchanan Aug 1996 A
5565018 Baksh et al. Oct 1996 A
5672196 Acharya et al. Sep 1997 A
5700310 Bowman et al. Dec 1997 A
5733451 Coellner et al. Mar 1998 A
5735938 Baksh et al. Apr 1998 A
5750026 Gadkaree et al. May 1998 A
5769928 Leavitt Jun 1998 A
5792239 Reinhold, III et al. Aug 1998 A
5807423 Lemcoff et al. Sep 1998 A
5811616 Holub et al. Sep 1998 A
5827358 Kulish et al. Oct 1998 A
5906673 Reinhold, III et al. May 1999 A
5912426 Smolarek et al. Jun 1999 A
5914294 Park et al. Jun 1999 A
5924307 Nenov Jul 1999 A
5935444 Johnson et al. Aug 1999 A
5968234 Midgett, II et al. Oct 1999 A
5976221 Bowman et al. Nov 1999 A
5997617 Czabala et al. Dec 1999 A
6007606 Baksh et al. Dec 1999 A
6011192 Baker et al. Jan 2000 A
6023942 Thomas et al. Feb 2000 A
6053966 Moreau et al. Apr 2000 A
6063161 Keefer et al. May 2000 A
6096115 Kleinberg Aug 2000 A
6099621 Ho Aug 2000 A
6129780 Millet et al. Oct 2000 A
6136222 Friesen et al. Oct 2000 A
6147126 DeGeorge et al. Nov 2000 A
6152991 Ackley Nov 2000 A
6156101 Naheiri Dec 2000 A
6171371 Derive et al. Jan 2001 B1
6176897 Keefer Jan 2001 B1
6179900 Behling et al. Jan 2001 B1
6183538 Naheiri Feb 2001 B1
6194079 Hekal Feb 2001 B1
6210466 Whysall et al. Apr 2001 B1
6231302 Bonardi May 2001 B1
6245127 Kane et al. Jun 2001 B1
6284021 Lu et al. Sep 2001 B1
6311719 Hill et al. Nov 2001 B1
6345954 Al-Himyary et al. Feb 2002 B1
6398853 Keefer et al. Jun 2002 B1
6402813 Monereau et al. Jun 2002 B2
6406523 Connor et al. Jun 2002 B1
6413303 Gelderland Jul 2002 B2
6425938 Xu et al. Jul 2002 B1
6432379 Heung Aug 2002 B1
6436171 Wang et al. Aug 2002 B1
6444012 Dolan et al. Sep 2002 B1
6444014 Mullhaupt et al. Sep 2002 B1
6444523 Fan et al. Sep 2002 B1
6451095 Keefer et al. Sep 2002 B1
6457485 Hill et al. Oct 2002 B2
6471939 Boix et al. Oct 2002 B1
6488747 Keefer Dec 2002 B1
6497750 Butwell et al. Dec 2002 B2
6500234 Ackley et al. Dec 2002 B1
6500241 Reddy Dec 2002 B2
6500404 Camblor Fernandez et al. Dec 2002 B1
6503299 Baksh et al. Jan 2003 B2
6506351 Jain et al. Jan 2003 B1
6514318 Keefer Feb 2003 B2
6514319 Keefer et al. Feb 2003 B2
6517609 Monereau et al. Feb 2003 B1
6531516 Davis et al. Mar 2003 B2
6533846 Keefer et al. Mar 2003 B1
6565627 Golden May 2003 B1
6565635 Keefer et al. May 2003 B2
6565825 Ohji et al. May 2003 B2
6572678 Wijmans et al. Jun 2003 B1
6579341 Baker et al. Jun 2003 B2
6593541 Herren Jul 2003 B1
6595233 Pulli Jul 2003 B2
6605136 Graham et al. Aug 2003 B1
6607584 Moreau et al. Aug 2003 B2
6630012 Wegeng et al. Oct 2003 B2
6631626 Hahn Oct 2003 B1
6641645 Lee et al. Nov 2003 B1
6651645 Nunez Suarez Nov 2003 B1
6660064 Golden et al. Dec 2003 B2
6660065 Byrd et al. Dec 2003 B2
6692626 Keefer et al. Feb 2004 B2
6712087 Hill et al. Mar 2004 B2
6742507 Keefer et al. Jun 2004 B2
6746515 Wegeng et al. Jun 2004 B2
6752852 Jacksier et al. Jun 2004 B1
6770120 Neu et al. Aug 2004 B2
6773225 Yuri et al. Aug 2004 B2
6802889 Graham et al. Oct 2004 B2
6814771 Scardino et al. Nov 2004 B2
6835354 Woods et al. Dec 2004 B2
6840985 Keefer Jan 2005 B2
6866950 Connor et al. Mar 2005 B2
6889710 Wagner May 2005 B2
6890376 Arquin et al. May 2005 B2
6893483 Golden et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6916358 Nakamura et al. Jul 2005 B2
6918953 Lomax, Jr. et al. Jul 2005 B2
6921597 Keefer et al. Jul 2005 B2
6974496 Wegeng et al. Dec 2005 B2
7025801 Monereau Apr 2006 B2
7027929 Wang Apr 2006 B2
7029521 Johansson Apr 2006 B2
7074323 Ghijsen Jul 2006 B2
7077891 Jaffe et al. Jul 2006 B2
7087331 Keefer et al. Aug 2006 B2
7094275 Keefer et al. Aug 2006 B2
7097925 Keefer et al. Aug 2006 B2
7112239 Kimbara et al. Sep 2006 B2
7117669 Kaboord et al. Oct 2006 B2
7122073 Notaro et al. Oct 2006 B1
7128775 Celik et al. Oct 2006 B2
7144016 Gozdawa Dec 2006 B2
7160356 Koros et al. Jan 2007 B2
7160367 Babicki et al. Jan 2007 B2
7166149 Dunne et al. Jan 2007 B2
7172645 Pfister et al. Feb 2007 B1
7189280 Alizadeh-Khiavi et al. Mar 2007 B2
7250073 Keefer et al. Jul 2007 B2
7250074 Tonkovich et al. Jul 2007 B2
7255727 Monereau et al. Aug 2007 B2
7258725 Ohmi et al. Aug 2007 B2
7276107 Baksh et al. Oct 2007 B2
7279029 Occhialini et al. Oct 2007 B2
7285350 Keefer et al. Oct 2007 B2
7297279 Johnson et al. Nov 2007 B2
7311763 Neary Dec 2007 B2
RE40006 Keefer et al. Jan 2008 E
7314503 Landrum et al. Jan 2008 B2
7354562 Ying et al. Apr 2008 B2
7387849 Keefer et al. Jun 2008 B2
7390350 Weist, Jr. et al. Jun 2008 B2
7404846 Golden et al. Jul 2008 B2
7438079 Cohen et al. Oct 2008 B2
7449049 Thomas et al. Nov 2008 B2
7456131 Klett et al. Nov 2008 B2
7510601 Whitley et al. Mar 2009 B2
7527670 Ackley et al. May 2009 B2
7553568 Keefer Jun 2009 B2
7578864 Watanabe et al. Aug 2009 B2
7604682 Seaton Oct 2009 B2
7637989 Bong Dec 2009 B2
7641716 Lomax, Jr. et al. Jan 2010 B2
7645324 Rode et al. Jan 2010 B2
7651549 Whitley Jan 2010 B2
7674319 Lomax, Jr. et al. Mar 2010 B2
7674539 Keefer et al. Mar 2010 B2
7687044 Keefer et al. Mar 2010 B2
7713333 Rege et al. May 2010 B2
7717981 LaBuda et al. May 2010 B2
7722700 Sprinkle May 2010 B2
7731782 Kelley et al. Jun 2010 B2
7740687 Reinhold, III Jun 2010 B2
7744676 Leitmayr et al. Jun 2010 B2
7744677 Barclay et al. Jun 2010 B2
7758051 Roberts-Haritonov et al. Jul 2010 B2
7758988 Keefer et al. Jul 2010 B2
7763098 Alizadeh-Khiavi et al. Jul 2010 B2
7763099 Verma et al. Jul 2010 B2
7792983 Mishra et al. Sep 2010 B2
7793675 Cohen et al. Sep 2010 B2
7806965 Stinson Oct 2010 B2
7819948 Wagner Oct 2010 B2
7828877 Sawada et al. Nov 2010 B2
7828880 Moriya et al. Nov 2010 B2
7854793 Rarig et al. Dec 2010 B2
7858169 Yamashita Dec 2010 B2
7862645 Whitley et al. Jan 2011 B2
7867320 Baksh et al. Jan 2011 B2
7902114 Bowie et al. Mar 2011 B2
7938886 Hershkowitz et al. May 2011 B2
7947118 Rarig et al. May 2011 B2
7947120 Deckman et al. May 2011 B2
7959720 Deckman et al. Jun 2011 B2
8016918 LaBuda et al. Sep 2011 B2
8034164 Lomax, Jr. et al. Oct 2011 B2
8071063 Reyes et al. Dec 2011 B2
8128734 Song Mar 2012 B2
8142745 Reyes et al. Mar 2012 B2
8142746 Reyes et al. Mar 2012 B2
8192709 Reyes et al. Jun 2012 B2
8210772 Gillecriosd Jul 2012 B2
8227121 Adams et al. Jul 2012 B2
8262773 Northrop et al. Sep 2012 B2
8262783 Stoner et al. Sep 2012 B2
8268043 Celik et al. Sep 2012 B2
8268044 Wright et al. Sep 2012 B2
8272401 McLean Sep 2012 B2
8287629 Fujita et al. Oct 2012 B2
8319090 Kitamura Nov 2012 B2
8337594 Corma Canos et al. Dec 2012 B2
8361200 Sayari et al. Jan 2013 B2
8361205 Desai et al. Jan 2013 B2
8377173 Chuang Feb 2013 B2
8444750 Deckman et al. May 2013 B2
8470395 Khiavi et al. Jun 2013 B2
8480795 Siskin et al. Jul 2013 B2
8512569 Eaton et al. Aug 2013 B2
8518356 Schaffer et al. Aug 2013 B2
8529662 Kelley et al. Sep 2013 B2
8529663 Reyes et al. Sep 2013 B2
8529664 Deckman et al. Sep 2013 B2
8529665 Manning et al. Sep 2013 B2
8535414 Johnson et al. Sep 2013 B2
8545602 Chance et al. Oct 2013 B2
8551444 Agnihotri et al. Oct 2013 B2
8573124 Havran et al. Nov 2013 B2
8591627 Jain Nov 2013 B2
8591634 Winchester et al. Nov 2013 B2
8616233 McLean et al. Dec 2013 B2
8657922 Yamawaki et al. Feb 2014 B2
8673059 Leta et al. Mar 2014 B2
8680344 Weston et al. Mar 2014 B2
8715617 Genkin et al. May 2014 B2
8752390 Wright et al. Jun 2014 B2
8778051 Weist, Jr. et al. Jul 2014 B2
8784533 Leta et al. Jul 2014 B2
8784534 Kamakoti et al. Jul 2014 B2
8784535 Ravikovitch et al. Jul 2014 B2
8795411 Hufton et al. Aug 2014 B2
8808425 Genkin et al. Aug 2014 B2
8808426 Sundaram Aug 2014 B2
8814985 Gerds et al. Aug 2014 B2
8852322 Gupta et al. Oct 2014 B2
8858683 Deckman Oct 2014 B2
8875483 Wettstein Nov 2014 B2
8906138 Rasmussen et al. Dec 2014 B2
8921637 Sundaram et al. Dec 2014 B2
8939014 Kamakoti et al. Jan 2015 B2
9005561 Leta Apr 2015 B2
9017457 Tammera Apr 2015 B2
9028595 Sundaram et al. May 2015 B2
9034078 Wanni et al. May 2015 B2
9034079 Deckman et al. May 2015 B2
9050553 Alizadeh-Khiavi et al. Jun 2015 B2
9067168 Frederick et al. Jun 2015 B2
9095809 Deckman et al. Aug 2015 B2
9108145 Kalbassi et al. Aug 2015 B2
9120049 Sundaram et al. Sep 2015 B2
9126138 Deckman et al. Sep 2015 B2
9162175 Sundaram Oct 2015 B2
9168485 Deckman et al. Oct 2015 B2
20010047824 Hill et al. Dec 2001 A1
20020053547 Schlegel et al. May 2002 A1
20020124885 Hill et al. Sep 2002 A1
20020162452 Butwell et al. Nov 2002 A1
20030041733 Seguin Mar 2003 A1
20030075485 Ghijsen Apr 2003 A1
20030129101 Zettel Jul 2003 A1
20030131728 Kanazirev et al. Jul 2003 A1
20030145726 Gueret Aug 2003 A1
20030170527 Finn et al. Sep 2003 A1
20030202918 Ashida et al. Oct 2003 A1
20030205130 Neu et al. Nov 2003 A1
20030223856 Yuri et al. Dec 2003 A1
20040099142 Arquin et al. May 2004 A1
20040118277 Kim Jun 2004 A1
20040118287 Jaffe Jun 2004 A1
20040197596 Connor et al. Oct 2004 A1
20040232622 Gozdawa Nov 2004 A1
20050109419 Ohmi et al. May 2005 A1
20050114032 Wang May 2005 A1
20050129952 Sawada et al. Jun 2005 A1
20050014511 Keefer et al. Jul 2005 A1
20050145111 Keefer et al. Jul 2005 A1
20050150378 Dunne et al. Jul 2005 A1
20050229782 Monereau et al. Oct 2005 A1
20050252378 Celik et al. Nov 2005 A1
20060017940 Takayama Jan 2006 A1
20060048648 Gibbs et al. Mar 2006 A1
20060049102 Miller et al. Mar 2006 A1
20060076270 Poshusta et al. Apr 2006 A1
20060099096 Shaffer et al. May 2006 A1
20060105158 Fritz et al. May 2006 A1
20060162556 Ackley et al. Jul 2006 A1
20060165574 Sayari Jul 2006 A1
20060169140 Lomax, Jr. Aug 2006 A1
20060169142 Rode et al. Aug 2006 A1
20060236862 Golden et al. Oct 2006 A1
20070084241 Kretchmer et al. Apr 2007 A1
20070084344 Moriya et al. Apr 2007 A1
20070222160 Roberts-Haritonov et al. Sep 2007 A1
20070253872 Keefer et al. Nov 2007 A1
20070261550 Ota Nov 2007 A1
20070261557 Gadkaree et al. Nov 2007 A1
20070283807 Whitley Dec 2007 A1
20080051279 Klett et al. Feb 2008 A1
20080072822 White Mar 2008 A1
20080128655 Garg et al. Jun 2008 A1
20080282883 Rarig et al. Nov 2008 A1
20080282884 Kelley et al. Nov 2008 A1
20080282885 Deckman et al. Nov 2008 A1
20080282886 Reyes et al. Nov 2008 A1
20080282887 Chance Nov 2008 A1
20080282892 Deckman et al. Nov 2008 A1
20080289497 Barclay et al. Nov 2008 A1
20080307966 Stinson Dec 2008 A1
20080314550 Greco Dec 2008 A1
20090004073 Gleize et al. Jan 2009 A1
20090014902 Koivunen et al. Jan 2009 A1
20090025553 Keefer et al. Jan 2009 A1
20090025555 Lively et al. Jan 2009 A1
20090037550 Mishra et al. Feb 2009 A1
20090071333 LaBuda et al. Mar 2009 A1
20090079870 Matsui Mar 2009 A1
20090107332 Wagner Apr 2009 A1
20090151559 Verma et al. Jun 2009 A1
20090162268 Hufton et al. Jun 2009 A1
20090180423 Kroener Jul 2009 A1
20090241771 Manning et al. Oct 2009 A1
20090284013 Anand et al. Nov 2009 A1
20090294366 Wright et al. Dec 2009 A1
20090308248 Siskin et al. Dec 2009 A1
20090314159 Haggerty Dec 2009 A1
20100059701 McLean Mar 2010 A1
20100077920 Baksh et al. Apr 2010 A1
20100089241 Stoner et al. Apr 2010 A1
20100186445 Minta et al. Jul 2010 A1
20100212493 Rasmussen et al. Aug 2010 A1
20100251887 Jain Oct 2010 A1
20100252497 Ellison et al. Oct 2010 A1
20100263534 Chuang Oct 2010 A1
20100282593 Speirs et al. Nov 2010 A1
20100288704 Amsden et al. Nov 2010 A1
20110011803 Koros Jan 2011 A1
20110020202 Gadkaree et al. Jan 2011 A1
20110031103 Deckman et al. Feb 2011 A1
20110067440 Van Aken Mar 2011 A1
20110067770 Pederson et al. Mar 2011 A1
20110146494 Desai et al. Jun 2011 A1
20110217218 Gupta et al. Sep 2011 A1
20110277620 Havran et al. Nov 2011 A1
20110291051 Hershkowitz et al. Dec 2011 A1
20110296871 Van Soest-Vercammen et al. Dec 2011 A1
20110308524 Brey et al. Dec 2011 A1
20120024152 Yamawaki et al. Feb 2012 A1
20120031144 Northrop et al. Feb 2012 A1
20120067216 Corma-Canos et al. Mar 2012 A1
20120152115 Gerds et al. Jun 2012 A1
20120222551 Deckman Sep 2012 A1
20120222552 Ravikovitch et al. Sep 2012 A1
20120222553 Kamakoti et al. Sep 2012 A1
20120222554 Leta et al. Sep 2012 A1
20120222555 Gupta et al. Sep 2012 A1
20120255377 Kamakoti et al. Oct 2012 A1
20120308456 Leta et al. Dec 2012 A1
20120312163 Leta et al. Dec 2012 A1
20130061755 Frederick et al. Mar 2013 A1
20130225898 Sundaram et al. Aug 2013 A1
20130276634 McKenna Oct 2013 A1
20130312605 Hufen Nov 2013 A1
20140013955 Tammera et al. Jan 2014 A1
20140026750 Jain Jan 2014 A1
20140060326 Sundaram et al. Mar 2014 A1
20140157986 Ravikovitch et al. Jun 2014 A1
20140208797 Kelley et al. Jul 2014 A1
20140216254 Tammera et al. Aug 2014 A1
20150013377 Oelfke Jan 2015 A1
20150068397 Boulet et al. Mar 2015 A1
20150101483 Perry Apr 2015 A1
20150196870 Albright et al. Jul 2015 A1
20150328578 Deckman et al. Nov 2015 A1
20160023155 Ramkumar et al. Jan 2016 A1
20160096137 House Apr 2016 A1
20160129433 Tammera et al. May 2016 A1
20160166972 Owens et al. Jun 2016 A1
20160236135 Tammera et al. Aug 2016 A1
20160332105 Tammera et al. Nov 2016 A1
20160332106 Tammera et al. Nov 2016 A1
20170056810 Johnson et al. Mar 2017 A1
20170056813 McMahon et al. Mar 2017 A1
20170056814 Marshall et al. Mar 2017 A1
20170056815 Nagavarapu et al. Mar 2017 A1
20170113173 Fowler et al. Apr 2017 A1
20170113175 Fowler et al. Apr 2017 A1
20170113176 Fowler et al. Apr 2017 A1
20170136405 Ravikovitch et al. May 2017 A1
20170266604 Tammera et al. Sep 2017 A1
20180169565 Brody Jun 2018 A1
Foreign Referenced Citations (29)
Number Date Country
2297590 Sep 2000 CA
2237103 Dec 2001 CA
0225736 Jun 1987 EP
0257493 Feb 1988 EP
0262934 Apr 1988 EP
0426937 May 1991 EP
1018359 Jul 2000 EP
1045728 Nov 2000 EP
1577561 Sep 2005 EP
1674555 Jun 2006 EP
2823872 Jan 2015 EP
2924951 Jun 2009 FR
58-114715 Jul 1983 JP
59-232174 Dec 1984 JP
60-189318 Dec 1985 JP
2002-253818 Oct 1990 JP
04-180978 Jun 1992 JP
2011-169640 Jun 1999 JP
2011-280921 Oct 1999 JP
2000-024445 Aug 2001 JP
2002-348651 Dec 2002 JP
2006-016470 Jan 2006 JP
2006-036849 Feb 2006 JP
2008-272534 Nov 2008 JP
WO2002024309 Mar 2002 WO
WO2002073728 Sep 2002 WO
WO2005090793 Sep 2005 WO
WO2011139894 Nov 2011 WO
WO2012032325 Mar 2012 WO
Non-Patent Literature Citations (15)
Entry
Patcas, F. C. et al. (2007) “CO Oxidation over Structured Carriers: A Comparison of Ceramic Forms, Honeycombs and Beads,” Chem. Engineering Science, v. 62, pp. 3984-3990.
Rezaei, F. et al. (2009) “Optimum Structured Adsorbents for Gas Separation Process,” Chem. Engineering Science, v. 64, pp. 5182-5191.
Richardson, J. T. et al. (2000) “Properties of Ceramic Foam Catalyst Supports: Pressure Drop,” Applied Catalysis A: General v. 204, pp. 19-32.
Stemmet, C. P. et al. (2006) “Solid Foam Packings for Multiphase Reactors: Modelling of Liquid Holdup and Mass Transfer,” Chem. Engineering Research and Design, v. 84(A12), pp. 1134-1141.
ExxonMobil Research and Engineering and QuestAir (2008) “A New Commercialized Process for Lower Cost H2 Recovery—Rapid Cycle Pressure Swing Adsorption (RCPSA),” Brochure, 4 pgs.
Farooq, S. et al. (1990) “Continuous Countercurrent Flow Model for a Bulk PSA Separation Process,” AIChE J., v36 (2) p. 310-314.
FlowServe (2005)“Exceeding Expectations, US Navy Cuts Maintenance Costs With Flowserve GX-200 Non-Contacting Seal Retrofits,” Face-to-Face, v17.1, 8 pgs.
GE Oil & Gas (2007) “Dry Gas Seal Retrofit,” Florene, Italy, www.ge.com/oilandgas, 4 pgs.
Hopper, B. et al. (2008) “World's First 10,000 psi Sour Gas Injection Compressor,” Proceedings of the 37th Turbomachinery Symosium, pp. 73-95.
Kikkinides, E. S. et al. (1995) “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States,” Ind. Eng. Chem. Res. V. 34, pp. 255-262.
Rameshni, Mahin “Strategies for Sour Gas Field Developments,” Worley Parsons-Brochure, 20 pgs.
Reyes, S. C. et al. (1997) “Frequency Modulation Methods for Diffusion and Adsorption Measurements in Porous Solids,” J. Phys. Chem. B. v101, pp. 614-622.
Ruthven, D. M. et al. (1996) “Performance of a Parallel Passage Adsorbent Contactor,” Gas. Sep. Purif., vol. 10, No. 1, pp. 63-73.
Stahley, J. S. (2003) “Design, Operation, and Maintenance Considerations for Improved Dry Gas Seal Realiability in Centrifugal Compressors,” Dresser-Rand, Tech. Paper 134, 15 pages.
Suzuki, M. (1985) “Continuous-Countercurrent-Flow Approximation for Dynamic Steady State Profile of Pressure Swing Adsorption” AIChE Symp. Ser. v81 (242) pp. 67-73.
Related Publications (1)
Number Date Country
20180169617 A1 Jun 2018 US
Provisional Applications (2)
Number Date Country
62437327 Dec 2016 US
62585574 Nov 2017 US