The present disclosure relates generally to gas in liquid diffusion, and in particular to the delivery of good tasting wine and the online preparation of carbonated beverages.
Whether the bottle of wine is expensive or not, people want their wine to taste good. It is known to aerate wine, or to let it breathe, before drinking the wine. And it is generally understood that just about any wine will benefit from proper aeration. One problem with attempting to let wine, especially red wine, breathe is that the process takes time. In a social setting, for example at a home party or celebration, wine bottles may be opened at a pace that is not conducive to letting bottles sit open for extended amounts of time. In a restaurant setting, a similar problem can occur when there may simply be too many different bottles to be opened to maintain a primary set of bottles for pouring and a secondary set of bottles that are breathing, or being readied for pouring. The result is that more often than not, wine is not properly aerated before it is consumed.
Carbonated beverages are also known. Carbonated beverages can contain ingredients that are not considered to be healthy. Carbonated beverages also produce a large amount of metal and plastic waste.
Improved apparatuses and methods for aerating wine and for preparing carbonated beverages are needed accordingly.
The present disclosure in one primary aspect provides devices or apparatuses for aerating wine, that is, letting wine breathe before it is consumed. The apparatuses are portable, light weight, cost effective and may prevent spills if the wine bottle should tip inadvertently. The devices can aerate an entire bottle of wine in a very short period of time, for example, on the order of seconds. The devices can alternatively aerate a single glass of wine. The devices can aerate both red and white wine very effectively. In one embodiment, the device is spatially adjustable within the bottle so that the user can aerate only a glass or two's worth of wine, so that the rest of the wine can be recapped or recorked for later consumption. Further, the devices are not limited to the effective aeration of wine but can also effectively aerate any liquid containing tannins, such as liquids aged in a wood or oak barrel. For example, spirits such as bourbon, brandy, cognac, gin, liqueur, rum, scotch, tequila, whiskey and other liquids aged in wooden or oak barrels and are easily and effectively aerated by the devices of the present disclosure.
Thus it is expressly contemplated that in a new aeration methodology of the present disclosure, an aerator is structured so that it can be used to aerate a spirit, operated in a cleaning liquid to remove residual spirit from the aerator, and then used to aerate wine, and vice-versa, over and over again. That is, the air can be pumped to a bottle or glass of wine, the aerator can then be inserted into a glass of water or carbonated water and operated to clean the wine from the aerator, after which the aerator can be used immediately with the same or different wine, or with another type of beverage.
In one embodiment, the aerating apparatus includes a tube, such as a metal, plastic or rubber tube that is inserted into the wine bottle for the delivery of air to the wine. The tube can for example be a 0.250 inch (about 6 millimeter (“mm”)) outside diameter tube stainless steel tube, such as type 304 or 316 stainless steel. The tube can have a length for example of about ten to eighteen inches (about 25 to 46 centimeters (“cm”). It should be noted that the dimensions listed herein serve as a working examples and are not intended to limit the present disclosure to the given dimension(s)).
The tube can have telescoping sections, such as two or three telescoping sections. The telescoping sections include at least one larger outer diameter section and at least one smaller outer diameter section. The smaller outer diameter section slides or telescopes within the larger outer diameter section, so as to be settable at any length within a minimum overall length and a maximum overall length. The telescoping sections each include a collar, the larger outer diameter section having a collar located on its inner surface, and the smaller outer diameter section including as collar located on its outer surface. The collars, e.g., nylon collars, serve as seals and promote smooth sliding between the telescoping sections. As illustrated below, the collars also keep the movement between the telescoping sections concentric, so that the sections do no cock against one another. With a two section telescoping aerator, when the collars are pushed apart as far as possible, the telescoping aerator is at a minimum overall length. When the collars are abutted together, the telescoping aerator is at a maximum overall length. With a three section telescoping aerator, when for example two outer tubes meet each other over an inner tube, the three section telescoping aerator is in its most contracted condition. When the two outer tubes are pulled away from each other to the ends of the smaller diameter inner tube, the alternative three section telescoping aerator is in its most expanded condition.
The distal end of the tube (the end inserted into the wine) includes or is attached to an air diffuser. The air diffuser is in one embodiment a perforated, sintered or porous structure that receives air from the distal end of the tube and disperses the air in multiple directions, e.g., in a plume-line manner, into the wine. In one embodiment, the diffuser is a metal or stainless steel (e.g., type 304 or 316 stainless steel) porous or sintered metal cup, whose pores or openings can be less than one-hundred microns in average diameter, e.g., ten, five, two, or less than one micron. The metal diffuser can be threaded for threaded engagement with a distal end of the insertion tube. In another embodiment, the diffuser is an airstone used typically with fish tanks to introduce or infuse air into the tank water. The material for the airstone diffuser can be a lightweight wood, plastic, composite or cork material. In a further alternative embodiment, the material for the diffuser is a porous plastic, e.g., a food grade plastic.
Any of the diffuser materials can be continuous and formed with the perforations or pores or be made of multiple plies to have the perforations or pores. The perforations or pores are also small enough in one embodiment, such that the forcing of air through the diffuser causes the air bubbles entering the wine to be very small, e.g., to be microbubbles. The small bubbles diffuse much more easily and effectively into the wine. The perforations or pores can also be small enough such that wine or liquid does not enter the diffuser when the tube and diffuser are placed into the wine or liquid. The hydrophobic nature of the diffuser allows air to be located within the diffuser and tube at the time of pump actuation, which helps to deliver air smoothly into the wine.
A cork or stopper may be attached to or formed with the tube and is oriented, such that the stopper can be sealingly and releaseably inserted into the upper lip of the bottle to position the distal end of the air tube and diffuser at a desired elevational location within the bottle. The stopper can have a standard wine bottle cork shape and be made of cork or be made of another material, such as rubber or plastic. The stopper can be formed with, e.g., molded with, the tube. The stopper can include a hole through which the tube is inserted, e.g., press-fittingly inserted. The tube is inserted through the hole at a distance along the tube that sets the diffuser at a desired location within the bottle when the cork is sealed to the lip of the bottle.
In one embodiment, the stopper is permanently attached, e.g., mechanically and/or adhesively attached, to the tube at a position on the tube that places the distal end of the tube towards the bottom end of the bottle when the stopper is inserted into the lip of the bottle. In such position, air dispersed from the distal end of the tube and diffuser is diffused into the wine at the bottom of the bottle. As air is introduced into the wine, the lighter air is forced upwards, such that the air is diffused throughout the entire bottle of wine. Again, the stopper can alternatively be formed with the tube.
In another embodiment, the stopper is moveably attached, e.g., moveably press-fitted, to the tube, such that the cork can be slid to different positions along the tube and held releaseably at each of the positions. The positions are set so that the user can select to aerate the entire bottle of wine at once or to alternatively aerate only one or more glass of wine. Thus one of the positions is the permanently attached full bottle aeration position discussed above. A second position can be about halfway between the first position and the distal end of the tube. The second position aerates half the wine bottle. Assuming an average bottle of wine to contain four glasses, the second position would then aerate about two glasses of wine. A third position would be located approximately between the second position and the diffuser and would aerate a single glass of wine within the bottle. Each position, e.g., the three positions, can be marked by a non-dissolvable coloration or physical mark. Alternatively or additionally, each of the positions can be designated by a protrusion or pair of protrusions, such as radial protrusions extending around the tubing, which help to hold the cork in a desired one of the positions. For example, the protrusions can create a slight snap-fitting location for the cork at each of the positions.
It is contemplated not to provide a stopper in various embodiments. This allows air injected via the aerator to flow through the wine or spirit and out of the bottle.
An air pump is provided at the proximal end of the tube, opposite the diffuser. The pump can be an electric air pump that runs off of house electrical or alternating current power. The electric pump can alternatively run off of direct current battery power, e.g., via rechargeable and/or replaceable batteries. In one preferred embodiment, however, the pump is a handheld air pump. The handheld air pump is in one embodiment a squeezable rubber or plastic bulb that allows the user to manually introduce a volume of air into the tube, through the diffuser, and into the wine with each squeeze. The handheld air pump can be a known type that is used for example for blood pressure cuffs, to blast air to clean camera lenses, or as a portable sports ball pump. The pump can be plastic or rubber, such as latex polyvinyl, chloride (“PVC”) or silicone, and include a threaded insert (e.g., metal or plastic) that threads onto the proximal end of the tube.
The pump has an outlet that connects directly to the proximal end of the tube, e.g., via a threaded, compression or shrink wrap connection. An o-ring seal and/or a sealing adhesive may be used additionally to connect the pump outlet to the tube. Alternatively, the outlet of the pump can be fitted to a needle that pierces a pierceable seal fitted into the proximal end of the tube. The seal can be a pierceable, e.g., silicone, plug or be a slitted or otherwise pierceable septum. The pump can also include a threaded plug or insert as illustrated below for stiffening the pump and/or for sealing threads to the pump.
The hand operated pump is lightweight and inexpensive. The light weight helps to prevent the bottle from tipping when the aeration device is inserted into the bottle. Also, if the bottle should tip by accident, the stopper if provided will prevent any wine from spilling out of the bottle. The diffuser is also impermeable to water in one embodiment, such that wine cannot back up into the tube or the pump should the bottle be spilled by accident. Also as a result of the diffuser being generally impermeable to liquid or wine, when a negative pressure is applied by the pump, e.g., via an electric motor or expanding bulb pumping action, the pump pulls in air from ambient as opposed to sucking wine into the tube via the diffuser.
The present disclosure also sets forth multiple embodiments for a single glass aerator using the pump, tube and diffuser of using the full bottle aerator. The bulb pump is structured in various ways to be set on a table or other structures between uses and to support the tube and diffuser vertically above the bulb pump.
A method using any of the aerators of the present disclosure to promote the sale of wine is also disclosed. Aerator sales are used to promote a website or marketplace at which the wine or spirits may be sold. The website or marketplace hosts videos of different wines or spirits being aerated by any of the aerators of the present disclosure. Features and aspects of each of the wines or spirits are discussed in the video in the context of how the aerator brings out and enhances the flavor of the wines. The video is accompanied by a shopping cart or similar mechanism on the website or marketplace that allows each of the wines, discussed and analyzed after being aerated by one of the aerators of the present disclosure, to be selected for purchase. The sale of wine or spirits may be accompanied with the sale of one of the aerators discussed herein.
The present disclosure in another primary aspect also provides a carbonated beverage preparation apparatus. In an embodiment, the aerator's bulb pump threads onto the tube. The aerator's bulb pump can accordingly be removed from the tube. The bulb is replaced by a carbon dioxide (“CO2”) injector, which can be attached directly to (e.g., threaded to) the tube or be attached to the injector tube via a secondary tube, such as a flexible plastic tube. The carbonated beverage preparation apparatus can be provided as a standalone apparatus and does not have to be a changeover device from the aerator. For example, the injector tube of the beverage preparation apparatus can be shorter than for the wine aerator.
The CO2 injector is in one embodiment, connected to and carried with the injector tube. A cap, such as a threaded and/or gasketed cap, is slid sealingly over the injector tube before the CO2 injector is connected to the injector tube. The cap threads onto or otherwise seals to a bottle or container. The container carries a liquid, such as water, and mixing ingredients, such as fruit and/or juice concentrate. When the CO2 injector is actuated, CO2 gas is flowed from the injector, through the tube and diffuser, into the liquid and whatever mixing consumables are present in the liquid. The CO2 gas carbonates the liquid and helps to disperse and mix flavors from the mixing consumables into and with the liquid in the bottle or container. It is believed that the diffuser will smooth the delivery of CO2 gas into the liquid enough so that the bottle or container does not have to be capped or sealed and can instead be an open container, such as a glass.
The CO2 injector can have a pressure or flow reducer placed upstream of the diffuser to lower the pressure or flow of CO2 reaching the diffuser. It is contemplated to use the injector additionally to feed land-based (e.g., cut flowers in water) and aquatic plant life.
In light of the present disclosure, it is accordingly an advantage of the present disclosure to provide a wine or spirits aerator or breathing apparatus that is effective to aerate an entire bottle of wine or spirits in a short period of time.
It is another advantage of the present disclosure to provide a wine or spirits aerator or breathing apparatus that is cost effective.
It is a further advantage of the present disclosure to provide a wine or spirits aerator or breathing apparatus that is lightweight.
It is yet another advantage of the present disclosure to provide a wine or spirits aerator or breathing apparatus that is in one implementation adjustable so that the user can selectively aerate an entire bottle of wine or some quantity less than an entire bottle, such as half a bottle or one glass.
It is yet a further advantage of the present disclosure to provide a wine or spirits aerator or breathing apparatus that is in one implementation manually powered such that the apparatus is highly portable and does not require power.
It is still another advantage of the present disclosure to provide a wine aerator or spirits or breathing apparatus that is telescopically expandable and contractible to a desired length for use and for convenient transport.
It is moreover and advantage of the present disclosure to provide an aerator that can aerate red, white wines or any spirit aged in a barrel.
Moreover, it is an advantage of the present disclosure to provide an aerator that can aerate glasses or bottles of both wines and spirits.
Still further, it is an advantage of the present disclosure to provide a single glass aerator that can be set quickly on a table between uses and support the liquid contacting portion of the aerator such that it does not contact the table.
It is still a further advantage of the present disclosure to provide a wine distribution marketing method that uses sales of the aerators as a way to promote a website or marketplace that shows wines for purchase being aerated by the aerators of the present disclosure.
Yet another advantage of the present disclosure is to provide a carbonated beverage preparation apparatus, which allows carbonated beverages to be prepared instantaneously, as needed.
Yet a further advantage of the present disclosure is to provide a carbonated beverage preparation apparatus that is adaptable from a wine aeration apparatus and vice-versa.
Further still, an advantage of the present disclosure is to provide a carbonated liquid apparatus for feeding land-based or aquatic plants.
Additional features and advantages are described herein, and will be apparent from, the following Detailed Description and the figures.
Referring now to the drawings and in particular to
Tube 12 includes one or more zones 14a, 14b, 14c, etc., for receiving stopper 40. In an embodiment, only a single zone is provided, e.g., zone 14a, and stopper is fixed at that zone. In another embodiment, no discernable zones are provided and tube 12 can be sealingly slid within stopper 40 to a desired position. In this manner, there are many, many zones for receiving stopper 40 along tube 12, and the user can feed tube 12 through stopper 40 until diffuser 20 hits the bottom of the wine bottle, for example, to ensure that the entire bottle of wine is quickly aerated.
In the illustrated embodiment of
In the illustrated embodiment, the entire zone 14a, 14b or 14c is marked, so that the user moves tube 12 within cork or stopper 40 until the marked zone is completely out of view or hidden, at which time the user knows that the tube is set properly at the particular zone. In alternative embodiments, the user moves tube 12 within stopper 40 until a zone marker on the tube meets with the top or bottom of stopper 40. In any case, any marker can be a coloration and/or texture added to tube 12. The coloration, e.g., printed, painted, powder-coated or applied via a colored insert, can be applied to the inside or outside of tube 12. Applying the coloration to the inside of tube 12, e.g., a clear, semi-clear or white tube, prevents any contact between the wine and the coloration, which may be desirable to consumers.
In the illustrated embodiment, circular or semi-circular stopper holding members or ribs 16 are placed on the proximal (towards pump 30) and distal (towards diffuser 20) ends of each zone setting 14a, 14b and 14c. Ribs 16 help the user to know when tube 12 is placed properly so that stopper 40 resides at one of the receiving zones. Ribs 16 also help hold tube 12 fixed at the selected zone 14a, 14b or 14c relative to stopper 40. While two ribs 16 are illustrated for each zone 14a, 14b and 14c in
As illustrated in
Diffuser 20 in one embodiment is made of a sintered, porous or perforated material. Diffuser 20 can be layered to have or formed to have small diffusing holes, openings or apertures. Diffuser 20 can alternatively be of a polymer material, wood, cork, rubber, metal or combinations thereof. Diffuser 20 can be plastic and be formed with, e.g., injection molded with, tube 12. Diffuser 20 can be an airstone. The airstone can be one used to deliver air into water, typically used for fish tanks. Diffuser 20 causes the air delivered through tube 12 to the diffuser to be separated into small bubbles, such as microbubbles, when delivered to the wine. The small bubbles help the air to mix with and diffuse into the wine as opposed to simply migrating to the top of the bottle, without mixing.
In one embodiment, diffuser 20 is a stainless steel (e.g., type 304 or 316 stainless steel) porous cup or porous capped tube segment. The pore size can, for example, be less than one-hundred microns, such as ten microns, five microns, two microns, one micron or less than one micron, such as a half-micron or fraction of a micron. Smaller pore sizes make smaller air bubbles, which helps the air to diffuse into the wine. Diffuser 20 is in one embodiment generally impermeable to liquids. If diffuser 20 is left within a full bottle of wine for an extended period of time, the diffuser may eventually allow wine to seep through its walls. However, diffuser 20 is generally hydrophobic and will not allow wine or liquids to enter quickly. Air will thus be present in diffuser 20 and tube 12 when pump 30 is actuated, which is believed to further smoothen air introduced into the wine or liquid.
The pump can be an electric, e.g., AC or DC line or battery powered air pump, such as an air pump used with fish tanks. The pump is in one preferred embodiment a hand or air pump 30 as illustrated in
In a further alternative embodiment, proximal end 18a of tube 12 is connected in a seal-tight manner to attachment end 34 of pump 30 via a shrink-wrap fitting. Here, proximal end 18a of tube 12 can abut against attachment end 34 of pump 30, wherein the shrink-wrap fitting is heated and shrunken in a seal-tight manner about the abutted interface between the ends. Alternatively, one of the ends 18a or 34 is a male end that fits into the other of the ends 18a or 34, which is a female end. The shrink-wrap fitting is again heated and thus shrunken in a seal-tight manner about the male/female interface between the ends. In an embodiment, the shrink-wrap fitting eliminates the need for threads or compression connectors.
Air intake end 36 of air pump 30 includes a hole, valve or septum that opens when squeezable portion 32 is squeezed closed to allow air to enter bulb air pump 30. That hole, valve or septum closes when the bulb air pump is full of air or when portion 32 is squeezed, so that when squeezable portion 32 is squeezed closed, air is forced out attachment end 34 of pump 30, through tube 12 and diffuser 20, into the wine held within the wine bottle. In an embodiment, air intake end 36 of air pump 30 includes a check valve that allows air to inflate squeezable portion after being squeezed closed but prevents air from leaving air intake end 36 while squeezable portion 32 is being squeezed. The small pores of diffuser 20 also make it much easier for air to enter intake end 36 of pump 30 as opposed to diffuser 20, eliminating the need for a check valve at attachment end 34 of pump 30.
In the illustrated embodiment of
Indicia 38 can include other instructions or information, such as how many squeezes of air pump 30 to make for a particular type of wine. Indicia 38 can alternatively or additionally include information for properly aerating a single glass of wine, versus a half bottle of wine, versus a full bottle of wine for example. Indicia 38 can alternatively include washing instructions and/or logo or brand information, such as the listing of a corresponding website or marketplace. In one embodiment, aerator 10 can be washed in a standard dishwasher or sink. Still further alternatively, indicia 38 can include advertising or logo information for a company, event or other entity that purchases multiple aerators 10 for distribution as gifts, favors, or as part of a package.
Stopper 40 can be made of cork, plastic, rubber and combinations thereof. Stopper 40 includes a hole or bore 42 (
Stopper 40 can be tapered as illustrated to be releaseably inserted into an upper lip of the wine bottle so that the wine bottle is sealed by the stopper. Stopper 40 and aerator 10 can be removed readily from the wine bottle upon completion of the aeration so that the wine can then be consumed. Aerator 10 can then be inserted into a second wine bottle, and so on.
In one embodiment, attachment end 34 of pump 30 resides at, e.g., touches, the upper or proximal end of stopper 40 when the stopper is fixed to or moveably placed at full bottle aeration zone 14a. Or, the attachment end 34 of pump 30 can be directly adjacent to the upper or proximal end of stopper 40 when the stopper is fixed to or moveably placed at full bottle aeration zone 14a. Doing so limits the moment arm between stopper 40 and pump 30, reducing the ability of the pump to topple the wine bottle. If the bottle does topple, stopper 40 should prevent wine from spilling out of the wine bottle, and diffuser 20 should prevent wine from entering tube 12 or pump 30.
Referring now to
Air bubbles diffuse into the wine on a rising basis when aerator 10 is set at intermediate aeration zone 14b or minimum aeration zone 14c relative to stopper 40 and bottle 50. Thus, if the wine is poured quickly after aerator 10 is set and used at intermediate aeration zone 14b or minimum aeration zone 14c, most of the air introduced by pump 30 may be poured out of bottle 50 when the desired number of wine glasses are poured. If the wine bottle is recorked quickly after pouring, the remaining wine should remain in the bottle relatively non-aerated.
It should be appreciated that in
Referring now to
Using stopper 40 of
As illustrated in
Referring now to
Vent apertures 44 allow air, or a certain percentage thereof, coming from pump 30, through the wine and migrating into the top of bottle 50 to vent to atmosphere. Air pressure at the top of bottle 50 accordingly does not build or builds minimally. Here again, indicia 38 can tell the user how many squeezes of pump 30 to make and/or how long to leave the bottle capped via stopper 40.
Referring now to
In the illustrated embodiment, threaded distal end 18b receives diffuser 20, which can likewise be made of type 304 or 316 stainless steel. Diffuser 20 is a porous cup or porous capped tube segment, formed via any known method, such as via a sintered or powdered metal process. The pore size can, for example, be less than one-hundred microns, such as ten microns, five microns, two microns, one micron or less than one micron, such as a half-micron or a fraction of a micron. Smaller pore sizes make smaller air bubbles, which helps the air to diffuse into the wine.
As illustrated, cup diffuser 20 has an open, threaded end 24a and a distal capped end 24b. Open threaded end 24a includes a female thread sized to threadingly and releaseably engage distal male threaded end 18b. Threaded end 24a may accordingly have a female ¼-20 straight thread to mate with tube 12. Finer threads, such as ¼-28 or ¼-32 straight threads or the metric equivalent may be used alternatively. If tube 12 is 0.250 inch (6.4 mm) outer diameter, the outer diameter of diffuser 20 can be 0.375 inch (9.5 mm). The inner diameter of threaded end 24a prior to it being threaded can be 0.196 inch (5.0 mm). The length of diffuser 20 is in one embodiment one inch (25.4 mm), 0.250 inch (6.4 mm) of which is threaded. The total length of tube 12 can be 11.25 inches (28.6 cm), so that when the one inch (25.4 mm) diffuser is threaded onto tube 12, the total length of assembled tube 12 and diffuser 20 is one foot (30.5 cm). Capped end 24b can be flat or rounded. Threaded cup diffuser 20 threads onto and off of tube 12 for thorough cleaning of tube 12 and diffuser 20, and for easy reengagement.
In an alternative embodiment, the porous metal cup diffuser is welded to distal end 18b of diffuser, which now does not need to be threaded. Here, the outer diameters of tube 12 and diffuser 20 can be the same. The wall thicknesses of the tube and diffuser can also be thinner because the tube walls do not need to support threads. The overall outside diameter of the tube and diffuser can likewise be smaller, e.g., 0.188 inch (4.8 mm). A smaller diameter tube and diffuser are desirable because less wine is displaced via the insertion of tube 12 and diffuser 20.
Bulb pump 30 for aerator 110 can be any of the bulbs including all alternatives for bulb 30 described above in connection with aerator 10. As illustrated in
In one embodiment, female threaded insert 134 includes a flange 136 at its tube receiving end. Bulb insertion portion 138 of female threaded insert 134 is sized to press-fit into attachment end 34 of pump 30 and includes knurls or other mechanical obstructions that resist the turning of female threaded insert 134 within the attachment end 34 of pump 30. However, if one overtightens tube 12 into female threaded insert 134, tube 12 and threaded insert 134 will collectively turn within the, e.g., plastic or rubber attachment end 34 of pump 30. If so, flange 136 will prevent female threaded insert 134 from threading or sliding through attachment end 34 of pump 30 and extending into squeezable portion of pump 30. It is also contemplated to allow the user to pull tube 12 and female threaded insert 134 out of attachment end 34 of pump 30, by accident or on purpose, e.g., for cleaning, without permanently damaging aerator 110. After cleaning, female threaded insert 134 can be press-fitted again into attachment end 34 of pump 30, rendering aerator 10 fully operational. The press-fit of attachment end 34 to bulb insertion portion 138 of female threaded insert 134 is strong enough, even after repeated press-fittings of insert 134 into pump 30, such that insert 134 will not spin within bulb 30 when it is attempted to unthread tube 12 from insert 134. It is believed that the above configuration allows for the over-tightening and the undue pushing or pulling of tube 12 relative to bulb 30 without damaging aerator 10, providing a robust and long lasting device.
Referring now to
Bulb pump 30 for aerator 210 can be any of the bulbs including all alternatives for bulb 30 described above in connection with aerators 10 and 110. As illustrated in
First or proximal tube segment 212a is telescopingly engaged with second or distal tube segment 212b to form an overall tube 212. Tube segments 212a and 212b when fully extended relative to each other can be of approximately the same length as tubes 12 of aerators 10 and 110. Alternatively, the overall fully extended length of tubes 212a and 212b can be longer than tubes 12 of aerators 10 and 110. For example, each of tube segments 212a and 212b can be approximately the same length as tubes 12 of aerators 10 and 110, effectively doubling the overall length from that of aerators 10 and 110. Thus another use for telescoping aerator 210 is for larger bottles of wine, such as magnums of wine. A single tube 12 can also be made larger for such applications.
First tube segment 212a terminates at its distal end with an external collar 216a that is affixed to the outside diameter of tube segment 212a. Similarly, second tube segment 212b begins at its proximal end with an internal collar 216b affixed to the inside diameter of tube segment 212b. Collars 216a and 216b are in one embodiment of the same internal and external diameter and are sized to allow for slidingly sealed contact between tube segments 212a and 212b. Collars 216a and 216b can be press-fitted and/or adhered to their respective tube segments 212a and 212b.
Tube segment 212a can be a stainless steel, e.g., type 304 or 316 stainless steel tubing having an outer diameter of 0.250 inch (6.4 mm) or be of a like metric size, such as a six mm outer diameter tube size. In the illustrated embodiment, proximal end 218a is male threaded. For example, the threads can be ¼-20 straight male threads. If a metric tube is provided, the male threads are of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight threads or the metric equivalent may be used alternatively. Tube segment 212a is of a suitable thickness to receive threads. For example, the 0.250 inch (6.4 mm) outer diameter tube can have a 0.065 inch (1.7 mm) thick wall, leaving a 0.120 inch (3.0 mm) hole through which pumped air travels.
Tube segment 212b can likewise be a stainless steel, e.g., type 304 or 316 stainless steel tubing having an outer diameter of 0.375 inch (9.5 mm) or be of a like metric size, such as a nine or ten mm outer diameter tube size. In the illustrated embodiment, distal end 218b is female threaded. For example, the threads can be ¼-20 straight female threads. If a metric tube is provided, the female threads are of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight threads or the metric equivalent may be used alternatively. Tube segment 212b, at least at distal end 218b, is of a suitable thickness to receive threads. For example, the 0.375 inch (9.5 mm) outer diameter tube can have an (integrally formed or added by an insert) inner diameter at distal end 218b of 0.196 inch (5.0 mm), which is suitable for female ¼-20 straight female threads. Finer threads, such as ¼-28 or ¼-32 straight threads or the metric equivalent may be used alternatively. The remainder of tube segment 212b can be of a thinner wall thickness, such as 0.031 inch (0.80 mm), leaving an inner diameter for all but distal end 218b of tube segment 212b of 0.313 inch (8.0 mm). In an embodiment, a threaded insert, such as threaded insert 134, which can have an end-of-travel flange 136, can be inserted into and attached permanently to distal end 218b of tube segment 212b. Here, tube segment 212b can be of a uniform inner diameter, e.g., 0.313 inch (8.0 mm) inner diameter, and receive threaded insert 134 at its distal end 218b, the threaded insert being sized to attach permanently into a 0.313 inch (8.0 mm) inner diameter metal tube.
The 0.313 inch (8.0 mm) inner diameter of tube segment 212b (except for threaded end 218b) slides over the 0.250 inch (6.4 mm) tube segment 212a, leaving a 0.031 inch (0.80 mm) gap G (
Collars 216a and 216b can be made of metal, plastic or rubber and in one embodiment are nylon. A smooth, tough but slightly compressible or pliable material, such as nylon, is a good material for collars 216a and 216b. If the material of collars 216a and 216b is more compliant or compressible, the thickness of collars 216a and 216b may be slightly bigger than the gap G distance (e.g., ten percent bigger), so that collars 216a and 216b ensure a seal is formed at two places between the inner diameter tube segment 212b and the outer diameter of tube segment 212a. If the material of collars 216a and 216b is instead more rigid and incompressible, the thickness of collars 216a and 216b may be the same as the gap G distance or even slightly smaller than the gap G distance (e.g., ten percent smaller), so that it is ensured that inner diameter tube segment 212b can readily slide along the outer diameter of tube segment 212a and that collars 216a and 216b do not present undue resistance to such sliding.
Collars 216a and 216b are of a sufficient length (e.g., 0.250 inch (6.35 mm), 0.375 inch (9.53 mm) or 0.500 inch (12.7 mm)), such that tube segments 212a and 212b are stable relative to each other, e.g., do not cock or pivot relative to each other, even when tube segments 212a and 212b are fully extended. The porous structure of diffusers 20a and 20b enables air to be squeezed or pushed out of the diffusers when tube segments 212a and 212b are retracted or pushed together. The porous structure of diffusers 20a and 20b also enables air to be pulled in through the diffusers when tube segments 212a and 212b are expanded or pulled apart. The user therefore does not have to fight unduly against a build-up of positive pressure within tube segments 212a and 212b when retracting the segments or negative pressure within tube segments 212a and 212b when expanding the segments. To prevent wine or other liquid from being sucked into aerator 210 when tube segments 212a and 212b are pulled apart or expanded, it is contemplated to provide instructions to the user not to do so when diffuser 20a or 20b is inserted into wine or other liquid. Nevertheless, overall tube 212 can be removed from bulb pump 30 and/or diffuser 20a or 20b can be removed from overall tube 212 and reassembled easily to allow any liquid trapped within overall tube 212 to be drained and to thereafter thoroughly clean and disinfect the inside of overall tube 212.
The mode of providing the thickened, female threaded distal end 218b of distal tube segment 212b can dictate how collars 216a and 216b are fixed to tube segments 212a and 212b, respectively. For example, tube segment 212b may be provided originally as an overall thickened tube. For example, tube segment 212b can be provided originally as a 0.375 inch (9.5 mm) outer diameter tube with an inner diameter throughout of 0.196 inch (5.0 mm), which is suitable for forming ¼-20 female threads (or ¼-28 or ¼-32 straight threads or the metric equivalent) as has been described herein. The 0.196 inch (5.0 mm) inner diameter can then be drilled or bored out to 0.313 inch (8.0 mm) for all of tube segment 212b except the distal end 218b of distal tube segment 212b, which can be left as 0.196 inch (5.0 mm) to receive the ¼-20 female threads (or ¼-28 or ¼-32 straight threads or the metric equivalent).
If tube segment 212b is provided originally as an overall thickened tube, or if the diffuser is welded or otherwise permanently affixed to distal end 218b of distal tube segment 212b, collar 216b can be placed loosely on proximal tube segment 212a, after which the inner surface of collar 216a is adhered or otherwise fixed to the distal end of proximal tube segment 212a as illustrated in
In another mode of providing the thickened, female threaded distal end 218b of distal tube segment 212b, tube segment 212b is provided originally as an overall thinner tube. For example, tube segment 212b can be provided originally as a 0.375 inch (9.5 mm) outer diameter tube with an inner diameter throughout of 0.313 inch (8.0 mm). Here, a female threaded insert 134, such as the one illustrated in
While telescoping aerator 210 is illustrated as having two tube segments 212a and 212b, it is contemplated for telescoping aerator 210 to instead have three or more sections. For example, two larger outer tubes of the same outer diameter and wall thickness can be telescopically connected to an inner smaller diameter tube. Here, the two outer tubes meet each other over the inner tube when the alternative telescoping aerator is in its most contracted condition. The two outer tubes are pulled away from each other to the ends of the smaller diameter inner tube when the alternative telescoping aerator is in its most expanded condition. Two sets of collars, like collars 216a and 216b, are provided in the manner discussed above for telescoping aerator 210, one set for a first end of the inner tube and a first one of the larger outer tubes, the other set for a second end of the inner tube and second one of the larger outer tubes.
Referring now to
Attachment end 234 of air pump 230 includes a threaded plug or insert 240, which can be metal, such as steel or stainless steel, plastic or rubber, such as any of the plastics or rubbers discussed herein. Plug or insert 240 can inserted and possibly adhered after squeezable portion 232 is formed or be molded into the squeezable portion as squeezable portion 232 is formed. Threaded plug or insert 240 includes a flange portion 242 and a threaded portion 244. Flange portion 242 is contoured in an embodiment to the inner shape of the attachment side of squeezable portion 232. Flange portion 242 is alternatively disk-shaped. Flange portion 242 can be adhered to and/or molded into the attachment side of squeezable portion 232. Flange portion 242 also serves as a stiffener so that bulb 230 does not deflect as much due to the weight or moment applied by tube 12 and diffuser 20. Threaded portion 244 can have ¼-20 female threads. If a metric tube is provided, the threads can be of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight female threads or the metric equivalent, may be used alternatively.
Referring now to
Attachment end 254 of air pump 250 includes a threaded plug or insert 260, which can be metal, such as steel or stainless steel, plastic or rubber, such as any of the plastics or rubbers discussed herein. Plug or insert 260 can be inserted and possibly adhered to squeezable portion 252 after portion 252 is formed or be molded with or into portion 252 as it is formed. Threaded plug or insert 260 can include a flange (not illustrated) at the attachment end 254 of pump 250. Threaded insert 260 can have ¼-20 female threads. If a metric tube is provided, the threads can be of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight female threads or the metric equivalent, may be used alternatively, for connecting to tube 12.
Squeezable portion 252 of bulb pump 250 includes a thickened or reinforced front end 262, which is molded as part of the squeezable portion. Thickened or reinforced front end 262 allows for threaded insert 260 and the corresponding threaded connection between tube 12 and the bulb pump to be longer and more robust. Thickened or reinforced front end 262 is sized in one embodiment to allow squeezable portion 252 to be fully squeezed shut. Thickened or reinforced front end 262 also serves as a stiffener so that bulb 250 does not deflect as much due to the weight or moment applied by tube 12 and diffuser 20.
Referring now to
Bulb pump 270 includes a support cup 280, which can be metal, such as steel or stainless steel, such as brushed stainless steel 316, plastic or rubber, such as any of the plastics or rubbers discussed herein. Support cup 280 provides rigidity for the tube 12 plus a robust connection of tube 12 and bulb pump 270. Bulb front end 274 is cut or cropped except for a small tip that can serve as an o-ring for sealing to tube 12 when inserted. Glue or adhesive for fixing support cup 280 to squeezable portion 272 can be provided only at front end 274 of bulb 270 and not at a rear edge 282 of support cup 280 to allow for the full squeeze motion of squeezable portion 272. Support cup 280 can have a straight rear edge 282 as illustrated or have a lobed or other decoratively shaped edge 282.
Support cup 280 also defines threads 284, which can be ¼-20 female threads, for receiving tube 12. If a metric tube is provided, the threads can be of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight female threads or the metric equivalent, may be used alternatively.
Referring now to
Bulb pump 290 includes an alternative support cup 300, which can be metal, such as steel or stainless steel, such as brushed stainless steel 316, plastic or rubber, such as any of the plastics or rubbers discussed herein. Support cup 300 likewise provides rigidity for the tube 12 plus a robust connection of tube 12 and bulb pump 290. Glue or adhesive for fixing support cup 300 to squeezable portion 292 can be provided only at front end 274 of bulb 270 and not at a rear edge 302 of support cup 300 to allow for the full squeeze motion of squeezable portion 292. Support cup 300 can have a curved or lobed rear edge 302 as illustrated or have a straight or other decoratively shaped edge 302.
Support cup 300 differs from cup 280 in that it bends around and covers both the inner surface and outer surface of bulb front or attachment end 294. The surface of support cup 300 that covers the inner surface of attachment end 294 of squeezable portion 292 also defines threads 304, which can be ¼-20 female threads, for receiving tube 12. If a metric tube is provided, the threads can be of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight female threads or the metric equivalent, may be used alternatively.
Referring now to
In the illustrated embodiment, flanged section 412 includes a milled slot or circular groove 420, which receives and seats an o-ring or grommet 432 or a vented washer or kickstand 430. O-ring or grommet 432 can likewise be silicone or other rubber or be a hard plastic piece. O-ring or grommet 432 in an embodiment fits tightly and sturdily enough to tube 12 so as to remain at a set position along tube 12, and such vented washer or kickstand 430 can support the weight of the aerator. Vented washer or kickstand 430 can thus be used to store the aerator when not used and also to hold tube 12 and the diffuser at a set position within a bottle for example.
In
Referring now to
Referring now to
Referring now to
Shortened tube 512 is connected to a porous or sintered metal, diffuser 520. Diffuser 520 can alternatively be of a polymer material, wood, cork, rubber, metal or combinations thereof. In one embodiment, diffuser 520 is a stainless steel (e.g., type 304 or 316 stainless steel) porous cup or porous capped tube segment. The pore size can, for example, be less than one-hundred microns, such as ten microns, five microns, two microns, one micron or less than one micron, such as a half-micron or fraction of a micron. Smaller pore sizes make smaller air bubbles, which helps the air to diffuse into the wine. Diffuser 520 is in one embodiment generally impermeable to liquids. The small bubbles help the air to mix with and diffuse into the wine as opposed to simply migrating to the top of the bottle, without mixing. If diffuser 20 is left within a full bottle of wine for an extended period of time, the diffuser may eventually allow wine to seep through its walls. However, diffuser 520 is generally hydrophobic and will not allow wine or liquids to enter quickly. Diffuser 520 may be removeably connected to tube 512 via any of the structures and methods discussed in connection with
The lower or proximal end of tube 512 is connected removeably in one embodiment to a standalone bulb pump 530. Standalone bulb pump 530 includes a standalone squeezable portion 532 having leg section 534 and leg section 536. Leg sections 534 and 536 can be separated in an accordion or bellows like manner via longer v-shaped inner walls 544 and 546. Leg sections 534 and 536 are separated alternatively by a shorter upside down u-shaped section 540 (shown in phantom line). In either case, leg sections 534 and 536 allow the entire aerator 510 to be placed on a table and sit upright as illustrated best in
Squeezable portion 532 includes a one-way check valve 550 placed in one of leg sections 534 and 536 as illustrated, which allows air to enter squeezable portion 532 when the squeezable portion expands naturally due to the elasticity of rubber bulb pump 530, which can be made of any materials discussed herein for the bulb pumps, such as latex, silicone (e.g., high grade silicone) or polyvinylchloride (“PVC”). Squeezable portion 532 can be flocked or left plain, e.g., for high grade silicone, and have any logo, information or indicia printed or silkscreened thereon. Squeezable portion 532 is manually squeezed closed in the direction of the arrows illustrated in
The top 538 of squeezable portion 532 is formed in one embodiment in a tub or basin shape, so as to collect any wine or spirits that may run down tube 512 when aerator 510 is set to rest as illustrated in
Tub or basin top 538 is fitted in the illustrated embodiment with an insert 560 for threadingly receiving tube 512. Insert 560 is similar to insert 410 discussed above. Insert 560 likewise includes a flanged section 562 and a barbed threaded section 564. Barb 566 of threaded section 564 digs into the inner wall of bulb pump top 538 for a firm connection, which may not require an adhesive—although adhesive may be used if desired. Threaded section 564 in the illustrated embodiment seats an o-ring 568, such as a silicone o-ring, for providing a sealed connection to tube 512. Threaded section 564 can have ¼-20 female threads. If a metric tube is provided, the threads can be of a corresponding metric size and pitch. Finer threads, such as ¼-28 or ¼-32 straight female threads or the metric equivalent, may be used alternatively, for connecting to tube 512.
Protective cover or traveling case 570 can be metal, plastic or rubber as desired. For example, case 570 can be brushed stainless steel. In the illustrated embodiment, case 570 has a top wall 572, front wall 574, side wall 576 (other sidewall sectioned away for illustration), rear wall 578 and an open bottom. Walls 572 to 578 can be flat, rounded or angled as desired for an aesthetic, yet rugged, protective finish. Front wall 574 includes an outwardly extending hollow catch 580 that is shaped and sized to hold check valve 550 extending outwardly from squeezable portion 532. The bottom of front wall 574 and the bottom of rear wall 578 each also define a user notch 582.
To insert aerator 510 lockingly into cover or traveling case 570, the user squeezes squeezable portion 532 closed such that check valve 550 can fit into the open end at the bottom of traveling case 570. To fully insert aerator 510 into case 570, the user's fingers can extend into user notches 582. When fully inserted, the user releases squeezable portion 532, which expands naturally, such that check valve 550 snaps into a locking position with hollow catch 580 of case 570. Aerator 510 remains in the locked position (check valve 550 snap-fitted into hollow catch 580) until it is desired to use the aerator. At the time of desired use, the user places his/her fingers into user notches 582 of case 570, squeezes squeezable portion 532 closed, unlocking check valve 550 from hollow catch 580, and enabling aerator 510 to be pulled free from traveling case 570.
Referring now to
The lower or proximal end of tube 612 is connected removeably in one embodiment to a standalone bulb pump 630, e.g., using a threaded insert in the same manner as discussed with aerator 510. Lower or proximal end of tube 612 is alternatively fixed to standalone bulb pump 630 in various manners discussed below with aerator 810. Standalone bulb pump 630 includes a standalone squeezable portion 632 having leg section 634 and leg section 636 as with aerator 510 discussed above. Leg sections 634 and 636 can be separated in an accordion or bellows like manner via longer v-shaped inner walls 544 and 546. Squeezable portion 632 includes a one-way check valve 650 placed in one of leg sections 634 and 636 as illustrated, which allows air to enter squeezable portion 632 when the squeezable portion expands naturally due to the elasticity of rubber bulb pump 630. Bulb pump 630 can be made of any materials discussed herein for the bulb pumps, such as latex, silicone (e.g., high grade silicone) or polyvinylchloride (“PVC”). Squeezable portion 632 can be flocked or left plain, e.g., for high grade silicone, and have any logo, information or indicia printed or silkscreened thereon.
One primary difference between aerators 510 and 610 is that the tub or basin top 538 of aerator 510 is replaced by a drip cup 638 for aerator 610. Drip cup 638 can be formed with or attached to tube 612. In one embodiment, drip cup 638 is formed with or molded into bulb pump 630. Drip cup 638 serves the same purpose as tub or basin top 538 of aerator 510, namely, to catch wine or spirit drips between uses. It is thought that drip cup 638 may be able to have a larger drip catching area and thus be more effective than tub or basin top 538.
Squeezable portion 632 includes a one-way check valve 650 placed in one of leg sections 634 and 636 as illustrated, which allows air to enter squeezable portion 632 when the squeezable portion expands naturally due to the elasticity of rubber bulb pump 630, which can be made of any materials discussed herein for the bulb pumps, such as latex, silicone (e.g., high grade silicone) or polyvinylchloride (“PVC”). Squeezable portion 632 is manually squeezed closed. For this purpose, the outer surfaces of leg sections 634 and 636 can as above be provided with rigid or semi-rigid plates, such as plastic plates, for pressing bellows-like leg sections 634 and 636 together. If leg sections are not provided, leg sections 634 and 636 will compress more in the middle as is the case with the other bulb pumps discussed herein. Both versions of squeezable portion 632 are expressly contemplated for aerator 610.
Referring now to
The lower or proximal end of tube 712 is connected removeably in one embodiment to a standalone bulb pump 730, e.g., using a threaded insert in the same manner as discussed with aerator 510. Lower or proximal end of tube 712 is alternatively fixed to standalone bulb pump 730 in various manners discussed below with aerator 810. Standalone bulb pump 730 is in one embodiment bulb pump 30 turned so that it sits vertically with air intake end 36/736 residing beneath attachment end 34/734. Three or four legs 738 are molded into squeezable portion 732 of bulb pump 730 to enable the bulb to reside vertically as illustrated in
In the illustrated embodiment, aerator 710 includes a drip cup 740. Drip cup 740 can be formed with or attached to tube 712. In one embodiment, drip cup 740 is formed with or molded into bulb pump 730. Drip cup 740 serves the same purpose as tub or basin top 538 of aerator 510, namely, to catch wine or spirit drips between uses.
Referring now to
Squeezable portion 832 of standalone bulb pump 830 is in one embodiment substantially spherical at least towards its upper attachment end 834. Bulb pump 830 is flattened on its air intake end 836, so that flattened bottom 836 can be placed on a table or countertop and support stem 812 and diffuser 820 vertically as illustrated. Bulb pump 830 can be made of any material discussed herein for the bulb pumps, e.g., latex, silicone (e.g., high grade silicone) or polyvinylchloride (“PVC”). Bulb pump 830 can be flocked or left plain, e.g., for high grade silicone, and have any logo, information or indicia printed or silkscreened thereon. Air intake end 836 includes a one-way check valve, as has been described herein, for forcing air to exit diffuser 820.
In the illustrated embodiment, aerator 810 includes a drip cup 840. In one embodiment, drip cup 840 is formed with or molded into bulb pump 830. Drip cup 840 serves the same purpose as tub or basin top 538 of aerator 510, namely, to catch wine or spirit drips between uses.
An insert 860, e.g., stainless steel 316, is pressed through neck 838 from the outside, so that an upper flange and lower barb of the inserted compress neck 838 slightly, forming a sturdy, non-removable, fit. Stem 812 can be welded to the flange of insert 860, as illustrated, or be connected threadingly to the insert. Insert 560 of aerator 510 (and the inserts of aerators 610 and 710) can likewise be welded to the respective stem 512.
Inner cover 870 includes sidewalls 872 extending downwardly along stem 812 and then transitioning to an inwardly extending, annular, beveled or triangular, flange 874. Beveled or triangular flange 874 is pushed onto aerator 810 and snaps over drip cup 840, which in this instance is rubber, and is held in place between drip cup 84 and upper attachment end 834 of squeezable portion 832 until the user wishes to remove cover 870. When the user wishes to remove cover 870, the user pulls cover 870 off of aerator 810, causing the upper beveled or angled edge of flange 874 to deform and compress drip cup 840, so that flange 874 and cover 870 can slide past drip cup 840, coming free from aerator 810.
Outer protective cover 880 includes sidewall(s) 882 extending downwardly along stem 812 and then transitioning to an outwardly bulging, annular ring 884. Annular ring 884 presses over the largest outside diameter of squeezable portion 832 in the illustrated embodiment. To don protective cover 880, the user presses squeezable portion 832 into annular ring 884. Notches 888 are provided 180 degrees apart in annular ring 884 to help the user guide squeezable portion 832 fully into annular ring 884. Squeezable portion 832 is deformed and compressed by the bottom edge 886 of ring 884 as portion 832 slides up along the bottom edge. One or more air intake/release hole 890 can be provided in sidewall(s) 882 so that air displaced by and pumped from squeezable portion 832 can escape from cover 880. Eventually, squeezable portion 832 settles into place within annular ring 884, enabling portion 832 to expand to its natural volume, locking aerator 810 in place within protective cover 880.
Although not illustrated, it is contemplated to provide a sliding collar around annular ring 884, which the user can slide along ring 884 into a snap-lock position to cover notches 888 when it is desired to lock aerator within cover 880, and which the user can slide along ring 884 free from the snap-lock position, in the opposite direction, to expose notches 888 for removing aerator 810 from cover 880. The sliding collar can be in a tongue-and-groove, slideably connected relationship with annular ring 884, for example.
When the user wishes to remove cover 870, the user uses notches 888 to grasp the largest diameter of squeezable portion 832 and pull aerator 810 from the cover. Bottom edge 886 of ring 884 again deforms and compresses squeezable portion 832 on its way out of cover 870. Air squeezed from squeezable portion 832 though diffuser 820 into cover 880 should quell any vacuum tending to be caused by the withdrawal of aerator 810 from cover 880. In any case, one or more air intake/release hole 890 allows the pressure inside cover 880 to always be atmospheric. Aerator 810 is pulled completely free from cover 880 for use.
Referring now to
The primary support mechanism for obtaining the upright positioning of the
Upper attachment end 834 of squeezable portion 832 of bulb pump 830 of
Second, thickened upper attachment end 834 creates a smooth, unobstructed passageway to the proximal end of tube 812, which allows any liquid entering squeezable portion 832 to be easily and fully squeezed out of the bulb pump. It is contemplated for single glass aerators to permanently attach tube 812 to bulb pump 830, and allowing diffuser 820 to be removed from stem 812 to thoroughly clean the stem/pump and the diffuser. Cleaning the stem/pump will involve sucking water into squeezable portion 832, which will need to be easily and completely discarded. Creating a step jump between the inner wall of squeezable portion 832 and the portion of the interior pump 830 holding the proximal end of stem 812 creates liquid holding pocket that may be difficult to drain.
Third, thickened upper attachment end 834 creates a more rigid squeezable portion 832, which helps bulb pump 830 to snap back into shape more quickly. Mechanically aiding bulb pump 830 in this way allows more flexible materials, such as silicone, to be used.
As discussed above, thickened upper attachment end 834 and neck 838 combine to provide an extended distance for firmly receiving, holding and sealing to the proximal end of tune 812. In the illustrated embodiment, the proximal end of tube 812 is notched and provided with a plurality of barbs 816, which in one embodiment are structured to prevent the movement of stem 812 in either direction relative to bulb pump 830 once inserted into the pump. The length of the channel in the proximal end of stem is sized to compress fit the combined length of thickened upper attachment end 834 and neck 838. The inner diameter of the insertion hole of bulb pump 830 is made smaller than the outer diameter of the channeled portion of stem 812, causing bulb pump 830 to compress about barbs. In an alternative embodiment, inner diameter of the insertion hole of bulb pump 830 is molded to have female threads for receiving mating alternative male threads formed onto the proximal end of stem 812.
Drip cup 840 is formed with bulb pump 830 in the illustrated embodiment. Bulb pump 830, stem 812 and diffuser 820 of
Between uses of any of the full bottle or single glass aerators, it is contemplated to operate such aerators in a glass of cleaning liquid, such as water or carbonated water. Doing so cleans the previous liquid (wine or spirit) from the diffuser for use with a different wine or spirit. A few pump strokes performed while the diffuser is inserted in the cleaning liquid, followed by a few pump strokes while the diffuser is held in the air above the cleaning liquid should reset the aerator for next use.
As discussed above, the aerators or breathing apparatuses of the present disclosure can aerate any tannin containing liquid, such as wine and various spirits, such as whiskeys and tequilas. It is also expressly contemplated to use any of the aerators of the present disclosure to promote the sale of such wines and spirits. For example, wine or spirits may be sold on a website. Each aerator sold includes literature, on itself or its packaging, directing the buyer to the website or marketplace for replacement and product information and also to view wines and/or being aerated using the aerators of the present disclosure. The website or marketplace accordingly hosts videos of different wines or spirits being aerated by any of the aerators of the present disclosure. Features and aspects of each of the wines or spirits are discussed in the context of how the aerator brings out and enhances the flavor of the wines or spirits. The video is accompanied by a shopping cart or similar product collection mechanism on the website or marketplace that allows each of the wines or spirits, discussed and analyzed after being aerated by one of the aerators of the present disclosure, to be selected for purchase. The sale of wine or spirits may be accompanied with the sale of one of the aerators discussed herein.
Referring now to
Tube or pipe 12 is of a suitable thickness to receive whichever threads are used. For example, the 0.250 inch (6.4 mm) outer diameter tube can have an 0.065 inch (1.7 mm) thick wall, leaving a 0.120 inch (3.0 mm) hole through which pressurized carbon dioxide travels. Tube 12 can be of any length discussed previously, or be shorter, e.g., on the order of eight to ten inches (20.3 to 25.4 cm). Tube 12 can have a diameter larger or smaller than 0.250 inch (6.4 mm) outer diameter as desired.
As before, threaded distal end 18b in one embodiment receives a diffuser 20, which can likewise be made of type 304 or 316 stainless steel. Diffuser 20 can be a porous cup or porous capped tube segment, formed via any known method, such as via a sintered or powdered metal process. Diffuser 20 is alternatively a porous plastic as has been described herein. The pore size of diffuser 20 can, for example, be less than one-hundred microns, such as ten microns, five microns, two microns, one micron or less than one micron, such as a half-micron or a fraction of a micron. Smaller pore sizes make smaller carbon dioxide (“CO2”) bubbles, which helps the CO2 to diffuse into whatever liquid is being carbonated. While diffuser 20 is illustrated as being female threaded in
As illustrated in
If cap 316 is threaded onto the top 352 of bottle 350, then cap 312a (including sidewall 314 and top wall 316) and bottle top 352 are sized and threaded according to any known size (e.g., about one inch (2.54 cm)) and thread used for soda bottles, bottled water, tonic water, soda water, energy drinks, sports drinks, and the like. Sidewall 314 of cap 312a includes female threads, while bottle top 352 includes mating male threads.
If cap 312a is instead compressed onto bottle top 352, then top wall 316 of cap 312a is radially large enough, e.g., 1.25 inches (3.18 cm), to hold a cylindrical gasket 320 along the inside surface of cylindrical sidewall 314, which becomes compressed to the outer surface of bottle top 352 when cap 312a is applied to bottle top 352. Gasket 320 can for example be silicone rubber or silicone sponge rubber, or other rubber or plastic material, and be of a thickness, e.g., 0.125 inch (3.2 mm), which allows cap 312a to be readily applied to and removed from bottle top 352, and which also provides a strong enough seal between cap 312a and bottle top 352, such that CO2 (i) will not leak out between cap 312a and bottle top 352 and (ii) will not blow cap 312a off of bottle top 352 when CO2 is pressurized within bottle 350. Gasket 320 is also of a suitable thickness to allow for variability in bottle top 352 diameter, e.g., between different industry standards. Gasket 320 may be configured to (i) slide or translate onto and off of the male threads of bottle top 352 or instead (ii) thread or spiral onto and off of the male threads.
In one embodiment, regardless of whether gasket 320 is provided or not, cap 312a provides an upper circular gasket 330, which is placed on the underside of top wall 316 of cap 312a. Gasket 330 includes or defines a hole (sealed around tube 12 in
When it is desired to use tube 12 and diffuser 20 for carbonation apparatus 310 instead of one of the aerators 10, 110 or 210, bulb pump 30 is removed from tube 12 and cap 312a is slid over the outside of tube 12 so that, as illustrated, the open cupped end of cap 312a faces bottle top 352. Bottle 350 in one embodiment is plastic or metal that is suitable for holding a liquid, such as water. Bottle 350 includes a circular base 354 and cylindrical sidewall 356 that are sized to hold a standard amount of a beverage, such as one-half liter, or smaller, to one liter, or two liters, or larger. Bottle 350 can be disposable but in one preferred ergonomically conscious embodiment is reusable, e.g., a safe reusable plastic or metal, such as aluminum, stainless steel and alloys thereof. In place of bulb pump 30, a CO2 injector assembly 370 is connected to proximal end 18a of tube 12.
CO2 injector assembly 370 in the illustrated embodiment includes a CO2 injector 380a. The outlet fitting 382 of CO2 injector 380a determines the type of fitting 372 that is needed for connection to proximal end 18a of tube 12. In the illustrated embodiment, outlet fitting 382 of CO2 injector 380a is a tube compression fitting. Fitting 372 accordingly includes a female threaded end for connection to the male threaded proximal end 18a of tube 12 and a tube compression fitting for connecting sealingly to a flexible, e.g., plastic tube 374, which in turn runs to tube compression fitting outlet fitting 382 of CO2 injector 380a. Flexible plastic tube 374 can be a 0.250 inch (about 6 millimeter (“mm”)) outside diameter tube and be made for example of polyvinyl chloride (“PVC”). If outlet fitting 382 of CO2 injector 380a is instead a female threaded fitting matching the male thread of proximal end 18a of tube 12, the CO2 injector can then alternatively be connected directly to tube 12 as discussed in connection with
CO2 injector 380a is known in other arts for such uses as aiding the growth of live plants in aquariums, the home brewing of beer, and bicycle tire inflation, for example. CO2 injector 380a includes a cylindrical body 384 that receives a pressurized CO2 cartridge 390. Cartridges 390 come standard in twelve and sixteen gram packages and may hold up to 125 psig of pressure. The present disclosure contemplates the use of larger cartridges 390 that may hold more or less pressure. In the illustrated embodiment, cylindrical body 384 includes clips 386 that allow CO2 injector 380a to be releaseably snap-fitted to tube 12, e.g., resting on or near top wall 316 of cap 312a.
CO2 injector 380a includes a spring-loaded handle 388 that the user pulls towards body 384 to release CO2 gas through tube 374, fitting 372, tube 12, and diffuser 20 into liquid 340. It is contemplated that handle 388 need only be actuated for a few seconds to release enough CO2 gas into bottle 350 to adequately carbonate liquid 340, e.g., water. Once handle 388 is released, its spring pushes handle 388 closed, stopping the flow of CO2 gas (CO2 cartridge 390 likely also includes a spring-loaded valve that is also biased to be normally closed upon the user's release of handle 388). Diffuser 20 provides the same advantages to the dispersion of both air and CO2 gas, namely, forcing the air or CO2 gas through tiny pores, e.g., less than one-hundred microns, such as ten microns, five microns, two microns, one micron or less than one micron, such as a half-micron or a fraction of a micron. The tiny holes or pores break the air or CO2 gas into tiny bubbles that exit diffuser 20 as a plume of air bubbles or CO2 gas bubbles. The weight of the wine or in this case liquid 340, it is believed, breaks the tiny bubbles down into even smaller microbubbles, which are even more readily diffused into the wine or liquid 340.
Liquid 340 is in one embodiment purified water, such as carbon filtered water or reverse osmosis (“RO”) water. Tap water or deionized water could also be used. Liquid 340 is alternatively a juice, such as orange juice, grapefruit juice, strawberry juice, grape juice, apple juice, pineapple juice, mango juice, lemon juice, lime juice, cherry juice, and the like, and combinations thereof including combinations thereof diluted with water, such as purified water. Liquid 340 can further include, in any combination with or alone from above, soda syrup or any type of liquor, such as vodka, gin, rum or tequila, and the like. Liquid 340 could be any type of liquid that has gone flat, such as a soft drink or beer that has gone flat. Salt, sugar, herbs and/or spices may also be added to liquid 340. It is believed that the injection of CO2 gas into a drink helps to mix and homogenize different the constituents making up liquid 340, such as juice and water, juice and liquor, water and liquor, and water, juice and liquor.
Bottle 350 can be plastic or metal as has been described above. It is contemplated to provide a reusable bottle 350 as part of carbonated beverage preparation apparatus 310. Along with bottle 350, it is contemplated to provide a separate cap (not illustrated), which threads or otherwise removeably attaches and seals to bottle top 352. The separate cap does not need any gasketing and can instead be a standard cap. The separate cap is used after carbonation, once tube 12 and diffuser 20 are removed from bottle 350. To do so, cap 312a if threaded to bottle top 352 is unthreaded from top 352. Or, if cap 312a is instead press-fitted onto bottle top 352, as discussed above, cap 312a can instead be pulled off of bottle top 352. Tube 12 and diffuser 20 are then removed from bottle 350, after which the separate cap is applied to seal the newly created carbonated beverage for transport.
Referring now to
While bottle 350 is illustrated in
Referring now to
Carbonated beverage preparation apparatus 310 is in one embodiment provided as a standalone apparatus. That is, apparatus 310 does not have to be prepared by transitioning one of the aerators discussed above into the carbonated beverage preparation apparatus. It may be desirable for example to make tube 12 shorter in length for carbonated beverage preparation apparatus 310 than for the aerators discussed above.
Referring now to
Besides carbonated beverage preparation, it is contemplated to use the embodiments set forth in
In light of the above description and drawings, and without limiting the invention in any way, in a first aspect, the present disclosure includes a wine and spirit aeration apparatus including a tube; a diffuser attached to a distal end of the tube; and an air pump attached to a proximal end of the tube, the air pump operable to pump air through the tube and diffuser, into a wine or spirit, the proximal end of the tube left unobstructed so that when the apparatus is used to aerate a whole bottle of the wine or spirit, the air can flow from the wine or spirit, out of the bottle.
In a second aspect, which may be used in combination with any other aspect listed herein, the air pump is a manual bulb pump.
In a third aspect, which may be used in combination with any other aspect listed herein, the air pump is attached to the proximal end of the tube (i) via an insert placed into the air pump, (ii) directly to the proximal end of the tube, or (iii) via a piercing member that pierces a plug inserted into the proximal end of the tube.
In a fourth aspect, which may be used with the third aspect in combination with any other aspect listed herein, the insert threadingly engages the proximal end of the tube.
In a fifth aspect, which may be used with the third aspect in combination with any other aspect listed herein, the insert holds a gasket for sealing to the proximal end of the tube.
In a sixth aspect, which may be used in combination with any other aspect listed herein, the diffuser includes sintered metal.
In a seventh aspect, which may be used in combination with any other aspect listed herein, the diffuser includes openings less than one-hundred microns in average diameter.
In an eighth aspect, which may be used in combination with any other aspect listed herein, the diffuser has a tubular shape.
In a ninth aspect, which may be used in combination with any other aspect listed herein, the diffuser is releaseably attached to the distal end of the tube, so that the tube and/or diffuser can be separated and cleaned.
In a tenth aspect, which may be used with the ninth aspect in combination with and any other aspect listed herein, the diffuser is releaseably press-fitted to the distal end of the tube via a gasket.
In an eleventh aspect, which may be used with the ninth aspect in combination with and any other aspect listed herein, the diffuser is releaseably threaded to the distal end of the tube.
In a twelfth aspect, which may be used in combination with any other aspect listed herein, the distal end of the tube and the diffuser are located a distance away from the air pump, such that when inserted into the wine or spirit bottle, air leaving the diffuser effectively travels the entire length of the bottle.
In a thirteenth aspect, which may be used in combination with any other aspect listed herein, the tube includes at least one of (i) a first tube segment and a second tube segment connected telescopically to the first tube segment, or (ii) a kickstand for suspending the diffuser in the air when the aeration apparatus is set down between uses.
In a fourteenth aspect, which may be used in combination with any other aspect listed herein, the air pump is removable from the proximal end of the tube, and which includes a carbon dioxide (“CO2”) injector attachable directly or indirectly to the proximal end of the tube, such that the apparatus becomes a carbonated beverage preparation apparatus or a plant feeding apparatus.
In a fifteenth aspect, which may be used in combination with any other aspect listed herein, a wine and spirit aeration apparatus includes a tube; a diffuser attached to a distal end of the tube; and a manual air pump attached to a proximal end of the tube and operable to pump air through the tube and diffuser into a wine or spirit, the manual air pump shaped to be set on a structure between uses and support the tube and diffuser above the manual air pump.
In a sixteenth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the tube is sized for single glass aeration.
In a seventeenth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the manual air pump is shaped to include a plurality of legs for setting the apparatus on the structure and supporting the tube and diffuser above the manual air pump.
In an eighteenth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the manual air pump is shaped to have a flattened side for setting the apparatus on the structure and supporting the tube and diffuser above the manual air pump.
In a nineteenth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the wine and spirit aeration apparatus includes a stand extending from the manual air pump for setting the apparatus on the structure and supporting the tube and diffuser above the manual air pump.
In a twentieth aspect, which may be used with the nineteenth aspect in combination with any other aspect listed herein, the stand is any one or more of: conical, solid, open to receive air, a shape forming a circular interface with the structure.
In a twenty-first aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the manual air pump is shaped to have bellows type legs for setting the apparatus on the structure and supporting the tube and diffuser above the manual air pump.
In a twenty-second aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, one of the tube or the manual air pump is formed or provided with a drip cup for catching drips when the apparatus is set on the structure and supporting the tube and diffuser above the manual air pump.
In a twenty-third aspect, which may be used with the twenty-second aspect in combination with any other aspect listed herein, the drip cup is molded as part of the manual air pump.
In a twenty-fourth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the wine and spirit aeration apparatus includes a one-way valve imbedded into the manual air pump to enable the apparatus to be set on the structure and support the tube and diffuser above the manual air pump.
In a twenty-fifth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, at least one of the diffuser or the manual air pump is removeably attached to the tube.
In a twenty-sixth aspect, which may be used with the fifteenth aspect in combination with any other aspect listed herein, the wine and spirit aeration apparatus includes a protective case, the tube and a diffuser extending into the case, the manual air pump releaseably snapping into the case.
In a twenty-seventh aspect, which may be used in combination with any other aspect listed herein, a wine and spirit aeration method includes structuring an aerator so that it can be used to aerate a spirit, operated in a cleaning liquid to remove residual spirit from the aerator, and then used to aerate wine.
In a twenty-eighth aspect, which may be used with the twenty-seventh aspect in combination with any other aspect listed herein, the cleaning liquid is water or carbonated water.
In a twenty-ninth aspect, which may be used in combination with any other aspect listed herein, the wine or spirit aeration apparatus includes a stopper fitted to the tube, the stopper sized and shaped to be sealably and releaseably inserted into a lip of a wine bottle. The stopper can (i) have a conical shape and is made of cork, rubber or plastic, (ii) be permanently fixed to the tube, (iii) be moveably fixed to the tube, (iv) be moveable along the tube between a full bottle diffusion position, a half bottle diffusion position and a single glass diffusion position, (vi) be moveable along the tube between positions designated by markers, (vi) be moveable along the tube between positions designated by at least one stopper holding member, and wherein the stopper holding member can include a circular rib protruding about the tube, (vii) include a generally cylindrical wall angled inwardly from top to bottom relative to the wine bottle at ten to thirty-five degrees.
In a thirtieth aspect, which may be used in combination with any other aspect listed herein, the aeration tube is bendable but generally holds its shape.
In a thirty-first aspect, which may be used in combination with any other aspect listed herein, the diffuser is made of a porous plastic, and wherein the porous plastic diffuser can thread into a distal end of the tube.
In a thirty-second aspect, which may be used in combination with any other aspect or combination of aspects listed herein, a wine and spirit aeration apparatus includes: a first tube segment; a second tube segment connected telescopically to the first tube segment; an air pump placed in fluid communication with the first tube segment; and a diffuser attached to the second tube segment.
In a thirty-third aspect, which may be used in combination with the thirty-second aspect and any other aspect or combination of aspects listed herein, the air pump is connected to the proximal end of the tube.
In a thirty-fourth aspect, which may be used in combination with the thirty-second aspect and any other aspect or combination of aspects listed herein, the wine and spirit aeration apparatus includes a first collar placed on an inside of a larger diameter one of the first and second tube segments, and a second collar placed on an outside of the smaller diameter other of the first and second tube segments, the collars abutting when the wine and spirit aeration apparatus is in its most contracted condition.
In a thirty-fifth aspect, which may be used in combination with the thirty-second aspect and any other aspect or combination of aspects listed herein, the first and second collars are of a same inner and outer diameter.
In a thirty-sixth aspect, which may be used in combination with the thirty-second aspect and any other aspect or combination of aspects listed herein, a distal end of the second tube segment is thickened and threaded or includes a threaded insert for threadingly connecting to the diffuser.
In a thirty-seventh aspect, which may be used in combination with any other aspect or combination of aspects listed herein, a method for marketing wine includes: providing a wine aerator; creating a video in which the wine aerator is used to aerate a wine, wherein at least one feature or aspect of the wine is discussed in connection with the aeration of the wine; enabling the video to be viewed on a website; and offering the wine for sale via the website.
In a thirty-eighth aspect, which may be used in combination with the thirty-seventh aspect and any other aspect or combination of aspects listed herein, the method for marketing wine further includes offering the aerator for sale via the website.
In a thirty-ninth aspect, which may be used in combination with any other aspect or combination of aspects listed herein, a carbonated beverage preparation apparatus includes: a tube; a diffuser attached to a distal end of the tube; and a carbon dioxide (“CO2”) injector in fluid communication with a proximal end of the tube, the CO2 injector operable to push CO2 gas through the tube and diffuser into a liquid to carbonate the liquid. The tube can be provided with a housing holding a pressure or flow reducing medium for reducing the pressure and/or flow of CO2 gas flowing to the diffuser.
In a fortieth aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the tube is a first tube, and wherein the CO2 injector is connected to the proximal end of the first tube via a second tube.
In a forty-first aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the CO2 injector is connected to and held by the tube.
In a forty-second aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the CO2 injector is connected directly to the proximal end of the tube.
In a forty-third aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the carbonated beverage preparation apparatus includes a bottle for holding the liquid.
In a forty-fourth aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the carbonated beverage apparatus includes a cap coupled slidingly to the tube, the cap configured to cap a bottle or container holding the liquid.
In a forty-fifth aspect, which may be used in combination with the thirty-ninth aspect and any other aspect or combination of aspects listed herein, the cap includes a gasket configured to seal to the bottle or container.
In a forty-sixth aspect, which may be used in combination with the forty-fifth aspect and any other aspect or combination of aspects listed herein, the cap includes a gasket configured to seal to the tube.
In a forty-seventh aspect, which may be used in combination with the forty-fifth aspect and any other aspect or combination of aspects listed herein, the cap is threaded for threaded connection and removal from the bottle or container.
In a forty-eighth aspect, which may be used in combination with the forty-fifth aspect and any other aspect or combination of aspects listed herein, the cap is configured and arranged to translate sealingly onto the bottle or container.
In a forty-ninth aspect, which may be used in combination with the any other aspect or combination of aspects listed herein, a hand or bulb air pump can include a threaded plug or insert for stiffening the pump and/or for sealing threads to the pump.
In additional aspects, any of the structure and functionality discussed in connection with
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
This application claims priority to an the benefit as a continuation of U.S. patent application Ser. No. 13/875,012, U.S. Pat. No. 9,321,018, entitled, Gas Diffusion Apparatus For Liquid Aeration And Carbonated Liquids, filed May 1, 2013, which claims priority to and the benefit of: (i) U.S. Provisional Patent Application No. 61/641,623, entitled, “Wine Aerator”, filed May 2, 2012; (ii) U.S. Provisional Patent Application No. 61/730,360, entitled, “Gas Diffusion Apparatus For Wine Aeration And Carbonated Beverage Preparation”, filed Nov. 27, 2012; (iii) U.S. Provisional Patent Application No. 61/740,881, entitled, “Gas Diffusion Apparatus For Wine Aeration And Carbonated Beverage Preparation”, filed Dec. 21, 2012; (iv) U.S. Provisional Patent Application No. 61/793,656, entitled, “Gas Diffusion Apparatus For Wine Aeration And Carbonated Beverage Preparation”, filed Mar. 15, 2013; and (v) U.S. Provisional Patent Application No. 61/811,484, entitled, “Gas Diffusion Apparatus For Wine Aeration And Carbonated Beverage Preparation”, filed Apr. 12, 2013, the entire contents of each of which are incorporated herein by reference and relied upon. The claims of this application are related in subject matter to those of U.S. Pat. No. 9,168,495, entitled, “Self-Supporting Wine Aerators And Protective Covers Therefore”.
Number | Date | Country | |
---|---|---|---|
61641623 | May 2012 | US | |
61730360 | Nov 2012 | US | |
61740881 | Dec 2012 | US | |
61793656 | Mar 2013 | US | |
61811484 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13875012 | May 2013 | US |
Child | 15137691 | US |